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S U M M A RY

In this thesis, we examine the effect of limited isolation capacity on the
final epidemic size, defined as the total number of individuals who
had the experienced of the disease. Many countries have faced the
difficulty from the shortage of medical resource against the outbreak
of SARS-COV-2. When the medical resource is much small, how does
the final epidemic size depend on the limited isolation capacity?

Our analysis on a mathematical epidemic dynamics model derives
a critical value of the isolation capacity below which the isolation
reaches the capacity in a finite time in the epidemic season. In such a
case, the final epidemic size necessarily becomes larger than that when
the isolation capacity is beyond the critical value. Further, we find
that the final epidemic size could have a discontinuous jump at the
critical of the isolation capacity under a condition about the epidemic
dynamics. In such an epidemic dynamics, the isolation capacity below
the critical value causes a drastic increase in the final epidemic size,
compared to that when the capacity is beyond the critical value. Such
a jump in the final epidemic size does not appear under the other
condition. Then the isolation capacity below the critical value could
not result in much increase in the final epidemic size, so that the
existence of the critical value of the isolation capacity may be little
observable.

From the viewpoint of a policy for prevention of a transmissible
disease spread, the isolation of detected infectives is one of the possible
choices. Our result implies the necessity of a sufficient capacity of the
isolation in order that the isolation works effective to suppress the
final epidemic size.
Keywords: Epidemic dynamics; Mathematical model; Ordinary differ-
ential equations; Isolation capacity; Final epidemic size
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1
I N T R O D U C T I O N

1.1 infectious disease

A disease is a condition in which a part of the body is affected and does
not work properly. The term infectious disease refers to the disease
produced by bacteria, fungi, viruses, protozoa, and other pathogenic
microorganisms. A variety of agents can transmit such infectious
diseases, including animals, humans, insects, and other organisms.

Epidemiology is a branch of medicine that investigates health and
disease patterns as well as the factors that influence them. In other
words, epidemiology is defined as the study of the link between the
disease transmission and the factors related to the spread.

Epidemiology was concerned only with the health of the human
population. According to some historians, Hippocrates (460–377 B.C.E.)
is considered the father of epidemiology who first explained the con-
cept of disease transmission through the environment [23]. According
to Epidemiologia Espanola, the Spanish physician De Villalba used the
term "epidemiology" for the study of epidemics in 1802 [9]. Disease
such as strokes and coronary heart that cannot be transmitted from
one individual to another and are focal of epidemiology, these diseases
are the major cause of death in the world [32].

1.1.1 Classification of infectious diseases

Pathogenic microorganisms are capable of causing the disease. There
can be a variety of microbial pathogenic agents like bacteria, viruses,
fungi, and parasites, toxic proteins. Tuberculosis and pneumonia are
diseases caused by bacterial infections. Influenza is an infectious dis-
ease that is caused by a virus pathogenic agent. Dermatomycoses in-
fection is caused by a fungus pathogenic agent. Protozoa, trematodes,
and cestodes infections are caused by parasite pathogenic agents.

Transmission of a disease from one individual to another is possible
either in a direct or indirect way. Physical (touching or sexual contact)
is the direct way to transmit a disease from one individual to another.
Sexually transmitted diseases (STD) are diseases that spread via sexual
interaction. Examples are gonorrhea, and AIDS etc. While the indirect
transmission occurs for a disease which is transmitted with the contact
of individual to contaminated objects like blood, vomit or excreta. The
diseases transmitted through indirect contacts include influenza and
COVID-19.

There are different categorizations for the infectious disease, based
on the route of transmission :
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2 introduction

• Airborne disease: This kind of disease is transmitted through
inhalation of infected air such as influenza, smallpox, measles,
tuberculosis, etc.

• Food-and waterborne disease: The transmission of a disease
occurs when food or water is contaminated with pathogens.
Salmonella and stomach flu are examples of food-borne diseases,
whereas, waterborne diseases include cholera.

• Vector-borne disease: The transmission of a disease can occur
through an arthropod including a mosquito, or a mollusk such
as a snail. This kind of disease is called vector-borne disease. The
disease transmitted by mosquitoes includes malaria, dengue, etc.

• Vertical transmissible disease: When an infected mother trans-
fers the disease to her child through the placenta, this kind of
transmission is called a vertical transmission and the disease is
called a vertical transmissible disease. Rubella, HIV, and hepatitis
B are examples of such vertical transmissible diseases.

The transmission is distinguished into four types on the bases of
modeling [29]: direct transmission when an individual contracts the
pathogen from another individual; vector transmission when an indi-
vidual contracts the pathogen from a vector; environmental transmis-
sion when an individual contracts the pathogen from the environment;
vertical transmission when the pathogen is transmitted to the child
from mother at birth.

Diseases directly transmitted from one person to the other or spread
by air are generally modeled as directly transmitted. Although it is
necessary to make sexual contact for sexually transmitted diseases, in
the case of airborne disease, physical closeness is sufficient without
touching involved. It is important to include the dynamic of the vector
along with that of the infected people in order to model a vector-borne
transmissible epidemic dynamics.

Typically, environmental viruses are modeled separately from the
transmission of free pathogens between individuals who are in contact
with these viruses. A pathogen reservoir is an area where a pathogen
may survive and reproduce. Most human pathogens are transmitted
by humans, and humans are the primary reservoir for such pathogens.
Most animal pathogens are transmitted among vertebrates, which
act as reservoirs. It is important from an epidemiological perspective
that some of these pathogens transmit the disease to humans through
animals. Among vertebrate animals, zoonoses are infectious diseases
that spread to humans.

There may different pathways with which an infectious disease is
transmitted. For example, HIV can be transmitted vertically during
pregnancy to a baby from an infected mother, also through sex, or
by using shared needles. Direct contact with an infected bird is the
most common route of spreading Avian influenza H5N1, while the
transmission from human to human occurs very rarely. In addition,
there are now substantial evidences that the H5N1 virus can survive
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in the environment, and the route of environmental transmission
becomes increasingly relevant.

1.1.2 Important factors in epidemic dynamics

In epidemiology, infectious diseases are closely linked to a number
of concepts. As a result of these concepts, mathematical models are
constructed by including several characteristics. Nelson and Williams
[30] explained the detail of those concepts used until now. Below are
some of the concepts used in the modeling of infectious diseases.

• Susceptible individual: Susceptible individuals are those indi-
viduals who are healthy and can get the disease.

• Exposed individual: Exposed individuals are those individuals
who are healthy and have made potentially disease-transmitting
contact after being vulnerable to a disease. The individual from
this class may not spread the disease.

• Infected individual: Infected individuals are those individu-
als who got the disease and can transmit it in the community.
The exposed individual becomes infected once the pathogen
establishes itself.

• Recovered individual: Recovered individuals are those individu-
als who have gotten the immunity against the disease and cannot
be reinfected again.

• Latent individual: Latent individuals are those individuals who
have been infected but are not able to transmit the disease to the
other individuals in the community. The latent period, in such
a case, is referred to the period between the infection and the
emergence of transmission ability to another individual.

• Incubation Period: The time span between being exposed to
an infectious agent and the appearance of the symptoms. The
symptoms occurs when the infectious agent multiplies until it
reaches a threshold necessary to cause them. Both the incubation
and latent periods do not necessarily coincide. For example, flu
symptoms appear one day after an individual becomes infec-
tious.

• Incidence: It determines how many individuals get sick within
a certain period of time. However, sometimes it also determines
how much proportion of individuals gets sick within a certain
period of time. Most often, it can be calculated based on the
number of clinical cases.

• Prevalence: It determines the number of patients at a given time.

• Disease-Induced Mortality: It determines the proportion of
individuals died by the disease per unit time.
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1.1.3 Mathematical modeling for epidemic dynamics

Athens was struck by the plague in (430-426B.C.E), the first serious
epidemic traced by historians. In Thucydides’ History of the Pelo-
ponnesian War (460–400B.C.E.), the scientific historian accurately de-
scribed the plague. According to him, the symptoms and number of
deaths are all based on personal experience. It is still unclear which
agent caused Athens’ plague [31, 33]. During 165–180 CE, Egypt and
the Roman Empire suffered from smallpox. There were around ten
millions of deaths [2].

In Europe, the Black Death was one of the most well-known epi-
demics. Around 50–100 million people died as a result of the Black
Death in the Mediterranean and Europe during the years 1348–1350 [2].
Yersinia pestis is the bacterium that causes different forms of plague
and based on DNA evidence, it is suspected that it spread throughout
Europe [17]. In the 16th century, the Aztec populations in central
Mexico were badly affected by the outbreak of smallpox disease and
around 35 million people died. Moreover, in the nineteenth century,
many countries in Europe were affected by the Black Death. Around
20 million people died due to the influenza pandemic in the early
twentieth century. In the current situation, epidemics still occur on a
regular basis: for example, the severe acute respiratory syndrome of
2003, and the 2009 pandemic swine flu. Epidemics and pandemics are
constantly a threat because the viruses can be mutated rapidly, and
they can cross species barriers to infect humans.

Despite the long history of epidemiology, it is around 350 years
since mathematics was first used to study diseases and their spread.
John Graunt (1620–1674) was the first epidemiologist who described
the first statistical analysis of public health problems in his book
“Natural and Political Observations Made upon the Bills of Mortality”
published in 1663. After that, mathematical methods were used by
Daniel Bernoulli to analyze the mortality due to the smallpox disease
a century later, regarded as the first epidemiological model, published
in 1766 [5]. According to Bernoulli, the vaccination with a mild case
of smallpox virus would reduce the deaths even if the vaccine may
sometimes be fatal. Diez and Heesterbeek [12] revisited Bernoulli’s
approach according to the modeling with equations.

A significant contribution to the research on the cause and preven-
tion of the disease was made by Louis Pasteur in the mid of 19th
century. He developed the first vaccines against rabies and anthrax as
well as from puerperal fever. The germ theory of the disease was sup-
ported by his medical discoveries. Meanwhile, Robert Koch who is the
founder of modern bacteriology discovered that tuberculosis, cholera,
and anthrax are caused by specific agents, and he put experimental
support behind the idea that infectious diseases exist. Scientists were
finally able to explain how a sickness happens in the late 1800s. The
concept of transmitting a bacterial disease from an infected individual
to a healthy individual is now firmly established. This contributed to
the development of mathematical models for the infectious diseases.
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Figure 1.1: Diagram of research steps with mathematical model

During the early part of the twentieth century, William Hamer
made major contributions to the mathematical modeling of infectious
diseases. He wanted to know why measles recurred so frequently.
However, it was Sir Ronald Ross, now regarded as a father of mathe-
matical epidemiology, who discovered how the malaria disease can
be transmitted between human and mosquito. The Nobel Prize was
awarded to him for his work on the malaria in 1902. Despite his effort,
he was unable to convince his contemporaries that the malaria could
be eliminated by simply reducing the mosquito population. Using
mathematical models to explain the malaria transmission, Ronald
Ross derived a threshold quantity, which is now called the basic repro-
duction number [28]. In 1927, Kermack and McKendrick published
a model on the spread of an infectious disease, which brought the
mathematical epidemiology to the next stage [24]. In their first joint
project “A contribution to the mathematical theory of epidemics”,
they used a deterministic epidemic model incorporating susceptible,
infected, and removed populations. Part II and III of their first joint
research project were published in 1932 and 1933. In 1991, their three
consecutive fundamental research articles were reprinted due to their
important contribution to mathematical epidemiology [25–27].

During the 1980’s, the HIV outbreak brought an increase of the
recognition about the importance of mathematical modeling for infec-
tious diseases. Then, numerous models have been developed, analyzed,
and employed to investigate the spread of a variety of infectious dis-
eases. Currently, mathematical epidemiology occupies a substantial
place in the research literature’s. Mathematical modeling contributes
significantly to public health and mathematics today [20, 21, 38].

The purpose of mathematical models is to study the relation of
various components of a system as well as to predict the behavior
of those components. A mathematical problem is formulated from a
biological scenario as shown in Figure 1.1:
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• Dynamic verses Static model. When a system changes its state in
terms of time, it is called a dynamic model. Differential equations
or difference equations are commonly used in dynamic models.
In contrast, the static model focuses on a specific state established
by a phenomenon, and to describe the structure of the state with
the factors determining its nature. A variety of mathematical
concepts have been applied, for example, the graph theory, the
network dynamics, the game theory, the operation research, etc.

• Deterministic verses stochastic model. In the deterministic
model, the transition from one variable state to the next state
is uniquely determined, while the stochastic model is based
on a probability theory, introducing randomness and stochastic
variable states.

In order to construct a model, it is necessary to assume the disease
severity. The disease can be acute or chronic. In an acute infection,
pathogens are removed after a short period of time by a relatively rapid
immune response. Flu, rabies, chickenpox, and rubella are examples of
acute infection. The chronic infection persists for a long time (months
or years), like herpes, chlamydia, etc.

The mathematical modeling of infectious disease can contribute
to the discussion of how a disease can spread, the duration of the
epidemic, the total number of infected, or the epidemiological indices
including the basic reproductive number. The early work was done by
Kermack and McKendrick in 1927 which is an origin of modern math-
ematical modeling of infectious diseases and has been widely applied
for a variety of epidemic problems with necessary modifications [24].

1.2 kermack –mckendrick sir model

Kermack–McKendrick introduced the mathematical model in the field
of epidemiology, known today as the Kermack–McKendrick SIR model
[6, 24]. The model consists of three classes, the susceptible class, the
infective class, and the recovered class. To formulate a simplest version
of the SIR model, we assume the followings:

• The total size of the population is constant, ignoring demo-
graphic change due to birth and death.

• The recovered individual cannot be infected again.

• The contact rate between susceptible and infective individuals is
independent of the size of the total population.

Based on the above assumptions, we have the following model:

dS

dt
= −β

I

N
S;

dI

dt
= β

I

N
S − γI;

dR

dt
= γI

(1.1)
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Figure 1.2: The state transition in the Kermack–McKendrick SIR epidemic
model (1.1)

with the initial condition given by S0 > 0, I0 > 0 and R0 = 0. Variables
S, I , and R denote the susceptible, infective and recovered population
sizes respectively. Every parameter is positive. The parameter γ de-
notes the recovery rate of infective individual. The transmission of the
disease is determined by the frequency-dependent infection force with
the infection coefficient β. The constant size of the total population is
denoted by N , and it is satisfied that S(t) + I(t) +R(t) = N for any
t ≥ 0. The state transition for the individual is shown in Figure 1.2.

1.2.1 Properties of the model

In the Kermack-McKendrick SIR model (1.1), the derivative of S(t) is
negative for all t ≥ 0, so that the number of susceptible individuals is
monotonically decreasing in terms of time irrespective of the initial
value S(0) = S0 > 0. For the monotonic and positive nature of S(t),
we have

lim
t→∞

S(t) = S∞ ≥ 0.

Moreover, R′(t) > 0 for all t ≥ 0, the number of recovered individu-
als is monotonically increasing with the passage of time and cannot
beyond the total population size. Therefore, we have

lim
t→∞

R(t) = R∞ ≤ N .

On the other hand, the number of infectives can be monotoni-
cally decreasing or increase to a certain level before decreasing. If
dI/dt|t=0 = (βS0/N − γ) I0 > 0, the prevalence will increase at the
initial time of epidemic dynamics. Therefore, the number of infectives
will start to increase at the initial stage under the necessary condition
R0 := β/γ > 1, where R0 is a threshold corresponding to the basic
reproduction number that is an important index in epidemiology. It is
used to characterize the disease transmission and can give a theoretical
reference about whether an infection will spread or not at the initial
stage of epidemic dynamics. If R0 < 1, the disease will die out, while,
only if R0 > 1, the disease can spread in the population from the
initial condition with sufficiently small number of infectives.

The equation to determine the final epidemic size is given by

S∞ = S0 exp

{
−β

γ

(
1− S∞

N

)}
,

where S∞ denotes the final size of susceptible subpopulation at the
end of epidemic dynamics. The final epidemic size can be obtained as
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Figure 1.3: The scheme for the epidemic dynamics model (1.2).

R∞ = N − S∞, since the infective individuals disappears at the end
of epidemic dynamics governed by the SIR model (1.1).

1.2.2 SIR model with demography

In order to consider the longer-term persistence of an infectious disease
and its endemic dynamics, the demographic process is important.
There are diseases that take long time to develop, such as AIDS,
tuberculosis, and hepatitis C. In such a case, it is not reasonable
to ignore the demography of population, since the change of the
population size over time has a relavent relation to the epidemic
dynamics.

To construct an SIR model with the demographic effect, we must
extend the model (1.1), for example, by assuming that all newborn
individuals are healthy and can be infected. Then, we may consider
the following model:

dS

dt
= Λ − β

I

N
S − µS;

dI

dt
= β

I

N
S − γI − µI;

dR

dt
= γI − µR

(1.2)

with the initial condition (S(0), I(0),R(0)) = (S0, I0, 0). The posi-
tive Λ denotes the recruitment/birth rate into the susceptible sub-
population, and µ denotes the removal rate of individuals from each
state. The size of total population is given by N , and satisfies N =

S(t) + I(t) +R(t). It is easily seen from (1.2) that dN/dt = Λ − µN ,
and N(t) → Λ/µ as t → ∞ if Λ is a constant. This means that the pop-
ulation is not constant, while it asymptotically approaches a constant.
The state transition of the individual is shown in Figure 1.3.

The dynamics of model (1.2) can be mathematically regarded as
equivalent to the following two-dimensional system:

dS

dt
= Λ − β

I

N
S − µS;

dI

dt
= β

I

N
S − γI − µI.

(1.3)

It is easily derived the following non-dimensionalized system from
(1.3) with the transformation of variables such as s(t) = S(t)/(Λ/µ),
i(t) = I(t)/(Λ/µ) and r(t) = R(t)/(Λ/µ), the dimensionless time
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t̂ = t/τ , where τ := 1/(γ + µ) is the expected length of the effective
infectivity.

ds

dt̂
= ρ(1− s)−R0is;

di

dt̂
= (R0s− 1)i,

(1.4)

where R0 = β/(γ + µ) and ρ = µ/(γ + µ). Although this model
cannot be solved analytically, we can mathematically get some insights
about its behavior. It is significant from an epidemiological perspective
to determine how the solution would perform over time, in order to
know whether the disease would die out or spread in the population
to become endemic?

For this purpose, it is important to find the equilibrium and check
its stability. Equilibrium is the point at which the system remains un-
changed. We have the disease-free equilibrium E0(1, 0) at which there
is no infective individual in the population. The other equilibrium usu-
ally called the endemic equilibrium is given as E⋆ (1/R0, ρ (1− 1/R0))
for (1.4). For the existence of the endemic equilibrium, R0 > 1 is nec-
essary and sufficient.

1.3 control strategy for epidemic dynamics

As human interaction comes, there is a risk of spreading infectious
diseases. To reduce the risk of the spread of infectious diseases in
the community, quarantine, vaccination, and treatment strategies are
important policies. To control various kinds of infectious diseases
like severe acute respiratory syndrome, plague, smallpox, Infectious
Tuberculosis, Cholera, Yellow fever, influenza, and COVID-19, the
quarantine and vaccination are the primary methods. Martcheva [29]
gave a summary of such techniques used to control the spread of
infectious diseases.

Treatment is the amplification of medication, a procedure, or bed
rest in order to prevent the disease. It is now possible for the majority
of infectious diseases to vanish with the medication in order to improve
the quality of patient’s life. Malaria and tuberculosis are diseases that
can be cured through the medication [14]. Disease like AIDS cannot be
cured, and the medication can give only a certain relief to the patient
[36].

Vaccination is an established method for the protection of individu-
als in a population from the infection and for the reduction in mortality
and morbidity. The vaccine can provide the acquired immunity against
a specific infectious disease [4]. In a vaccination process, killed mi-
croorganism is introduced into body. Vaccine agents are recognized
as foreign subjects by our immune system. As a result, antibodies are
produced against the agent by triggering an immune response with
the vaccine. Then the antibodies can disturb the multiplication of the
microorganism more effectively when they enter the body. Those indi-
viduals who got the immunity may be protected from the infection.
The outbreak of a disease may be suppressed once the number of
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vaccinated individuals become sufficiently large in the population. It
is referred as the herd immunity. The vaccination program has been
a great success for the public health in history. The vaccination has
almost eradicated polio in most countries and wiped out smallpox
from the world.

However, a vaccinated person cannot be completely protected against
all diseases. It is likely that such a person could become sick. Some
pathogens can be mutated even if their hosts develop antibodies. Then
the immune system may be unable to defeat such mutated pathogens.
The level of protection of the vaccinated individual against the infec-
tion is known as the vaccine efficacy. In order to reduce the infection
rate, a large number of susceptible individuals are targeted in the
vaccination process. Vaccination necessitates the rapid identification
of the infectious agent as well as the production and administration
of a safe vaccine. These processes may take a long time, as shown in
the SARS pandemic for 2003. Gokbulut et al. [16] considered the effect
of the vaccine for COVID-19, and they found that the vaccination is
effective in the presence of some precautions such as wearing a mask,
social distance, etc.

Quarantine/Isolation is other kind of good strategy to control in-
fectious diseases. Usually in the strategy, the exposed or infectious
individuals are removed from the population for the purpose to su-
press the outbreak of the disease. In order to reduce the infection rate,
a large number of infected individuals are targeted in the isolation
process. In the past, a lot of work has been done using mathematical
models with the isolation process for the purpose of a discussion on
its efficiency to suppress the disease spread [7, 11, 15].

In the isolation, when the symptoms are unclear, the infected person
may not be detected. It is crucial to trace contacts in such situations.
Many dangerous diseases have been controlled by the isolation. Exam-
ples are severe acute respiratory syndrome, plague, smallpox, infec-
tious tuberculosis, cholera, yellow fever, influenza virus, COVID-19

[7, 11, 15]. When SARS swept across the globe from 2002 to 2003,
quarantines were implemented.

Using mathematical models with control strategies is important to
understand the influence as well as the dynamics of infectious dis-
eases for the purpose of discussion on an efficient way to suppress the
disease spread [7]. Hethcote, Zhien, and Shengbing [19] has proposed
SIR+Q and SIQS mathematical models with three forms of incidence,
where Q indicates the isolation state. In their SIR+Q model with a
quarantine-adjusted incidence, the endemic equilibrium is an unstable
spiral for a set of parameter values, and a periodic solution arises with
the Hopf bifurcation. Erdem, Safan, and Castillo-Chavez [13] consid-
ered the case of imperfect quarantine/isolation, and found a periodic
solution or damp oscillation depending on the parameter value of
quarantine effectiveness. Vivas-Barber, Castillo-Chavez, and Barany
[37] considered an SIR+Q model with the perfect isolation and an
asymptomatic compartment and got the result of damped oscillations
that indicate a recurring epidemics. Castillo-Chavez, Castillo-Garsow,
and Yakubu [10] considered the mathematical model for the purpose
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of predicting whether the isolation/quarantine can control the SARS
for a limited time frame within a single outbreak. Their model implied
the isolation/quarantine drastically could reduce the size of the SARS
outbreak. Amador and Gomez-Corral [3] considered a stochastic SIQS
model that includes two quarantine states, susceptible and infected,
and a quarantine compartment with a limited carrying capacity. Their
results indicated that quarantine occupancy rates are influenced by
the capacity of quarantine and the contact process.

Hu et al. [22] considered a SAIQR (SARS CoV-2) mathematical
model with two patches to investigate the transmission dynamics
of SARS-CoV-2 with a limited medical resource under the human
migration between two regions. They took account of an asymptomatic
state (A) in the modeling for the epidemic dynamics. Their results
indicated that making the basic reproduction number below 1 is not
sufficient in order to control the present COVID-19, and, it should be
significantly below 1. Abdelrazec et al. [1] considered a deterministic
compartmental model with a nonlinear recovery rate in order to
discuss how available resources in the health system influence the
dengue fever spread and control. They found an important feature
such that the model shows a backward bifurcation, where an endemic
equilibrium coexists with the disease-free equilibrium, which is an
important result to consider for designing a control scheme. This
means that the basic reproduction number less than 1 is enough to
eliminate an epidemic when the number of infected cases is very
small.

Zhao et al. [40] considered a deterministic model to investigate the
influence of limited medical resources on the transmission and control
of Zika. In order to understand how limited medical resources may
affect the transmission and control of Zika, they included a piece
wise smooth recovery rate with the treatment in the model. When
the model with no treatment has a globally stable equilibrium, the
model with treatment, can undergo a backward bifurcation, Hopf
bifurcation, or Bogdanov–Takens bifurcation of codimension 2. Based
on these dynamic patterns, Zika outbreaks may occur periodically as
extinctions, reoccurrences, or multiple stable outbreaks. Their Zika
model indicated the substantial dependence on parameters and initial
conditions with respect to the control of Zika virus.

1.3.1 A modeling with vaccination

To construct an SIR model with vaccination, let us assume that the
vaccine is perfect, and the susceptible individuals who got the vaccine
cannot be infected. Moreover, a fraction p of vaccinated newborns is
assumed to enter the population. The flux of pµN from the newborns
goes to the recovered class, while the flux of (1− p)µN enters into the
susceptible class [29]. Based these assumptions, we can consider the
following model:
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Figure 1.4: The scheme for the epidemic dynamics model (1.5).

dS

dt
= (1− p)µN − β

I

N
S − µS,

dI

dt
= β

I

N
S − γI − µI,

dR

dt
= pµN + γI − µR

(1.5)

with the initial condition (S(0), I(0),R(0)) = (S0, I0, 0). Parameter µ
denotes the death rate of susceptible, infected, and recovered indi-
vidual in the population. The size of total population is given by a
constant N we have S(t) + I(t) +R(t) = N for any t ≥ 0. The state
transition of the individual and the demographic flows for the model
(1.5) are schematically shown in Figure 1.4.

The disease-free equilibrium is given by E0 ((1− p)N , 0, pN). For
the model (1.5), R0 = β/(γ+µ) is the basic reproduction number with
no vaccination, and (1− p)R0 is that with vaccination. The vaccination
reduces the basic reproduction number by fraction p. In order to
discuss how many fraction of individuals should be vaccinated to
prevent the outbreak, we solve (1− p)R0 < 1 for p, and get p > p̂ with
p̂ = 1− 1/R0. If a fraction of the population beyond p̂ is successfully
vaccinated, the disease will not spread in the population. It is referred
to as herd immunity.

1.3.2 A modeling with quarantine/isolation

A mathematical model with the isolation can be constructed by an
extension of the SIR model with demographic effect under the as-
sumption that isolated individuals cannot contact any other [15]. We
can consider the following model:

dS

dt
= Λ − β

I

N −Q
S − µS;

dI

dt
= β

I

N −Q
S − γI − σI − µI;

dQ

dt
= σI − γQ− µQ;

dR

dt
= γI + γQ− µR

(1.6)

with the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0). The
variable Q denotes the isolated population size in the community at



1.3 control strategy for epidemic dynamics 13

Figure 1.5: The scheme for the epidemic dynamics model (1.6).
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Figure 1.6: Dependence of the basic reproduction number R0 on the isolation
rate σ. Numerically obtained for β = 5 (blue), 10 (red), 15 (green).
Commonly used γ = 0.6, µ = 0.5.

time t. Every parameter is positive. The parameter σ denotes the isola-
tion rate of the infective individual. The transmission of the disease
is determined by the frequency-dependent infection force with the
infection coefficient β. Since the subpopulation size of free individuals
is given by N −Q, the net incidence rate is given by βSI/(N −Q).
The state transition of the individual and the demographic flows for
the model (1.6) are schematically shown in Figure 1.5.

The basic reproduction number R0 for the model (1.6) is defined
as R0 = β/(γ + σ + µ). It can be seen in the Figure 1.6 that R0 is
monotonically decreasing in terms of σ, which means that increasing
the isolation rate can decrease the basic reproduction number of model
(1.6).





2
E P I D E M I C D Y N A M I C S M O D E L W I T H L I M I T E D
I S O L AT I O N C A PA C I T Y

In many countries, there has been a shortage of medical resources since
the outbreak of SARS-COV-2. In recent, a lot of work has been done
using mathematical models to investigate how the limited medical
resources could affect the transmission and control of an infectious
disease [1, 34, 35, 39]. The isolation requires a specific space with
highly organized conditions to isolate the infected individuals from
the others in the community. When the isolation capacity is much
small, the isolation strategy may fail in a certain finite time on the way
of the epidemic process. In such a case, how does the final epidemic
size depend on the limited isolation capacity?

2.1 assumptions and modeling

We consider a model with a four-dimensional system of ordinary
differential equations to investigate the influence of limited isolation
capacity on the final epidemic size. The variables and parameters in
the model are as follows:

S(t): Susceptible subpopulation size at time t;

I(t): Infective subpopulation size at time t;

Q(t): Isolated subpopulation size at time t;

R(t): Recovered subpopulation size at time t;

N : Total population size of the community;

σ(Q): Per capita isolation rate;

β: Infection coefficient;

γ: Per capita recovery rate;

Qmax: Isolation capacity.

We consider an epidemic dynamics in a season, which consists of
susceptible, infective, isolated, and recovered individuals. We assume
the followings:

• The total population size of the community is constant, ignoring
demographic change due to birth and death in a given season.

• Isolated individuals cannot contact any other.

• Any isolated individual is not discharged in the season.

• The isolation is limited by a capacity beyond which the isolation
is ceased.

15
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Figure 2.1: The scheme for the epidemic dynamics model (2.1).

Following the last assumption, the epidemic dynamics may contain
two phases: the isolation effective phase and the isolation incapable
phase. In the isolation effective phase, the isolation works, while in
the isolation incapable phase, the isolation is ceased since the isolation
already reached the capacity.

With the above assumptions, we consider the following SIR+Q
model:

dS

dt
= −β

I

N −Q
S;

dI

dt
= β

I

N −Q
S − γI − σ(Q)I;

dQ

dt
= σ(Q)I;

dR

dt
= γI,

(2.1)

with

σ(Q) =

{
σ0 Q < Qmax;

0 Q = Qmax,

and the initial condition (S(0), I(0),Q(0),R(0)) = (S0, I0, 0, 0). The
variables S, I , Q, and R denote the susceptible, infected, isolated and
recovered population sizes respectively. The total population size of
the community is denoted by N , and it is satisfied that S(t) + I(t) +

Q(t) +R(t) = N for any t ≥ 0. The state transition of the individual
is schematically shown in Figure 2.1.

Every parameter is positive. The parameter γ denotes the recovery
rate of infective individual. The transmission of the disease is deter-
mined by the frequency-dependent infection force with the infection
coefficient β. Since the subpopulation size of isolated free individuals
is given by N −Q, the net incidence rate is given by βSI/(N −Q).
The piece-wise function σ(Q) denotes the isolation rate of infected
individual. Parameter σ0 is a positive constant that is the isolation rate
at the isolation effective phase. The parameter Qmax denotes the isola-
tion capacity. Once the isolation reaches its limit Qmax, the isolation
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Figure 2.2: Numerical examples of temporal variation of the system (2.2).
(a) qmax = 0.7; (b) qmax = 0.2. Commonly R0 = 1.5, γ = 0.3,
σ0 = 0.5, (s0, i0, q0, r0)=(0.9, 0.1, 0.0, 0.0).

becomes ceased, and the epidemic dynamics enter the isolation inca-
pable phase with σ(Q) = 0, as numerically demonstrated in Figure
2.2(b).

It is easily derived the following non-dimensionalized system from
(2.1) with the transformation of variables such as s(t) = S(t)/N ,
i(t) = I(t)/N , q(t) = Q(t)/N and r(t) = R(t)/N . The dimensionless
time is given by t̂ = t/τ , where τ := 1/(γ + σ0) is the expected length
of the effective infectivity.

ds

dt̂
= −R0

is

1− q
;

di

dt̂
= R0

is

1− q
− γ̂i− σ̂(q)i;

dq

dt̂
= σ̂(q)i;

dr

dt̂
= γ̂i,

(2.2)

with R0 := β/(γ + σ0) and

σ̂(q) =

{
σ̂0 q < qmax;

0 q = qmax,

where γ̂ = γ/(γ + σ0), σ̂0 = σ0/(γ + σ0) and qmax = Qmax/N . The
initial condition becomes (s(0), i(0), q(0), r(0)) = (s0, i0, 0, 0) where
s0 := S0/N and i0 := I0/N . It is satisfied that s(t̂) + i(t̂) + q(t̂) +

r(t̂) = 1 for any t̂ ≥ 0.

2.2 basic reproduction number

The parameter R0 corresponds to the basic reproduction number
which is an important index in epidemiology. It is used to characterize
the disease transmission and can give a theoretical reference about
whether an infection will spread or not in the community. The def-
inition of basic reproduction in a biological context is the expected
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number of new infections, produced by a single infective individual in
a community where the infective individual contacts only susceptible
individuals until the infectivity is lost [18].

For the mathematical derivation of the basic reproduction number
for our model (2.1), we may use a fundamental way used in [8], and
can get R0 = β/(γ + σ0), where β corresponds to the supremum
of the expected number of new cases produced by an infective per
unit time, and 1/(γ + σ0) is the expected duration of the effective
infectivity. If R0 < 1, the disease will die out, and, if R0 > 1, the
disease can spread in the population from the initial condition with
sufficiently small number of infectives.

2.3 conserved quantity

2.3.1 At the isolation effective phase

At the isolation effective phase, the model (2.2) becomes:

ds

dt̂
= −R0

is

1− q
;

di

dt̂
= R0

is

1− q
− γ̂i− σ̂0i;

dq

dt̂
= σ̂0i;

dr

dt̂
= γ̂i.

(2.3)

From the first and second equations of (2.3), we can derive the follow-
ing differential equation:

di

ds
= −1+

1− q

R0s
. (2.4)

Where we used σ̂0 + γ̂ = 1. Moreover, from the third and fourth
equations of (2.3), we can derive the following as well:

dq

dr
=

σ̂0
γ̂
. (2.5)

Solving the ordinary differential equation (2.5), we can obtain the
following relation between q(t̂) and r(t̂) which holds for any t̂ at the
isolation effective phase:

q(t̂) =
σ0
γ
r(t̂), (2.6)

where we used q(0) = r(0) = 0. Now, with s+ i+ q+ r = 1, we can
find the following equation from (2.6):

1− q =
s+ i+ γ/σ0
1+ γ/σ0

. (2.7)

By substituting (2.7) for (2.4), we can derive the following ordinary
differential equation:
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d

ds

(
is−σ0/β

)
= s−σ0/β

(
−1+

1

β/σ0

)
+

s−1−(σ0/β)

β/γ
.

We can solve this ordinary differential equation, and get

is−σ0/β = −s1−(σ0/β) − γ

σ0
s−σ0/β +C

with a constant C. We can easily get the expression for C from the
initial conditions i(0) = i0, s(0) = s0, and i0 + s0 = 1. Then, as a
result, we obtain the following equation which holds for any t̂ at the
isolation effective phase:

i(t̂) + s(t̂) = − γ

σ0
+

(
s0
s(t̂)

)−σ0/β (
1+

γ

σ0

)
. (2.8)

Equation (2.8) gives the conserved quantity at the isolation effective
phase.

If the isolation never reaches the capacity at any time t̂ > 0, then we
have the following equation for s(t̂) → s−∞ as t̂ → ∞ from (2.8):

(s−∞)−σ0/β
(
s−∞ +

γ

σ0

)
= (s0)

−σ0/β
(
1+

γ

σ0

)
, (2.9)

where we used a mathematical feature of (2.3) such that i(t̂) → 0 as
t̂ → ∞.

Next from s+ i = 1− (q+ r) and (2.6), we have

s+ i = 1− q

(
γ

σ0
+ 1

)
. (2.10)

Substituting (2.10) for (2.8), we get

q(t̂) = 1−
(

s0
s(t̂)

)−σ0/β

. (2.11)

As t → ∞, the equation (2.11) becomes

q−∞ = 1−
(

s0

s−∞

)−σ0/β

, (2.12)

where q(t̂) → q−∞ and s(t̂) → s−∞. The value q−∞ gives the final size of
the isolated subpopulation at isolation effective phase as t̂ → ∞. Since
q(t̂) is monotonically increasing in terms of t̂ at the isolation effective
phase. If value of q∞ is not beyond qmax, the epidemic dynamics can
follows only the isolation effective phase, while, if not, the dynamics
have a moment to switch from the isolation effective phase to the iso-
lation incapable phase. When the isolation never reaches the capacity
for any t̂ > 0, we have s−∞ = 1− q−∞ − r−∞, since i(t̂) → 0 as t̂ → ∞.
Hence, from (2.12), we get

1− q−∞ − r−∞ = s0(1− q−∞)β/σ0 . (2.13)

Substituting (2.13) for (2.9), we can derive the equation
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1− q−∞

(
1+

γ

σ0

)
= s0

(
1− q−∞

)β/σ0 . (2.14)

Equation (2.14) determine the proportion of final isolated subpop-
ulation at the end of epidemic dynamics when the isolation never
reaches the capacity for any t̂ > 0.

2.3.2 At the isolation incapable phase

If the capacity of isolation is sufficiently small, the isolated subpopula-
tion size q(t̂) reaches the capacity qmax at a certain moment t̂ = t⋆ > 0

on the way of epidemic process, and the dynamics switches from
the isolation effective phase to the isolation incapable phase. At the
isolation incapable phase, model (2.2) becomes

ds

dt̂
= −R0

is

1− qmax
;

di

dt̂
= R0

is

1− qmax
− γ̂i;

dr

dt̂
= γ̂i

(2.15)

for t̂ ≥ t⋆. From the first and second equations of (2.15), we can derive
the following differential equation:

di

ds
= −1+

1− qmax

R0 (1+ σ0/γ) s
,

where we used γ̂ = γ/(γ + σ0). We can easily solve this ordinary
differential equation, and can get the relation

i(t̂) = −s(t̂) +
1− qmax

β/γ
ln s(t̂) +C (2.16)

with a constant C. For t̂ = t⋆, we have

C = i(t⋆) + s(t⋆)− 1− qmax

β/γ
ln s(t⋆). (2.17)

Substituting (2.17) for (2.16), we get the following equation that gives
the conserve quantity at the isolation incapable phase:

s(t̂) + i(t̂) = i(t⋆) + s(t⋆) +
γ

β
(1− qmax) ln

s(t̂)

s(t⋆)
. (2.18)

Since the epidemic dynamics remains at the isolation incapable
phase once the isolation reaches the capacity, we have the following
equation of s(t̂) → s−∞ as t̂ → ∞:

s(t⋆) + i(t⋆) = − γ

σ0
+

(
s0

s(t⋆)

)−σ0/β (
1+

γ

σ0

)
, (2.19)

where we used the feature that i(t̂) → 0 as t̂ → ∞ for (2.15).
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2.4 critical value of the isolation capacity qc

We have the following theorem for the isolation to reach the capacity
in a finite time on the way of epidemic dynamics:

Theorem 2.4.1. The isolation reaches the capacity in a finite time on the
way of epidemic dynamics if and only if qmax < qc, where qc is the critical
value of the isolation capacity and uniquely defined as the positive root of the
following equation:

1− qc

(
1+

γ

σ0

)
= s0 (1− qc)

β/σ0 . (2.20)

Proof. From (2.9), if the isolation never reaches the capacity, we have

s−∞ = F (s−∞) := − γ

σ0
+

(
s−∞
s0

)σ0/β (
1+

γ

σ0

)
. (2.21)

We have F (0) = −γ/σ0, F (s0) = 1, and F ′(s) > 0 for s ∈ (0, s0).
Thus F (s) is a monotonically increasing continuous and differential
function of s ∈ (0, s0), and satisfies that F (0) < 0 and F (s0) >

s0. Further, we can easily find that F (s) is linear if σ0/β = 1, and
otherwise it is alternatively convex or concave in (0, s0). Therefore,
we find that the equation (2.21) has a unique root s−∞ ∈ (0, s0), and
F (s) < s for s ∈ (0, s−∞) while F (s) > s for s ∈ (s−∞, s0).

On the other hand, with respect to the final sizes s−∞ and q−∞ in this
case, we have (2.12). Now it must be satisfied that q−∞ ≤ qmax, because
this is the case where q(t̂) never reaches qmax for any t̂ > 0. Since q(t̂)

is monotonically increasing in terms of t̂, if q−∞ ≤ qmax, the isolation
does not reach the capacity for any t̂ > 0. Therefore, if and only if
q−∞ ≤ qmax, the isolation does not reach the capacity for any t̂ > 0.
Consequently, we find that, if and only if q−∞ > qmax, the isolation
reaches the capacity at t̂ = t⋆ < ∞.

Now (2.12) and (2.21), we can derive the following condition equiv-
alent to q−∞ > qmax:

s−∞ < 1− qmax

(
1+

γ

σ0

)
. (2.22)

Since s−∞ > 0, we note that this inequality holds only if qmax <

1/(1 + γ/σ0). Consequently, from the nature of the function F (s)

shown in the above, the condition (2.22) is equivalent to the condition
F (s) > s for s = 1− qmax(1+ γ/σ0). This leads to qmax < qc which is
the condition for the isolation to reach the capacity in a finite time.

If qmax < qc is satisfied, the system (2.2) changes the phase from
isolation effective to incapable phase on the way of epidemic dynamics.
Otherwise, the system remains at the isolation effective phase until
the end of epidemic dynamics.
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2.5 final epidemic size

The final epidemic size for the system (2.2) is defined as the proportion
of recovered and isolated individuals in the community at the end of
the epidemic dynamics.

2.5.1 Final size equation for qmax ≥ qc

When the isolation never reaches the capacity at any time due to the
sufficient capacity of isolation, the final epidemic size is determined
only by the isolation effective phase. In this case s−∞ = 1− (q−∞ + r−∞),
and the final epidemic size is given by z−∞ = q−∞ + r−∞, where z−∞
denotes the final epidemic size. Therefore, making use of s−∞ for (2.9),
we get

(
1− z−∞

)−σ0/β
(
1+

γ

σ0
− z−∞

)
= (s0)

−σ0/β
(
1+

γ

σ0

)
, (2.23)

the root of equation (2.23) gives the final epidemic size for the case
when the isolation never reaches the capacity at any time.

Theorem 2.5.1. The final epidemic size z−∞ is uniquely determined by the
equation (2.23) when the isolation never reaches the capacity.

Proof. We define the left-hand side of (2.23) is a function of z

A(z) := (1− z)−σ0/β
(
1+

γ

σ0
− z

)
,

while the right-hand side of (2.23) represents a horizontal line and
denoted by B0, therefore, the final size equation becomes

A(z) = B0. (2.24)

The function A(z) is continuous and differentiable for z ∈ (0, 1), and
satisfies that A(0) < B0 and lim

z→1−
A(z) > B0. From these arguments,

there exist at least one root.
Further, the behavior of function A(z) shows that it is monotonically

increasing or may have an extremal minimum in the range of z. If A(z)
is monotonically increasing in the range of z, then by intermediate
value theorem, it has a unique intersection with the horizontal line
B0. However, if A(z) may have an extremal minimum in the range of
z, then from condition A(0) < B0, it has a unique intersection with
horizontal line B0. In both cases, the final size equation (2.24) has a
unique root in between range (0, 1). As a result, the final epidemic size
z−∞ is uniquely determined by the equation (2.23) when the isolation
never reaches the capacity.

2.5.2 Final size equation for qmax < qc

When the isolation reaches the capacity in a finite time on the way
of epidemic dynamics due to insufficient capacity. There is a certain
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moment t̂ = t⋆ at which the isolation reaches the capacity, before this
moment t̂ < t⋆, the dynamic follows the isolation effective phase, and
after this moment t̂ > t⋆, the dynamic follows the isolation incapable
phase. The connection of these two dynamics gives the equation which
determine the final epidemic size for the case of isolation reaches the
capacity in a finite time during epidemic process. At t̂ = t⋆, we have
i(t̂) = i(t⋆), s(t̂) = s(t⋆) and q = qmax, therefore, the equation (2.10)
becomes

s(t⋆) + i(t⋆) = 1− qmax

(
1+

γ

σ0

)
. (2.25)

Making use of (2.19) and (2.25), we can explicitly obtain the value of
s(t⋆) and i(t⋆) that are given as

s(t⋆) = s0 (1− qmax)
β/σ0 ; (2.26)

i(t⋆) = 1− qmax

(
1+

γ

σ0

)
− s0 (1− qmax)

β/σ0 . (2.27)

Next, we consider the epidemic dynamic after t⋆, and after t⋆ the
epidemic dynamics follow the isolation incapable phase. Therefore,
making use of (2.26) and (2.27) for (2.18) and t̂ → ∞, we get the
following equation

s+∞ =1− qmax

(
1+

γ

σ0

)
+

γ

β
(1− qmax)

[
ln s+∞ − ln

{
s0 (1− qmax)

β/σ0

}]
, (2.28)

where we used i∞ = 0. In the case of isolation reaches the capacity,
s+∞ = 1− (qmax + r+∞), where the the epidemic size is given by z+∞ =

qmax + r+∞, therefore, making use of the value of s+∞ for (2.28), we can
obtain the following equation

β

σ0

{
qmax (1+ σ0/γ)

1− qmax
+ ln (1− qmax)

}
= ln(1− z+∞)− ln s0 +

(β/γ)z+∞
1− qmax

. (2.29)

The root of equation (2.29) gives the final epidemic size for the case
when isolation reaches capacity in a finite time during the epidemic
process.

Theorem 2.5.2. The final epidemic size z+∞ is uniquely determined by the
equation (2.29) when the isolation reaches the capacity in a finite time on the
way of epidemic dynamics.

Proof. In order to prove that the final epidemic size z+∞ is uniquely
determined by the equation (2.29) when the isolation reaches the
capacity in a finite time on the way of epidemic dynamics, we define
the (2.18)
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G(s) = s− (i(t⋆) + s(t⋆))−
γ

β
(1− qmax) ln

s

s(t⋆)
. (2.30)

The function G(s) is continuous and differentiable for s ∈ (0, s(t⋆)).
Moreover, it satisfies lim

s→0+
G(s) > 0, and G(s(t⋆)) < 0. From these

facts, the function G(s) has at least one root. Further, the behavior
of function G(s) shows that it is monotonically decreasing or may
have an extremal minimum. If G(s) is monotonically decreasing in the
range of s then by the intermediate value theorem it has a unique root
in the range of s. However, if G(s) may have an extremal minimum
then from condition G(s(t⋆)) < 0 it has a unique root. Hence in both
cases, G(s) has a unique root s+∞ in between the range (0, s(t⋆)).

The above arguments show that the final epidemic size z+∞ is
uniquely determined by the equation (2.29) when the isolation reaches
the capacity in a finite time on the way of epidemic dynamics

Lemma 2.5.3. It holds that z+∞ ≥ qc

(
1+ γ

σ0

)
≥ z−∞.

Proof. The proof is given straightforward from the arguments in the
proof for Theorem 2.4.1. From (2.22), we note that the condition q−∞ ≤
qmax is equivalent following:

s−∞ ≥ 1− qmax

(
1+

γ

σ0

)
, (2.31)

where s−∞ is the root of (2.9), and subsequently q−∞ is given by (2.12).
Thus, when and only when the condition (2.31) is satisfied, the iso-
lation never reaches the capacity, so that the epidemic dynamics is
always at the isolation effective phase. Inversely, when and only when
the condition (2.31) is unsatisfied, the epidemic dynamics enters in
the isolation incapable phase at a finite time.

Thus, for the value s(t⋆) at the moment when the isolation incapable
phase begins, it must hold that

s(t⋆) < 1− qmax

(
1+

γ

σ0

)
.

The value s(t̂) is monotonically decreasing in terms of time since
ds/dt̂ is negative for any t̂ > 0. Hence, we have s+∞ < s(t⋆) where
s+∞ is the root of (2.28) at the isolation incapable phase. Therefore, we
have

s+∞ < 1− qmax

(
1+

γ

σ0

)
. (2.32)

Since z−∞ = 1− s−∞, these arguments indicate that, when and only
when the isolation never reaches the capacity, we have

z−∞ ≤ qmax

(
1+

γ

σ0

)
from (2.31). Since this condition must hold for any qmax ≥ qc from
Theorem 2.4.1, and since z−∞ is independent of qmax, we find that
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z−∞ ≤ qc

(
1+

γ

σ0

)
.

On the other hand, when the isolation reaches the capacity at a finite
time with qmax < qc, we have

z+∞ > qmax

(
1+

γ

σ0

)
from (2.32). Since this condition must hold for any qmax < qc, we have

z+∞ ≥ qc

(
1+

γ

σ0

)
.

Lemma 2.5.4. It holds that z−∞ = qc

(
1+ γ

σ0

)
.

Proof. Substituting z−∞ = qc (1+ γ/σ0) for (2.23), and taking account
of (2.20) in Theorem 2.4.1, we can easily find that the equation (2.28)
holds. Since z−∞ is uniquely determined as the root of (2.23) from
Theorem 2.5.1, we can result in this lemma.

2.5.3 Dependence on the isolation capacity

We can obtain the following theorem for the dependence of the final
epidemic size z+∞ on the isolation capacity qmax when the isolation
reaches the capacity in a finite time during the epidemic dynamics.

Theorem 2.5.5. The final epidemic size z+∞ is monotonically decreasing in
terms of the isolation capacity qmax.

Proof. To prove the Theorem 2.5.5, we need the following two lemmas.

Lemma 2.5.6. lim
qmax→0+

∂z+∞/∂qmax < 0.

The proof of Lemma 2.5.6 is given in Appendix A.

Lemma 2.5.7. There exists no extremal value of z+∞ = z+∞(qmax) for qmax ∈
(0, qc).

Proof. From Lemma 2.5.6, it is easily found that ∂z+∞/∂qmax = 0 if
and only if z+∞ = 1+ (γ/σ0)qmax, therefore, there exists no extremal
value for qmax ∈ (0, qc) at which ∂z+∞/∂qmax = 0.

From Lemmas 2.5.6 and 2.5.7, ∂z+∞/∂qmax < 0. Hence, the final
epidemic size z+∞ is monotonically decreasing in terms of the isolation
capacity qmax.

Figure 2.3 shows the dependence of the final epidemic size on the
isolation capacity qmax. The blue curve denotes the final epidemic
size z+∞ that is monotonically decreasing in terms of the isolation
capacity qmax ∈ [0, qc]. It is easily seen that increasing the isolation
capacity makes the final epidemic size z+∞ smaller. The blue horizontal
line denotes the final epidemic size z−∞ for the case of isolation never
reaches the capacity. When the isolation capacity is beyond the critical
value, the isolation never reaches the capacity at any finite time.
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Figure 2.3: Dependence of the final epidemic size on parameter qmax. (a)
γ/β = 1.25, β/σ0 = 0.8; (b) γ/β = 0.8, β/σ0 = 1.25. Commonly
s0 = 0.9, γ/σ0 = 1.

2.5.4 Severity of insufficient isolation capacity

We can obtain the following theorem for the final epidemic size be-
comes drastically large if the isolation reaches the capacity at a finite
time (Appendix B).

Theorem 2.5.8. The final epidemic size has a discontinuous jump at q = qc:

z†∞ := lim
qmax→qc−0

z+∞ > z−∞

if and only if

γ

β
< 1 and s0 >

γ

β

(
1+

1− γ/β
γ/σ0

)β/σ0−1

. (2.33)

Otherwise, it holds that z†∞ = z−∞.

When the condition (2.33) is not satisfied, the final epidemic size has
no discontinuous jump at the critical value of the isolation capacity,
as shown in Figure 2.3(a). In contrast, when the condition (2.33) is
satisfied, the final epidemic size has a discontinuous jump at the
critical value of the isolation capacity, as numerically demonstrated in
Figure 2.3(b).

Figure 2.4 shows the parameter region (β/σ0, γ/σ0) for the discon-
tinuous jump of the final epidemic size at critical isolation capacity.
It is easily seen that for sufficiently small β such that β > γ, such a
discontinuous jump of the final epidemic size occurs at the critical
value of the isolation capacity. Sufficiently small β means the small
infection coefficient, that is the spread of disease is very slow. At the
same time, the discontinuous jump requires sufficiently small γ, the
recovery rate. Thus, such a discontinuous jump of the final epidemic
size could be expected only when the recovery from the disease takes
sufficiently long time. Therefore, the severity of insufficient isolation
capacity appears especially for the epidemic dynamics of a transmissi-
ble disease such that the infectivity is weak while the disease is hardly
treated to the recovery.
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Figure 2.4: Classification of the region (γ/σ0,β/σ0) for the discontinuous
jump of the final epidemic size at q = qc. Numerically obtained
for (a) s0 = 0.55; (b) s0 = 0.75.

2.6 parameter dependence of the critical isolation ca-
pacity

In this section, we discuss the dependence of critical isolation capacity
on the characteristics of the epidemic dynamics such as β/σ0, γ/σ0
and 1/σ0.

2.6.1 On the infection coefficient

The equation (2.20) can be written as

β

σ0
=

ln {1− qc (1+ γ/σ0)} − ln s0
ln(1− qc)

. (2.34)

It is easily seen that when qc = (1− s0)/(1+ γ/σ0) then β/σ0 = 0,
and when qc approaches to 1/(1+ γ/σ0) from the left hand side then
β/σ0 → ∞. We can easily find the derivative of (2.34)

d(β/σ0)
dqc

=
D(qc)

{1− qc (1+ γ/σ0)} (1− qc) ln
2(1− qc)

, (2.35)

where

D(qc) := {1− qc (1+ γ/σ0)} [ln {1− qc (1+ γ/σ0)} − ln s0]

− (1+ γ/σ0) (1− qc) ln(1− qc).

The sign of the right-hand side of (2.35) can be determined uniquely
by the sign of D(qc), and it is easily proved that D(qc) > 0 for
qc ∈ (0, 1/(1+ γ/σ0)), so that, d(β/σ0)/dqc > 0. Hence, qc is mono-
tonically increasing in terms of β/σ0.

The results from the analysis shows that the critical value of the
isolation capacity qc is monotonically increasing in terms of infection
coefficient, so that, the larger infection coefficient requires a larger
isolation capacity in order in order to avoid the isolation reaches the
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Figure 2.5: (β/σ0, qmax)-dependence of the isolation reaches the capacity.
Numerically obtained for s0 = 0.0 (blue), 0.7 (red), 0.9999 (green).
Commonly γ/σ0 = 1.5.

capacity at a finite time during the epidemic process, as demonstrated
in Figure 2.5. Therefore, it is good strategy to increase the isolation
capacity when the spread of the disease is fast in order to avoid the
isolation reaches the capacity during epidemic process where the
isolation is ceased,

2.6.2 On the recovery rate

The equation (2.20) can be written as

γ

σ0
=

1− qc − s0 (1− qc)
β/σ0

qc
. (2.36)

It is easily seen that when qc = 1 then γ/σ0 = 0, and when qc → 0+

then γ/σ0 → ∞. We can easily derive the derivative of (2.36)

d (γ/σ0)
dqc

=
−1+ s0 (1− qc)

β/σ0−1 {1+ qc (β/σ0 − 1)}
q2c

. (2.37)

As lim
qc→0+

d (γ/σ0) /dqc < 0, and the sign of right-hand side of (2.37)

can be uniquely determined by the sign of numerator, therefore, we
define as a function of qc

E(qc) := −1+ s0 (1− qc)
β/σ0−1 {1+ qc (β/σ0 − 1)} .

It is easily found that E(0) < 0, lim
qc→1−0

E(qc) = −1 if and only if

β/σ0 > 1, and lim
qc→1−0

E(qc) = ∞ if and only if β/σ0 < 1. We can

easily derive the derivative of E(qc)

dE

dqc
= −s0

β

σ0
qc (1− qc)

β/σ0−2

(
β

σ0
− 1

)
.

As dE/dqc|qc=0 = 0, and the sign of dE/dqc can be positive or negative
depending on the value of parameter β/σ0.
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Figure 2.6: (γ/σ0, qmax)-dependence of isolation reach the capacity. (a)
β/σ0 = 2.4; (b) β/σ0 = 0.8. Commonly s0 = 0.0 (blue), 0.7

(red), 0.9999 (green).

When β/σ0 > 1, dE/dqc < 0 for positive qc, so that, E(qc) is mono-
tonically decreasing for positive qc. Also at lower edge value E(qc)

is negative, therefore, E(qc) is negative for every range of qc includ-
ing zero. As a result, d(γ/σ0)/dqc < 0, so that, qc is monotonically
decreasing in terms of γ/σ0, as numerically demonstrated in Figure
2.6.

When β/σ0 < 1, the dE/dqc > 0 for positive qc, so that, E(qc) is
monotonically increasing for positive qc. As E(0) < 0, it means that
E(qc) changes the sign from negative to positive at a point qc.

As the right-hand side of (2.37) changes the sign from negative to
positive at a certain point qc, therefore, the curve (2.36) has a certain
extremal minimum for the positive qc. It is easily found that the right-
hand side of equation (2.36) has two roots qc = 1− s

1/(1−β/σ0)
0 , 1.

Where 1 − s
1/(1−β/σ0)
0 is positive and less than one. On the other

hand, the curve (2.36) has a certain extremal minimum for positive
qc, and at edge value it is positive. So from the continuity and edge
values of the curve (2.36), the extremal minimum for qc is in the
range of (1− s

1/(1−β/σ0)
0 , 1). Hence, the curve (2.36) exist only for the

positive γ/σ0 in the range (0, 1− s
1/(1−β/σ0)
0 ), and qc is monotonically

decreasing in terms of γ/σ0 with an upper bound less than 1, as
demonstrated in Figure 2.6(b).

The results from the analysis shows that the critical value of the
isolation capacity qc is monotonically decreasing in terms of γ/σ0, that
is the larger recovery rate requires a smaller isolation capacity in order
to avoid the isolation reaching the capacity at a finite time during the
epidemic process, and the supremum of qc is 1− s

max(0,1/(1−β/σ0))
0 , as

demonstrated in Figure 2.6.

2.6.3 On the isolation rate

We can obtain the following theorem to maximize the critical value of
the isolation capacity qc for a finite value of 1/σ0 (Appendix C).
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Figure 2.7: (1/σ0, qc)-dependence of isolation reach the capacity. (a) β/γ =
0.66; (b) β/γ = 1.5. Commonly s0 = 0.0 (blue), s0 = 0.8 (red),
s0 = 0.9999 (green).

Theorem 2.6.1. There exists a finite value of 1/σ0 to maximize qc if

β

γ
>

s0 − 1

s0 ln s0
. (2.38)

Corollary 2.6.2. There exists a finite value of 1/σ0 to maximize qc only if
β/γ > 1.

Proof. It is easily seen that the right-hand side of (2.38) is greater
than 1 for any s0 ∈ (0, 1). When β/γ ≤ 1, the condition (2.38) cannot
satisfied, so inversely it means that β/γ > 1 is the necessary condition
to satisfy the condition (2.38).

When Theorem 2.6.1 is satisfied, there exist at least an extremal max-
imum for qc and the numerical calculation implies that the extremal
maximum would be unique, as shown in Figure 2.7(b). The numerical
calculation imply that when Theorem 2.6.1 is not satisfied, the critical
isolation capacity qc is monotonically decreasing in terms of 1/σ0, as
shown in Figure 2.7(a).



3
C O N C L U D I N G R E M A R K S

It is obvious that human interactions promote the risk of the spread of
an infectious disease in the community, and to reduce the risk of the
spread of infectious diseases in the community, “isolation/quarantine”
is an important strategy because it can suppress the final epidemic
size. The isolation requires a specific space with highly organized
conditions to isolate the infected individuals from the others in the
community. When the isolation capacity is much small, the isolation
strategy may fail in a certain finite time on the way of the epidemic
process. In such a case, how does the final epidemic size depend on
the limited isolation capacity.

The results from our analysis imply that it is necessary to increase
the isolation capacity in order to suppress the final epidemic size.
Under the assumption that any isolated individual is not discharged
during the season, the isolation affects the infection force. The infection
force become larger under such a kind of permanent isolation. At the
same time, the isolation can certainly reduce the risk of infection in
the community, which must be a positive effect to suppress the spread
of the disease. Our theoretical consideration on a mathematical model
clearly indicates that the increase of the isolation capacity makes the
final epidemic size smaller, while there is such a counteracting effect
of the isolation on the epidemic dynamics.

Further, once the isolation reaches the capacity and the isolation
becomes incapable, the final epidemic size becomes much large. The
occurrence of such a much large final epidemic size depends on the
characteristic of epidemic dynamics. When the spread of disease is
very slow, the final epidemic size could become much large if the
isolation becomes incapable due to the limited capacity. Such a drastic
increase in the final epidemic size requires a sufficiently small recovery
rate too. This means that such a drastic increase in the final epidemic
size could be expected only when the recovery from the disease
takes a sufficiently long time. Therefore, the severity of insufficient
isolation capacity appears especially for the epidemic dynamics of
a transmissible disease such that the infectivity is weak while the
disease is hardly treated to the recovery.

The importance of the isolation capacity depends on the social
situation, and the isolation capacity is important in such a situation
where such a drastic increase could occur in the final epidemic size.
On the other hand, if such a drastic increase in the final epidemic size
could not occur, the increase of isolation capacity must be effective,
while it works as a reduction of the final epidemic size by a certain
finite magnitude only. The smaller critical value for the isolation
capacity would be better for the controlling of the epidemic dynamics.
That is, the smaller critical value for the isolation capacity makes the
isolation operation expected to be effective. In contrast, the larger

31
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critical value for isolation capacity indicates a harder situation for
the efficiency of the isolation since its mean that a sufficiently large
capacity is necessary to make the final epidemic size at a low level.

Consequently, if the spread of a disease is slow and the recovery
from the disease takes a long time, then the isolation capacity must be
prepared sufficiently large. However, if the epidemic dynamics have
a characteristic such that the critical value for the isolation capacity
is small, the increase of isolation capacity would have a partial effect
to reduce the final epidemic size, and the improvement of another
operation against the epidemic dynamics could be more effective for
the purpose to make the final epidemic size smaller.
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A
P R O O F O F L E M M A 2 . 5 . 6

The final epidemic size equation for the case of isolation reaches the
capacity can be written as P (qmax, z

+
∞) = 0 where

P (qmax, z
+
∞) :=

β

σ0

{
qmax (1+ σ0/γ)

1− qmax
+ ln (1− qmax)

}
− ln(1− z+∞) + ln s0 −

(β/γ)z+∞
1− qmax

. (A.1)

We have
∂z+∞
∂qmax

= −Pqmax(qmax, z
+
∞)

Pz+∞
(qmax, z

+
∞)

.

It is easily derived the partial derivatives of (A.1)

Pqmax(qmax, z
+
∞) =

β/γ
(1− qmax)2

(
1+

γ

σ0
qmax − z+∞

)
and

Pz+∞
(qmax, z

+
∞) =

−(β/γ)
{
1− (γ/β)(1− qmax)− z+∞

}
(1− z+∞)(1− qmax)

.

Hence, we get

∂z+∞
∂qmax

=
(1− z+∞)

{
1+ (γ/σ0)qmax − z+∞

}
(1− qmax)

{
1− (γ/β)(1− qmax)− z+∞

} .
Then we can obtain

lim
qmax→0+

∂z+∞
∂qmax

=
(1− z0∞)2

1− γ/β − z0∞
, (A.2)

where z0∞ is the value of z+∞ as qmax → 0+. The sign of the right-
hand side of (A.2) can be determined uniquely by the sign of the
denominator. For β/γ ≤ 1, it is necessarily negative.

For β/γ > 1, we use the final size equation for case when isolation
reaches the capacity for qmax = 0, which is now denoted by H(z) = 0

where
H(z) := ln(1− z)− ln s0 + (β/γ)z.

It is easily found that H(1− s0) > 0 and lim
z→1−

H(z) < 0 for z ∈
(1− s0, 1). We can easily find the unique critical point zc = 1− γ/β
that is the root of H ′(z) = 0.

When β/γ > 1, the critical point is positive. If it is not located in
(1− s0, 1) then H ′(z) < 0, so that H(z) is monotonically decreasing
in (1− s0, 1). Therefore, 1− γ/β < z0∞ always holds. Hence, the right-
hand side of (A.2) is negative. However, if zc is located in (1− s0, 1),
then H(z) has an extremal maximum in (1− s0, 1). Therefore, 1−
γ/β < z0∞ always holds under H(1− s0) > 0. As a result, the right-
hand side of (A.2) is negative. These arguments prove the lemma.
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The right-hand side of (A.1) can be rewritten as

qmax

(
1+

γ

σ0

)
− z+∞ =

γ

β
(1− qmax) ln

1− z+∞
s0(1− qmax)β/σ0

.

Thus, taking the limit as qmax → qc, we have the following equation
with respect to z†∞ from (2.20) and Lemma 2.5.4

J(z†∞) := z−∞ − z†∞ − γ

β
(1− qc) ln

1− z†∞

1− z−∞
= 0. (B.1)

It is easily found that J(z−∞) = 0 and limz→1−0 J(z) = ∞. Further, if

J ′(z−∞) = −1+
γ

β

1− qc

1− z−∞
≥ 0,

then J(z) > 0 for any z ∈ (z−∞, 1), while, if J ′(z−∞) < 0, there exists
a unique value ζ ∈ (z−∞, 1) such that J(ζ) = 0. The former result
indicates that, if J ′(z−∞) ≥ 0, the root of J(z) = 0 in [z−∞, 1] is only
z = z−∞. On the other hand, from (2.29), we can derive

∂z+∞
∂qmax

=
1+ (γ/β) ln

[
(1− z+∞)/

{
s0(1− qmax)β/σ0

}]
1− (γ/β)(1− qmax)/(1− z+∞)

.

Then we have

∂z+∞
∂qmax

|(qmax,z
+
∞=(qc,z

−
∞) =

1

1− (γ/β)(1− qc)/(1− z−∞)
=

1

J ′(z−∞)
.

(B.2)
Hence we find that, if J ′(z−∞) < 0, the derivative (B.2) becomes positive.
Thus, if z†∞ = z+∞ with J ′(z−∞) < 0, z+∞ must be smaller than z−∞ for
qmax less than and sufficiently near qc because z+∞ is continuous and
differentiable for qmax ∈ (0, qc) and the derivative (B.2) is positive. This
is contradictory to the result of Lemma 2.5.3. Therefore, if J ′(z−∞) < 0,
z†∞ must be ζ which is greater than z−∞.

The condition J ′(z−∞) < 0 is equivalent to the following:

γ

β
< 1 and qc < qcc :=

1− γ/β
1− γ/β + γ/σ0

. (B.3)

From qmax < qc and (2.20), the second inequality of (B.3) is equivalent
to

1− qcc

(
1+

γ

σ0

)
> s0 (1− qcc)

β/σ0 .

This inequality results in the second condition of (2.33). If J ′(z−∞) ≥ 0,
z†∞ must be z−∞, since the equation J(z) = 0 has the unique root
z = z−∞ in [z−∞, 1] and the derivative (B.2) is non-positive with no
contradiction. These arguments prove the theorem.
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The equation (2.20) can be written as K (1/σ0, qc) = 0 where

K (1/σ0, qc) := 1− qc

(
1+ γ

1

σ0

)
− s0 (1− qc)

β(1/σ0) . (C.1)

When 1/σ0 = 0 then qc = 1− s0. We have

∂qc
∂(1/σ0)

= −K1/σ0
(1/σ0, qc)

Kqc (1/σ0, qc)
.

It is easily derived the partial derivatives of (C.1)

K(1/σ0) (1/σ0, qc) = −γqc − s0β (1− qc)
β(1/σ0) ln(1− qc)

and

Kqc (1/σ0, qc) = −
(
1+ γ

1

σ0

)
+ s0β

1

σ0
(1− qc)

β(1/σ0)−1 .

Hence, we get

∂qc
∂ (1/σ0)

=
γqc + β [1− qc {1+ γ(1/σ0)}] ln(1− qc)

− (1+ γ/σ0) + β(1/σ0) [1− qc {1+ γ(1/σ0)}] (1− qc)
−1 .

(C.2)

At boundary edge values

∂qc
∂ (1/σ0) (1/σ0=0, qc=1−s0)

≤ 0 if and only if
β

γ
≤ (s0 − 1)

s0 ln s0
,

and

∂qc
∂ (1/σ0) (1/σ0=0, qc=1−s0)

> 0 if and only if
β

γ
>

(s0 − 1)

s0 ln s0
. (C.3)

The right-hand side of (C.2) can be written as

∂qc
∂ (1/σ0)

=
σ2
0γqc + σ0β {σ0 − qc (σ0 + γ)} ln(1− qc)

−σ0 (σ0 + γ) + [β {σ0 − qc (σ0 + γ)}]/(1− qc)
, (C.4)

In order to find the sign of the right-hand side of (C.4) for sufficiently
large value of 1/σ0, we use the Maclaurin expansion formula by
defining the right-hand side as a function of σ0
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L(σ0) :=
σ2
0γqc + σ0β {σ0 − qc (σ0 + γ)} ln(1− qc)

−σ0 (σ0 + γ) + [β {σ0 − qc (σ0 + γ)}]/(1− qc)
.

The Maclaurin expansion formula is given as

L(σ0) = L(0) + L′(0)σ0 + o(σ0).

It is easily found that L(0) = 0, and L′(0) = (1− qc) ln(1− qc). There-
fore, we get

L(σ0) = (1− qc) ln(1− qc)σ0 + o(σ0). (C.5)

The right-hand side of (C.5) has a negative coefficient in the first
order of σ0 , therefore, the sign of dqc/d(1/σ0) is negative for suffi-
ciently large value of 1/σ0. So as a consequence, the curve (C.1) is
monotonically decreasing for sufficiently large value of 1/σ0.

Moreover, the curve (C.1) is continuous, and under condition (C.3)
with edge value is positive, therefore, the curve is monotonically
increasing for a certain range near to 1/σ0 = 0. Hence, the curve has
at least an extremal maximum.
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