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A mathematical model

for the influence of the social insensitivity
on the SIS epidemic dynamics
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1 Introduction

The community sensitive to a disease spread gen-
erates the social response such as wearing a mask,
limiting the number of contacts with others, taking
medication, vaccination. Such behavioral changes
may reduce the susceptibility to the disease or in-
crease the recovery rate from it. However, the
community may not respond to a transmissible dis-
ease even though such a disease is spreading in the
community. A mathematical model is proposed
and analyzed to consider the influence of the so-
cial insensitivity to the spread of a transmissible
disease, while the infection rate and the recovery
rate are affected by the social response to the dis-

ease spread.

2 Assumptions

e The disease is infatal and the disease-induced
death can be negligible (for example, the

common cold).

e The social insensitivity could be caused by
the weak influence of the corresponding alert
or by the unconcern to the disease spread,
which are affected by the education, the cul-

ture, and the history of the community.

e The recovered individual can not get effec-
tively long-lasting immunity and becomes
susceptible again in a certain period after the

recovery.

e The demographic change of the community
is negligible in the time scale of considered

epidemic dynamics.

e The effect of social response appears as the

reduction of infection rate and the increase

of recovery rate. For example, the social re-
sponse may result in a decrease of individual

contacts.

e The social response has a decay rate in time,
while the existence of infectives in the com-

munity may enhance it.

e The disease spread may not enhance the so-
cial response if the number of infectives is
small enough to make the people unconcern
about it, that is, to cause the social insensi-

tivity.

3 SIS modeling with social re-

sponse
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Susceptibles (S): individuals who are healthy and can be
infected.

Infectives (I): individuals who have been infected and are
able to transmit the infection.

M: the strength of the social response.

We can derive
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the infection coefficient which is a continuous and
decreasing function of M with 3(0) = 8o > 0;

B(M):

q(M):  the recovery rate which is a continuous and increas-
ing function of M with ¢(0) = go > 0;



T'(I): the social sensitivity function with I'(I) > 0;
0 for I < I

(1) :=
vy —1I.) for I>I..
v: the social sensitivity;

I.: the threshold value for the number of infectives to
cause the social response.

p:  the decay rate of the social response;

N: the total population size in the community which is
given as S(t) + I(t) = N > 0 for any ¢ > 0.

0. := I./N. The basic reproduction number (FEA

FLEPERL) Zo: the expected number of secondary

infectives who is infected, in a totally susceptible

community, by a single infected individual during

the time span of the infection. For the generic

model,
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4 Analytical result

Theorem

(i) If and only if 9 < 1, there is the unique
disease-free equilibrium Fy(0,0), which is
globally asymptotically stable.

(ii) If and only if 1 < %o < (1 — 6.)7 %, there
are two equilibria: the disease-free equilib-
rium Eo(0,0) and the endemic equilibrium
Eio (N(l — %), O), of which Fqy is unsta-
ble, while Eq is globally asymptotically sta-
ble.

(ii) If and only if %y > (1 — 0.)7%, there
are two equilibria: the disease-free equilib-
rium Eo(0,0) and the endemic equilibrium
E(I*,M*), of which Ey is unstable, while
E. | is globally asymptotically stable.

Corollary When %y < (1 — 6.)7, the system

monotonically approaches the equilibrium.

5 A specific model

We give specific functions for (M) and ¢q(M):

B =1 anM;

We define non-dimensional transformation of vari-

q(M) = qo + bM.

ables and parameters given by
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The system can be rewritten as follows:

du 0
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where
0 for v <46,
G(v) ==
nv—=60.) for v>0,,

and u(t) +v(t) = 1 for any ¢ > 0. The behavior to
approach the endemic equilibrium has two differ-

ent manners: damped-oscillatory or monotonic.
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Numerical examples of the temporal variation with
(v(0), M(0)) = (0.001,0); 6. = 0.3; %o = 4.0; a = 5.0;
B =5.5;1n1=25.0; (a) § =0.5; (b) § = 10.0.

6 Conclusion

e When there is no social response, the sys-
tem becomes the standard and simplest SIS
model, and then shows a monotonic ap-

proach to an endemic equilibrium.

e If the community is more insensitive to the

disease, the endemic size becomes larger.

e The larger decay rate of the social response
increases the endemic size, and that the more
sensitive social response makes the endemic

size smaller.

e The more sensitive social response is more

likely to cause a damped oscillation.

e The social response may play an important
role to cause repetitive outbreaks in epidemic

dynamics.



