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1 Introduction

The community sensitive to a disease spread gen-

erates the social response such as wearing a mask,

limiting the number of contacts with others, taking

medication, vaccination. Such behavioral changes

may reduce the susceptibility to the disease or in-

crease the recovery rate from it. However, the

community may not respond to a transmissible dis-

ease even though such a disease is spreading in the

community. A mathematical model is proposed

and analyzed to consider the influence of the so-

cial insensitivity to the spread of a transmissible

disease, while the infection rate and the recovery

rate are affected by the social response to the dis-

ease spread.

2 Assumptions

• The disease is infatal and the disease-induced

death can be negligible (for example, the

common cold).

• The social insensitivity could be caused by

the weak influence of the corresponding alert

or by the unconcern to the disease spread,

which are affected by the education, the cul-

ture, and the history of the community.

• The recovered individual can not get effec-

tively long-lasting immunity and becomes

susceptible again in a certain period after the

recovery.

• The demographic change of the community

is negligible in the time scale of considered

epidemic dynamics.

• The effect of social response appears as the

reduction of infection rate and the increase

of recovery rate. For example, the social re-

sponse may result in a decrease of individual

contacts.

• The social response has a decay rate in time,

while the existence of infectives in the com-

munity may enhance it.

• The disease spread may not enhance the so-

cial response if the number of infectives is

small enough to make the people unconcern

about it, that is, to cause the social insensi-

tivity.

3 SIS modeling with social re-

sponse

Susceptibles (S): individuals who are healthy and can be
infected.

Infectives (I): individuals who have been infected and are
able to transmit the infection.

M : the strength of the social response.

We can derive

dS

dt
= −β(M)IS + q(M)I

dI

dt
= β(M)IS − q(M)I

dM

dt
= Γ(I)− µM.

β(M): the infection coefficient which is a continuous and
decreasing function of M with β(0) = β0 > 0;

q(M): the recovery rate which is a continuous and increas-
ing function of M with q(0) = q0 > 0;
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Γ(I): the social sensitivity function with Γ(I) ≥ 0;

Γ(I) :=

{
0 for I ≤ Ic;

γ(I − Ic) for I > Ic.

γ: the social sensitivity;

Ic: the threshold value for the number of infectives to
cause the social response.

µ: the decay rate of the social response;

N : the total population size in the community which is
given as S(t) + I(t) = N > 0 for any t ≥ 0.

θc := Ic/N . The basic reproduction number (基本
再生産数) R0: the expected number of secondary

infectives who is infected, in a totally susceptible

community, by a single infected individual during

the time span of the infection. For the generic

model,

R0 :=
β0N

q0
.

4 Analytical result

Theorem

(i) If and only if R0 ≤ 1, there is the unique

disease-free equilibrium E0(0, 0), which is

globally asymptotically stable.

(ii) If and only if 1 < R0 ≤ (1 − θc)
−1, there

are two equilibria: the disease-free equilib-

rium E0(0, 0) and the endemic equilibrium

E+0

(
N(1−R0

−1), 0
)
, of which E0 is unsta-

ble, while E+0 is globally asymptotically sta-

ble.

(iii) If and only if R0 > (1 − θc)
−1, there

are two equilibria: the disease-free equilib-

rium E0(0, 0) and the endemic equilibrium

E++(I
∗,M∗), of which E0 is unstable, while

E++ is globally asymptotically stable.

Corollary When R0 ≤ (1 − θc)
−1, the system

monotonically approaches the equilibrium.

5 A specific model

We give specific functions for β(M) and q(M):

β(M) =
β0

1 + aM
; q(M) = q0 + bM.

We define non-dimensional transformation of vari-

ables and parameters given by

u =
S

N
; v =

I

N
; τ = q0t; η =

Nγ

q0
;

B =
b

q0
; δ =

µ

q0
; R0 =

β0N

q0
.

The system can be rewritten as follows:

du

dτ
= − R0

1 + aM
uv + (1 +BM)v

dv

dτ
=

R0

1 + aM
uv − (1 +BM)v

dM

dτ
= G(v)− δM,

where

G(v) :=

 0 for v ≤ θc;

η(v − θc) for v > θc,

and u(t)+ v(t) ≡ 1 for any t ≥ 0. The behavior to

approach the endemic equilibrium has two differ-

ent manners: damped-oscillatory or monotonic.
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Numerical examples of the temporal variation with

(v(0),M(0)) = (0.001, 0); θc = 0.3; R0 = 4.0; a = 5.0;

B = 5.5; η = 5.0; (a) δ = 0.5; (b) δ = 10.0.

6 Conclusion

• When there is no social response, the sys-

tem becomes the standard and simplest SIS

model, and then shows a monotonic ap-

proach to an endemic equilibrium.

• If the community is more insensitive to the

disease, the endemic size becomes larger.

• The larger decay rate of the social response

increases the endemic size, and that the more

sensitive social response makes the endemic

size smaller.

• The more sensitive social response is more

likely to cause a damped oscillation.

• The social response may play an important

role to cause repetitive outbreaks in epidemic

dynamics.
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