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S U M M A RY

Social nature could have a significant influence on the patterns and trends
in the spread of infectious disease. Although it is difficult to quantify the
social characteristics, mathematical models have become useful tools for
understanding the relation of social nature to disease transmission. In this
work, we consider three mathematical models incorporating social nature
from the aspects of social response, community’s policy, and detectability
of the disease infection, respectively. The analysis of the model with the
incorporation of social response, especially assuming that the infection
rate is affected by such a response to the disease spread, shows that the
social response could become a cause of recurring outbreaks whilst it must
suppress the prevalence. From the model on the spread of a reinfectious
disease in a community with the acceptance of visitors, particularly under
the assumption that a certain proportion of visitors are immune, we find
that the acceptance of visitors could have a significant influence on the
disease’s endemicity in the community, either suppressive or supportive.
Furthermore, we consider a mathematical model on the disease spread by
multiple strains with a competitive dominance, assuming the superinfection
occurs when a more dominant strain takes over a host infected by a less
dominant strain. This model shows that, strains could coexist with the
existence of superinfection. Otherwise, the disease becomes eliminated or
alternatively the endemic state arises with only the strain which has the
largest strain-specific basic reproduction number while all the other strains
get eliminated. Such theoretical/mathematical researches could provide
better understanding of the complex interplay between social nature and the
disease transmission.
Keywords: Epidemic dynamics, Social response, Public health, Recurring
outbreaks, Reinfection, Multiple strains, Superinfection, Ordinary differential
equations
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1I N T R O D U C T I O N

1.1 characteristics of infectious disease spread

1.1.1 Recurring epidemic outbreaks

Recurring outbreaks of transmissible diseases such as measles, chickenpox,
mumps, and COVID-19 have been observed in our epidemic history [1–6].
Such recurring outbreaks could have a significant impact on the society,
including people’s mental health, public health care costs, economies, and
development [7,8]. Observed in the Hong Kong influenza data and other
related data, the influenza could show both seasonally periodic and non-
periodic outbreaks [9]. Not only by the seasonal variation of temperature,
humidity, and resource availability, such a seasonality of epidemic outbreak
could be caused also by a seasonal change in people’s social behavior and
contact rate [10–13]. It has been indicated that the oscillation in epidemic
dynamics could be induced by the feedback of the social behavior such as
the ignorance when the disease prevalence decreases and the enforcement of
containment measurements when the prevalence becomes cautious [14–19].

1.1.2 Reinfectivity

The reinfectivity of disease in this paper means that the immunity gained
by either vaccination or recovery is imperfect. For a spreading transmissible
disease accompanied with a reinfectivity, the acceptance of visitors must
influence the endemicity of such a disease in the community. Then the
community’s policy must take account of the risk of reinfection for both
residents and visitors. Actually there are transmissible diseases with a
reinfectivity, including influenza [20–24], pertussis [25,26], Lyme disease [27], hand,
foot and mouth disease [28], malaria [29,30], tuberculosis [31–33], Ebola virus
disease [34,35], chronic lung diseases [36], invasive pneumococcal disease [37],
meningococcal disease [38], and COVID-19

[39–47], although the reinfectivity
has been still requiring scientific researches to understand its kinetics and
other nature.

1.1.3 Superinfection

Competition within a host individual for the limited resources between
strains from the same species or from different species has been found in
various transmissible diseases [48,49]. Gupta et al. [50] considered the competition
between antigenically diverse strains through cross-reacting host immune
response, a form of apparent competition, and showed that the competition
for nonimmune hosts can shape the frequencies of strains. Le et al. [51]

analyzed a coinfection system with n strains from the strains characteristics
including transmissibility, clearance rates of single infection and coinfection,
and transmission probability from mixed coinfection. Both of Gupta et al. [50]

and Le et al. [51] excluded the possibility of superinfection and focused on
coinfection models which assume that hosts can be infected by multiple
strains simultaneously.
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2 introduction

Superinfection implies a two-step process: a host individual previously
infected by one strain becomes infected with another strain, after a time t, the
second strain takes over the infected individual. Such a "takeover" of hosts by
the second strain is assumed to be immediate [52]. Different from the concept
of coinfection with multiple strains, superinfection refers to the infection
with only one strain at a time or the coexistence duration of two strains
is relatively short and one of them is instantaneously excluded by another.
Nowak and May [53] proposed an SIS model with n strains following an
order of virulence and assumed that a more virulent strain can superinfect a
host who is already infected by a less virulent strain. Wu et al. [54] considered
two-strain models in a heterogenous population represented by scale-free
networks, incorporating competing interaction between these two strains by
superinfection.

1.2 social natures on epidemics

1.2.1 Social response

Protective measures such as vaccination and medicine are available to
control the disease spreading [55,56]. In some scientific works, the social
behavior has been considered as a key factor to understand the epidemic
dynamics [57–61]. When people become aware of the spread of a transmissible
disease in a community, various media (e.g., TV, newspaper, and SNS) may
provide information to alert the presence of a disease spreading over the
community [62]. Then the community may promote or control some behaviors
of its members, for instance, wearing a mask, limiting the number of contacts
with others, and taking medication or vaccination [63–65]. Such information
could induce some qualitative or quantitative changes in the quotidian
behavior, which in turn may reduce the susceptibility to the disease [66].
Especially the report broadcasted by the media on a significant number
of infected individuals is very likely to urge people’s caution to take such
preventive behaviors [67]. One of the typical behaviors is the social distancing,
which is particularly useful and little costly to slow down the epidemic until
a vaccine or medicine becomes widely available [68]. In this paper, we shall
call the collective effect of such people’s cautious behaviors on the epidemic
dynamics by social response.

On the other hand, even when a disease has been spread in a community,
people may not respond to the disease due to, for example, the cost or
inconvenience to fight the disease spread [69–71]. We describe here that such a
community is insensitive if the community is unaware or unresponsive to the
disease spread. Even in such a case, a sufficiently large number of infectives,
or severe symptoms by the disease may lead the community to show a social
response about the disease spread.

1.2.2 Community’s policy

Since the globalization in business and tourism becomes crucial more and
more for the economical sustainability of local communities, the condition
about the acceptance of visitors would be an important part of the community’s
policy for the public health about a spreading transmissible disease in and
out of it. There must be such a decision on the policy by the host community
as whether to accept visitors or not, the number of acceptable visitors, and
the condition for acceptable visitors. Actually the importance of such a
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policy on the tourism regulation has been recognized more and more in the
post-COVID-19 period [72–76].

1.2.3 Detectability of strains

Genetic changes in strains can affect the virus’s characteristics, such as
transmissibility, virulence, antigenicity, and in some cases, the efficacy of
vaccines and treatments. For some viruses, like the influenza virus, genetic
variations are common and can lead to the emergence of new seasonal flu
strains each year [77,78]. Although the characterization of multiple genotypes
strains could contribute to identifying the disease infection, the emergence
of mutant or novel strains of infectious diseases has provided a challenge to
clinical diagnosis due to the lack of knowledge about the novel strains or the
limitation of testing techniques [79,80].

1.3 classic epidemic dynamics models incorporating social

natures

1.3.1 Models incorporating social behaviors

Funk et al. [82] quantified the impact on the endemicity of a disease in a
well-mixed population under the variation of different disease parameters as
a consequence of growing awareness in the population. They consider the
spread of the awareness in response to the spread of an infectious disease
and divide the population into two compartments: aware and unaware.
Cabrera et al. [81] incorporated the social distancing behavior into an SIR
model and argued that an effective social distancing could reduce the disease
transmission and its effectiveness depends on the nature of the society. Agaba
et al. [83] considered how the dissemination of private awareness arising
from direct contact between unaware/aware individuals and that of public
awareness through population-wide campaigns affect the disease spread.
Both works focused on a substantial fraction of the population, while the
effect of social response was not taken into account. Misra et al. [84] proposed
a nonlinear mathematical model to discuss the effect of awareness about a
disease spread. Their results indicate that the awareness programs through
the media campaign can decrease the disease spread by isolating a fraction
of susceptibles from infectives. Basir et al. [85] assumed the rate of becoming
aware (resp. unaware) depends on the media campaign, and showed that
increasing the rate of implementation of awareness program through the
media could reduce the number of infectives.

1.3.2 Models incorporating people’s displacement

There have been many investigations concerning the effect of a people’s
displacement due to social and political unrest as well as the natural migration
of disease vectors to new areas on the epidemic outbreak, and especially
conducted have been many theoretical/mathematical studies taking into
account the possibility of individuals becoming infective during transportation
and contributing significantly to transport-related infection (see Wilson [86]

and references therein; especially for the SARS virus transmission, see
Wang [87]). Not only the particular transportation with a long travel, but
also the human quotidian mobility as a common phase of the human activity
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can be considered as one of relevant factors that could cause the spread of
a transmissible disease such as influenza [88,89]. So is the case of today’s
pandemic of COVID-19 in local regions of every country [90–92]. In the
work presented by Parikh et al. [93], a synthetic population model of the
Washington DC metro area was extended to include leisure and business
travelers classified as transients. The final size of the epidemic among
residents was found to be remarkably higher when transients were included
in the simulation of a flu-like disease outbreak. In considering the emerging
diseases of wildlife, Tompkins et al. [94] show that the key drivers of such
diseases are agents from domestic sources and human-assisted exposure to
infectious agents from wild populations. Talking about swine fever otherwise
known as hog cholera, wild boar populations are known to serve as reservoir
for the disease thereby constituting a great challenge for domestic pig farmers,
veterinarians and other stakeholders [95,96].





2S O C I A L R E S P O N S E B E C O M E S A C AU S E F O R R E C U R R I N G
E P I D E M I C O U T B R E A K S ?

2.1 assumptions and modeling

2.1.1 Assumptions

When a transmissible disease spreads in a community, the behavioral change
of the members in response to the outbreak may affect the course of its spread.
For our mathematical modeling about the epidemic dynamics considered
here under the social response, we set up the following assumptions:

• The spreading disease is non-fatal, and the disease-induced death can
be negligible (for example, the common cold).

• The recovered individual cannot acquire a long-lasting effective immunity
and becomes susceptible again in a sufficiently short period after the
recovery.

• The demographic change about the community is negligible in the time
scale of considered epidemic dynamics.

• The stronger social response makes the infection rate smaller, for
example, with a decrease of individual contact rate.

• The social response follows a natural decay, while the fact of disease
spread in the community tends to arouse the response.

• The disease spread may not cause the social response unless the
number of infectives becomes enough to concern the people about
it. Such a situation defines the social insensitivity. It may depend on
the educational or cultural backgrounds of the community members.

2.1.2 Modeling

Let S(t) and I(t) be the susceptible and infective population densities in
the community at time t, while M(t) represents the strength of the social

Susceptibles Infectives

Social

response

Figure 1: The epidemic state transition and the social response about our model (1).
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6 social response becomes a cause for recurring epidemic outbreaks?

response at time t. With the above assumptions, we shall consider the
following model with ordinary differential equations (Figure 1):

dS

dt
= −β(M)IS+ qI

dI

dt
= β(M)IS− qI

dM

dt
= Γ(I) − µM,

(1)

where q is the recovery rate and µ is the natural decay rate of the social
response. The coefficient of disease transmission β = β(M) is given by a
decreasing, positive, and differentiable function of M ∈ [0,∞). The initial
condition is given by S(0) > 0, I(0) > 0, and M(0) = 0, which means that
there is no social response at the beginning of the disease spread. Then
people are unconcern about the disease spread. Thus β0 := β(0) denotes the
coefficient of disease transmission in such a situation of the community with
no social response.

The social sensitivity function Γ(I) represents the nature of the social
response according to its sensitivity to the disease spread.

we assume that the social response does not arise as long as the infective
population density is not beyond a threshold value Ic:

Γ(I) :=

 0 for I 6 Ic;

γ(I− Ic) for I > Ic.
(2)

Positive parameter γ is the social sensitivity coefficient, and Ic is the threshold
value for infective population density to raise the social response. The
threshold value Ic can be regarded as representing the social insensitivity to
characterize the community. Parameter γ characterizes the responsiveness
of the community that becomes aware of the epidemic situation. As γ gets
larger, the strength of social response more sensitively increases with the
increase of infectives in the community.

This kind of a switch-off change in the social collective behavior depending
on the epidemic situation has been taken into account for the mathematical
modeling also in some previous works with somewhat different contexts
(for example, [97–101]), while we introduce it here as the nature of social
insensitivity as described above. On the other hand, like our model (1)
with (2) for Ic ∈ (0,N), the system with a state-dependent switch in the
dynamical nature may be regarded as a piecewise smooth system (PSS), or what
is sometimes called Filippov system or switching system [102–107] and references
therein, while we will not need to use any specific mathematical technique
or knowledge for such a piecewise smooth system in the following analysis.

According to our assumptions, we have S(t) + I(t) = N with a positive
constant N for any t > 0. Then the system (1) can be reduced to the following
two-dimensional one:

dI

dt
= β(M)(N− I)I− qI

dM

dt
= Γ(I) − µM

(3)

with the initial condition given by I(0) ∈ (0,N) and M(0) = 0. Note that
I(t) ∈ (0,N) for any t > 0.

We have a special case with Ic > N. This is the case where Γ(I) is always
zero for any I ∈ (0,N) in the epidemic dynamics given by the system (1).
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The alternative special case is such that γ = 0, which makes Γ(I) always zero
as well. These special cases correspond to the model with no social response
which can be regarded as a reference model to our full model (1) with (2).

We have the other special case with Ic = 0. In this case, the social response
arises for any number of infectives, so that it is regarded as the model for an
epidemic dynamics in a community with no insensitivity about the disease
spread. This case is mathematically equivalent to a particular case of the
model analytically investigated in [108,109]. There are some other works [110–120]

related to [108,109], and in part to this work.

2.2 basic reproduction number

The basic reproduction number R0 is defined as the expected number
of secondary infectives generated by a single infective individual in a
community consisting only of susceptible individuals in the duration of
the infectivity of the initial infective individual [52,121–123]. To derive R0
for the model (1), we use the condition that dI/dt|t=0 > 0 for I(0) � 1

and S(0) ≈ N. This condition corresponds to the situation in which the
basic reproduction number R0 could be defined as the supremum for the
number of secondary infectives [124]. From M(0) = 0, we can easily obtain
the following condition with the definition of R0 for the model (1):

R0 =
β0N

q
> 1,

when the number of infectives increases in an early period after the disease
invasion. If R0 < 1, the number of infectives decreases after the invasion. If
R0 > 1, the disease is able to spread in the community at least for a while
after its invasion.

2.3 mathematical results on the model

2.3.1 Non-dimensionalization

Since the total population size N is constant for our model (3) independently
of time, we introduce the following non-dimensional transformation of
variables and parameters:

u =
S

N
; v =

I

N
; τ = qt; R0 =

β0N

q
; η =

γN

q
; θc =

Ic

N
; δ =

µ

q
,

and u = 1− v. Then the system (3) can be rewritten as

dv

dτ
=
β(M)

β0
R0v(1− v) − v

dM

dτ
= G(v) − δM

(4)

with

G(v) :=

 0 for v 6 θc;

η(v− θc) for v > θc.
(5)

In the subsequent sections, we investigate the dynamical nature of the non-
dimensionalized system (4) with (5).
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2.3.2 Model with no social response

We consider the system (4) when no social response arises, that is, when
M(t) ≡ 0 for any t > 0. This corresponds to the case where η = 0 or θc > 1
in (5) with M(0) = 0 as mentioned in Section 2.1. From (4), we have

dv

dτ
= R0v(1− v) − v (6)

which mathematically corresponds to the Verhulst model [125], being well-
known today as the logistic equation. The ordinary equation (6) with the
initial condition v(0) = v0 > 0 is given as

v(τ) =


(
1−

1

R0

)
v0

v0 + {(1− 1/R0) − v0}e−τ/(R0−1)
for R0 6= 1;

1

τ+ 1/v0
for R0 = 1.

When R0 6 1, v(τ) is monotonically decreasing and approaches the disease-
free equilibrium with v = 0. When R0 > 1, v(τ) monotonically approaches
the endemic equilibrium with v = v∗ = 1− 1/R0 > 0.

2.3.3 Model without social insensitivity

In this section, we consider the system (4) without the social insensitivity,
that is, with θc = 0. This is the case where the community always has a social
response whenever a transmissible disease exists in it. From (4) and (5), the
model now becomes

dv

dτ
=
β(M)

β0
R0v(1− v) − v

dM

dτ
= ηv− δM.

(7)

This system has been analytically investigated also in [108,109], as already
mentioned about the full model(1) with Ic = 0 for (2) at the end of Section 2.1.

The model (7) always has the disease-free equilibrium E0(0, 0) and may
have an endemic equilibrium E+(v

∗,M∗) which satisfies that

β(M∗)

β0
R0(1− v

∗) − 1 = 0; ηv∗ − δM∗ = 0. (8)

Then we can get the following result on the existence of equilibria E0 and
E+ (Appendix A.1):

Lemma 2.1. For the model (4) without the social insensitivity, that is, for the
system (7),

(i) if and only if R0 6 1, there is only the disease-free equilibrium E0;

(ii) if and only if R0 > 1, there are the disease-free equilibrium E0 and the endemic
equilibrium E+ uniquely determined by (8), where 0 < v∗ < 1− 1/R0.

With this lemma, we can obtain the following result on the stability of
existing equilibrium:

Theorem 2.1. For the model (4) without the social insensitivity,
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(i) if and only if R0 6 1, the unique equilibrium E0 is globally asymptotically
stable;

(ii) if and only if R0 > 1, there are two equilibria E0 and E+, where E0 is unstable
and E+ is globally asymptotically stable.

This result corresponds to Theorem 5.1 in [108] or Theorem 5.2 in [109], which
is on the SIS model with the recruitment of susceptibles to balance the death
in the population. Thus our Theorem 2.1 can be proved by the arguments
corresponding to their proof with a Lyapunov function for their model with
their parameter µ = 0.

2.3.4 Model with social insensitivity

In this section, we consider the model (4) with a social insensitivity, that
is, with θc ∈ (0, 1). The model (4) always has the disease-free equilibrium
E0(0, 0) and may have an endemic equilibrium (v∗,M∗) which satisfies that

β(M∗)

β0
R0(1− v

∗) − 1 = 0; G(v∗) − δM∗ = 0. (9)

We can get the following result on the existence of equilibria (Appendix A.2):

Lemma 2.2. For the model (4) with a social insensitivity,

(i) if and only if R0 6 1, there is only the disease-free equilibrium E0(0, 0);

(ii) if and only if 1 < R0 6 (1− θc)
−1, there are the disease-free equilibrium

E0(0, 0) and the endemic equilibrium E+0(1− 1/R0, 0);

(iii) if and only if R0 > (1− θc)
−1, there are the disease-free equilibrium E0(0, 0)

and the endemic equilibrium E++(v
∗,M∗) uniquely determined by

v∗ = 1−
1

R0

β0
β(M∗)

; M∗ =
η

δ
(v∗ − θc), (10)

where θc < v∗ < 1− 1/R0.

(iv) E++ → E+0 as R0 → (1− θc)
−1 + 0.

The equilibrium E+0 is the endemic state that people are unconcerned about
the disease persisting in the community, while E++ is the endemic state that
the persisting disease concerns people in the community.

With Lemma 2.2, we can obtain the following result on the stability of
existing equilibrium (Appendix A.3):

Theorem 2.2. For the model (4) with a social insensitivity,

(i) if and only if R0 6 1, the unique equilibrium E0 is globally asymptotically
stable;

(ii) if and only if 1 < R0 6 (1− θc)
−1, there are two equilibria E0 and E+0,

where E0 is unstable and E+0 is globally asymptotically stable;

(iii) if and only if R0 > (1− θc)
−1, there are two equilibria E0 and E++, where

E0 is unstable and E++ is globally asymptotically stable.



10 social response becomes a cause for recurring epidemic outbreaks?

Independently of whether the social insensitivity exists or not, the model
(4) has an endemic equilibrium when and only when R0 > 1 while it
always has the disease-free equilibrium E0. Then there exists the endemic
equilibrium E+0 or E++, depending on the social insensitivity. In the absence
of the social insensitivity (formally, θc = 0), the disease and social response
coexist when people keep a response to the disease (M > 0). In the presence
of a social insensitivity (0 < θc < 1), there is a critical condition for R0. If
1 < R0 6 (1− θc)

−1, the disease persists in the community whereas people
do not take care of it at the endemic equilibrium. If R0 > (1− θc)

−1, the
disease and social response coexist at the endemic equilibrium.

From Theorem 2.2, we find that, when 1 < R0 6 (1− θc)
−1, the model

(4) approaches the endemic equilibrium E+0(1− 1/R0, 0). In this case, the
endemic size of infectives is determined only by the basic reproduction
number R0, that is, 1− 1/R0, while there is no social response at the endemic
equilibrium. In contrast, for the case where R0 > (1− θc)

−1, we can obtain
the following result on the parameter dependence of the endemic size v∗ and
the strength of social response M∗ at the endemic equilibrium E++ which
the system approaches:

Corollary 2.2.1. The endemic size v∗ at the endemic equilibrium E++ is increasing
in terms of R0, δ and θc, while it is decreasing in terms of η. The strength of social
response M∗ at E++ is increasing in terms of R0 and η, while it is decreasing in
terms of δ and θc.

The proof of this corollary can be obtained straightforwardly from the sign
of the partial derivatives of v∗ and M∗ with respect to each parameter, where
we used dβ(M)/dM < 0 from the assumption for β(M).

For a disease with high transmissibility (i.e., large R0), although people
show a strong social response to the disease spread, there is a large number
of infectives at the endemic equilibrium state due to the high transmissibility
of the disease. As for a community of people more sensitive to the disease
spread (i.e., small θc or large η), or more persistently keeping the social
response (i.e., small δ), people show a stronger social response to the disease
spread, and such a response can reduce the number of infectives at the
endemic equilibrium state.

Furthermore as shown in Appendix A.3, we can obtain the following
result on the behavior of the system to approach the equilibrium:

Corollary 2.2.2. The system (4) approaches

(i) the equilibrium E0 in a monotonic manner when R0 6 1;

(ii) the equilibrium E+0 in a monotonic manner when 1 < R0 6 (1− θc)
−1;

(iii) the equilibrium E++ in the following manner when R0 > (1− θc)
−1: a monotonic manner if ∆ > 0;

an oscillatory manner if ∆ < 0,

where

∆ :=
{β(M∗)

β0
R0v

∗ + δ
}2

+ 4ηv∗
d lnβ(M)

dM

∣∣∣∣
M=M∗

. (11)

The behavior of the system (4) to approach E++ could have two different
manners: monotonic or oscillatory. This is because the second term of (11) is
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negative and its absolute value is determined by the derivative of β. Hence
the sign of ∆ essentially depends on the detailed features of function β(M).

As a consequence, we have found the possibility that the social sensitivity
could induce a damped oscillation in the epidemic dynamics. The emergence
of a damped oscillation caused by the social response has been shown also
in some literatures on the epidemic dynamics model (for example, [14,19], and
references therein). Generally, independent of which an epidemic dynamics
is approaching a disease-free or endemic state, an oscillatory variation in the
infective population size must concern the public health in the community
since it appears as recurring outbreaks. In the following part, we shall focus
on the condition for the occurrence of such an oscillatory behavior of the
system (4) with a social insensitivity.

2.3.5 Extremely fast/slow social response

To understand further the nature of epidemic dynamics by the model (1), we
consider here a specific case where the strength of social response changes
extremely faster or slower than the epidemic dynamics, and vice versa. Then
we mathematically apply the quasi-stationary state approximation (QSSA)
for the temporal change in M or v, that is to use dM/dτ ≈ 0 or dv/dτ ≈ 0
respectively for the system (4) [124,126,127]. As proved in Appendix A.4, we can
find the following nature of the epidemic dynamics with such an extremely
fast/slow social response:

Theorem 2.3. In the case of extremely fast/slow social response, Theorem 2.2 holds,
and the system (4) necessarily approaches an equilibrium in a monotonic manner.

Theorem 2.3 indicates that the system (4) does not approach the equilibrium
in any oscillatory manner with the extremely fast/slow social response. In
other mathematical words, any damped oscillation toward the equilibrium
does not occur for the system (4) with the parameter value η and δ sufficiently
larger/smaller than any other parameter values. Therefore it is implied that
a damped oscillation toward the endemic equilibrium E++ could occur
only for a finite range of parameter value η or δ when R0 > (1− θc)

−1,
following Corollary 2.2.2. We will consider the relation of social response
and insensitivity to the occurrence of such a damped oscillation in more
detail for the model (1) with a specific function β(M) in the next section.

2.3.6 A specific model

We consider the model (1) with the following specific function β(M):

β(M) =
β0

1+ aM
. (12)

Positive constant a is the efficiency coefficient of the social response with
respect to the transmission rate. The larger a means that the social response
has the higher efficiency to reduce the risk of infection. The same relation
of the social response to the infection coefficient was introduced also in the
modified SIR and SEIQR models of [14,19,113,118,119].
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(a) (b) (c)

Figure 2: Bifurcation diagrams about v∗ and M∗ for the system (13). Solid curves
are for stable equilibria Es0, Es+0 and Es++ in (a) and (b), for Es++ when
θc < 1− 1/R0 and Es+0 when θc > 1− 1/R0 in (c). Dashed lines in (a) and
(b) are for the unstable equilibrium Eu0 . Numerically drawn with (a) and (b)
θc = 0.6; (c) R0 = 2.5, and a = 5.0; δ = 10.0; η = 5.0.

The model (1) with (12) becomes

dS

dt
= −

β0
1+ aM

IS+ qI

dI

dt
=

β0
1+ aM

IS− qI

dM

dt
= Γ(I) − µM,

with Γ(I) defined by (2). The non-dimensionalized system (4) becomes

dv

dτ
=

R0
1+ aM

(1− v)v− v

dM

dτ
= G(v) − δM,

(13)

with G(v) given by (5). From Theorem 2.2, if R0 > (1− θc)
−1, there is a

globally asymptotically stable endemic equilibrium E++ with

v∗ =
(R0 − 1)δ+ aηθc

R0δ+ aη
; M∗ =

(R0 − 1−R0θc)η

R0δ+ aη
. (14)

We can obtain the bifurcation diagrams as shown in Figure 2 for the system (13)
(refer to Corollary 2.2.1). From (14), we can find that v∗ is monotonically
decreasing in term of aη. Since a is the efficiency coefficient of the social
response with respect to the transmission rate, the endemic size v∗ must
become smaller as the social response more efficiently works to reduce the
infection risk (see Figure 3).

From Corollary 2.2.2, only when E++ exists, the system (13) may approach
it in an oscillatory manner (see Figure 4). Since the temporal oscillation of
infective population size means recurring outbreaks of the disease spread
as already mentioned before, it is worthwhile investigating what condition
causes such an oscillatory behavior in the epidemic dynamics by the system
(13).

The discriminant (11) of the characteristic equation for the endemic
equilibrium E++ of the system (13) becomes

∆ =
( v∗

1− v∗

)2
− 2
(
δ+

2

R0
aη
) v∗

1− v∗
+ δ2 (15)

from (12) and (14). Then we derive the following result (Appendix A.5):



2.3 mathematical results on the model 13

0.041
0.082

0.123

0.164

0.205

0.246

0.287

0.328

0.369

0.41

0.451

0.492

0.533

0.574

0.615

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

0.33

0.352

0.374

0.396

0.418

0.44
0.462

0.484

0.506

0.528

0.55

0.572

0.594

0.6160.638

0 1 2 3 4 5

0

1

2

3

4

5

0.378

0.396

0.414

0.432

0.45

0.468

0.486

0.504

0.522

0.54

0.558

0.576

0.594

0.612

0.63

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

(a) (b) (c)

Figure 3: Parameter dependence of the endemic size v∗ at the endemic equilibrium
which is E++ if θc 6 1− 1/R0, and E+0 if θc > 1− 1/R0 respectively.
Numerically drawn with (a) δ = 2.0; (b) aη = 5.0; (c) θc = 0.3, and R0 = 3.0.
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Figure 4: Temporal variations of v and M for the model (13) with a = 5.0; R0 = 4.0;
η = 5.0; θc = 0.3; (a) δ = 10.0; (b) δ = 0.1. The initial condition is given as
(v(0),M(0)) = (0.001, 0.0).

Theorem 2.4. When R0 > (1− θc)
−1, the system (13) approaches E++ with a

damped oscillation if and only if θc− < θc < θc+, where

θc± :=
(δ+ aη)x± − (R0 − 1)δ

aη(1+ x±)
(16)

with

x± :=
(
δ+

2aη

R0

)
±

√(
δ+

2aη

R0

)2
− δ2. (17)

If θc 6 θc− or θc > θc+, the system approaches an equilibrium in a monotonic
manner.

From Theorem 2.4, we can obtain the following detailed result of the
condition about the occurrence of a damped oscillation for the system (13)
(Appendix A.6):

Corollary 2.4.1. For the system (13), a damped oscillation occurs

(i) when 1 < Rinf
0 < R0 < Rc0 and 0 < θc− < θc < 1− 1/R0;

(ii) when 1 < Rcc0 < R0 < R
sup
0 and 0 < θc < θc+ < 1− 1/R0;

(iii) when Rc0 < R0 < Rcc0 and 0 < θc < 1− 1/R0,

where Rinf
0 , Rc0 , Rcc0 , and R

sup
0 are uniquely determined with aη and δ, satisfying

that R
sup
0 > Rcc0 > Rc0 > Rinf

0 > 1. When R0 < Rinf
0 , R0 > R

sup
0 , or

θc > 1− 1/Rcc0 , the damped oscillation does not occur.
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Figure 5: (R0, θc)-dependence of the occurrence of a damped oscillation around the
endemic equilibrium E++. For the region out of the filled, the system (13)
approaches an equilibrium (either disease-free or endemic) in a monotonic
manner, as shown in Corollary 2.2.2. Numerically drawn with (a) δ = 1.5;
(b) δ = 0, and aη = 0.5.

Mathematical definitions of Rinf
0 , Rc0 , Rcc0 and R

sup
0 are given in Appendix A.6.

As indicated by Figure 5(a), the disease spread with sufficiently large or
sufficiently small R0 does not show any damped oscillation, independently
of the social sensitivity to it. Only if R0 is in a specific range greater than 1,
a damped oscillation may occur. Moreover, if the community is insensitive so
as to have θc > 1− 1/Rcc0 , the recurring outbreaks do not occur for any R0.
The community with sufficiently weak insensitivity (i.e., small θc) is very
likely to have recurring outbreaks, even though such a community would
have a relatively small endemic size at the equilibrium state as shown in
Figure 2(c).

For a specific case where the social response never decays with δ = 0, we
can get the following simpler result (Appendix A.7):

Corollary 2.4.2. For the system (13) with δ = 0, a damped oscillation occurs

(i) when 1 < R0 6 Rcc0 = (1+
√
1+ 16aη)/2 and 0 < θc < 1− 1/R0;

(ii) when R0 > Rcc0 and 0 < θc < θc+ = 4aη/(R0 + 4aη) < 1− 1/R0.

Otherwise, the damped oscillation does not occur.

In such a specific case without the decay of the social response, a damped
oscillation can occur for a sufficiently weak insensitivity for any R0 > 1,
as indicated in Figure 5(b). Hence the community which keeps the social
response longer would be more likely to show an oscillation in epidemic
dynamics for a wide range of the basic reproduction number R0.

With a decay of the social response, that is, with δ > 0, we can find the
following result in the case of extremely poor/effective social response or
the case of its extremely fast decay (Appendix A.8):

Corollary 2.4.3. For aη � 1, a damped oscillation occurs, while it does not for
aη� 1 or δ� 1.

In the extreme case where the community is sufficiently sensitive (i.e., large
η) and the social response has sufficiently high efficiency in reducing the
susceptibility (i.e., large a), recurring outbreaks necessarily occur. Recurring
outbreaks do not occur in the opposite extreme case or in the case where the
social response decays so fast (i.e., large δ).
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Figure 6: (δ,aη)-dependence of the occurrence of a damped oscillation. (a) 1 < R0 6
2; (b) 2 < R0 6 4; (c) R0 > 4. A damped oscillation could occur only for
the region Ω0 ∪Ω+ ∪Ω−, where the definitions of Ω0, Ω+, and Ω− are
given in the main text. For the blank region, the damped oscillation does
not occur. Boundary curves between Ω− and Ω0, between Ω0 and Ω+,
between Ω+ and blank region, between blank region and Ω− correspond
to θc− = 0, θc+ = 1− 1/R0, θc+ = 0 and θc− = 1− 1/R0, respectively.

From Theorem 2.4 and Corollaries 2.4.1–2.4.3, we can get the result
shown in Figure 6 on the (δ,aη)-dependence of the occurrence of a damped
oscillation (A.6), where the parameter region is classified into four subregions:

Ω− := {(δ,aη)|0 < θc− < 1− 1/R0 < θ
c
+};

Ω+ := {(δ,aη)|θc− < 0 < θ
c
+ < 1− 1/R0};

Ω0 := {(δ,aη)|θc− < 0 < 1− 1/R0 < θ
c
+},

and the rest. For parameter regions Ω− and Ω+, sufficiently large or small
θc does not cause the damped oscillation. In contrast, for Ω0, a damped
oscillation occurs whenever E++ exists.

For the other specific case with no social insensitivity, that is, with θc = 0,
we can get the following result too (Appendix A.9):

Corollary 2.4.4. For the system (13) with θc = 0, a damped oscillation occurs
when

(i) δ = 4(1− 1/R0) with R0 > 2 and aη > (R0 − 4)
2(R0 − 1)/{2R0(R0 −

2)} > 0;

(ii) 4(1 − 1/R0) < δ < min{R0, (R0 + 2)(1 − 1/R0)} with R0 > 2 and
0 < (aη)c− < aη < (aη)c+;

(iii) δ < 4(1− 1/R0) and aη > (aη)c+ > 0,

where

(aη)c± =
R0δ(R0 − 1− δ) + 2(R0 − 1){δ±

√
δ(R0 − 1)}

R0δ− 4(R0 − 1)
. (18)

With no social insensitivity, a damped oscillation is more likely to occur
for sufficiently small δ and sufficiently large aη. For a community in which
people persistently keep the response to the disease spread and such a
response can effectively work to reduce the infection risk, recurring outbreaks
of epidemic dynamics would be more likely to occur. If people easily lose
attention to the disease spread, recurring outbreaks would occur only if the
efficiency of such a response is in a certain range.
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With a social insensitivity, that is, with θc > 0, the damped oscillation
does not occur for sufficiently small aη, while it must occur for sufficiently
large aη, as already shown in Corollary 2.4.3. If the effect of social response is
persistent with sufficiently slow decay, recurring outbreaks occur only in the
community with a sufficiently weak insensitivity, that is, with a sufficiently
strong sensitivity for the disease spread.

As shown in Corollary 2.2.1 and in the early part of this section about
the aη-dependence of v∗, it is certain that people’s attention to disease and
attempt to prevent its further spread necessarily suppress the endemicity
to make the endemic size v∗ smaller: With the smaller δ or larger aη, the
endemic size v∗ becomes smaller. Hence the above-mentioned likeliness
of recurring outbreaks indicates that a damped oscillation in the temporal
variation in terms of the number of infectives would occur toward a relatively
low level of endemicity. Since we use the word ‘outbreaks’ here as repeating
peaks in the temporal variation about the number of infectives, someone may
think the above arguments counter-intuitive. However note that it is not the
case.

2.4 discussion

In this model, we focused on the relation of social response to the likeliness
of recurring outbreaks of a spreading disease in a community. For our SIS
model, recurring outbreaks may occur only when the system approaches an
endemic equilibrium at which the social response remains active. In another
endemic case where the social response disappears, the system approaches it
in a monotonic manner, that is, the temporal variation of infective population
size is monotonic around the endemic equilibrium.

Our model is based on the simplest SIS epidemic dynamics model. As
shown in Section 2.3.2, the model with a constant infection coefficient β does
not show any oscillatory behavior in the temporal variation of variables.
Our modeling is to introduce the effect of social response only on the
infection coefficient in the SIS model. Thus, the social response has an
effect to vary only the velocity of the state transition from susceptible to
infective. As a result of such our modeling, being seen with respect to the
closed two dimensional system (3), the temporally varying social response
can be regarded as a factor to lead to a temporal change of the intrinsic
growth rate in a modified logistic equation with the constant carrying
capacity N and the term of a proportional harvesting (qI), which is the
ordinary differential equation to govern the temporal change of I. From
this mathematical structure about our model, it has no sustained (non-
decaying) periodic oscillations, whereas this result implies a possibility of the
emergence of a sustained periodic oscillations in some similar models with
different assumptions for the epidemic dynamics (for example, see [14,18,61,100,116–120,128,129]).
As we have shown in our analysis on the model, the social response does not
alter the endemicity of spreading disease although it can certainly suppress
the endemic size. This is because it tends to fade out when the disease
becomes about to be eliminated, which we could expect for any human
community.

The social response could induce the recurring outbreaks in the epidemic
dynamics, while it can suppress the endemic size. The results on our model
implied that such recurring outbreaks hardly occur for a disease with
sufficiently low or sufficiently high transmissibility. Only for a disease which
has a certain intermediate range of transmissibility, such recurring outbreaks
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may occur, the community approaching an endemic equilibrium at which the
social response remains active. A community more sensitive to the disease
spread is more likely to have such recurring outbreaks. Moreover, if the
social response is more efficient to reduce the risk of infection, the recurring
outbreaks are more likely to occur. In contrast, the recurring outbreaks hardly
occur for the community much insensitive to the disease spread, while the
endemic/epidemic size would become large.

Depending on the characteristics of the community and the nature of the
transmissible disease, the social response could become a cause of recurring
outbreaks whilst it must suppress the prevalence. Since the nature of actual
social response for a disease spread must be one of interesting problems in
social sciences, such a possibility that it could be an important factor to cause
recurring outbreaks would become more important to our preparation for
the future epidemic outbreaks after our experience of the recent pandemic of
COVID-19.





3 T H E A C C E P TA N C E O F V I S I T O R S P R O M O T E S T H E
D I S E A S E S P R E A D ?

3.1 assumptions and modeling

3.1.1 Assumptions

We consider the spread of a transmissible disease during a short-term
period in time after the community starts to accept visitors from the outside,
satisfying the following assumptions on the epidemic dynamics:

[H1] The demographic change in the resident population is negligible in the
season.

[H2] The fatality of disease on the resident and visitor populations is
negligible in the season.

[H3] The community starts the acceptance of a number of temporal visitors
from the outside in the season after a transmissible disease has invaded
in it.

[H4] The entry flow of visitors is constant, that is, the net entry rate is
constant independently of time.

[H5] The exit of visitors from the community follows a constant per capita
exit rate.

[H6] No infected visitor is accepted by the community (i.e., the perfect
quarantine), so that every accepted visitor is susceptible or immune to
the disease at the entry into the community.

[H7] A given proportion of visitors is immune at the entry into the community.

[H8] Only the susceptible residents can get the vaccination to become
immune, and it is not available for any visitor staying in the community.

[H9] Every immune visitor or resident has a possibility to get reinfected (i.e.,
the imperfect or partial immunity) during its stay in the community.

[H10] Infected visitor has the same exit rate as the susceptible visitor, that is,
we neglect any influence of the infection on the visitor during the stay
in the community.

Assumption H1 indicates a time-independent constant size of resident
population during the season in which the epidemic dynamics is going on.
We then ignore the death due to the transmissible disease under consideration
in the epidemic dynamics too, as indicated by the assumption H2. Assumption
H3 indicates that the community accepts the visitors, even undergoing
the spread of a transmissible disease, since the fatality of the disease is
negligible with the assumption H2. No disease invasion with the visitors
is assumed, as indicated by the assumption H6. From the assumptions H4

18
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and H6, the community carries out the perfect regulation for the visitors at
the entry according the entry number and the quarantine. Assumption H5

mathematically means that the exit of a visitor from the community follows
the homogeneous Poisson process. In a model with ordinary differential
equations, it can be introduced with a constant exit rate per visitor. Assumption
H7 is to reflect the situation of public health out of the community, applying
the mean-field approximation for the proportion of immune visitors at the
entry.

Since we assume that the community undergoes the disease spread,
the assumption H8 gives the existence of a vaccination program for the
residents, while it is not applied to the visitors. However, since the disease is
reinfectious as assumed by the assumption H9, the immunity obtained by
the vaccination or the recovery of the infection works only to reduce the risk
of reinfection. Hence the state transition in terms of the disease follows the
susceptible–infective–recovered/immunized–infective (SIRI) structure in our
modeling, as used for example in [130–143].

Remark that the assumed reinfection is not caused by the waning or
loss of immunity, which must take a certain period after getting it by the
infection or vaccination. As already mentioned in the introduction section,
we assume instead the imperfectness of immunity obtained by the infection
or vaccination. Hence we do not introduce any specific period or time scale
to get reinfected after getting the immunity. Since the infection or vaccination
generates an immunity against the disease, the assumption H9 indicates
that the immunity is imperfect or partial against the infection, for example,
due to the multiplicity of pathogen types (e.g., mutated variants) [24,132].
Because the cross-immunity is well-known for such similar pathogens by the
antigen for a type of pathogen, the reinfection may be suppressed or fail to
cause an effective symptom to reproduce and discharge the pathogen to the
environment.

For a simplification, the assumption H10 indicates that the exit of visitor
is independent of whether the visitor is infected or not during the stay in
the community. This assumption would be appropriate when the expected
duration of the visitor is sufficiently shorter than the latent period, whereas it
may be less appropriate when it is long. As assumed by the assumption H2,
we consider a transmissible disease with little serious symptom, so that the
assumption H10 would be applicable for visitors infected by such a disease.
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3.1.2 Modeling

Generic model

With these assumptions given in the previous section, we shall consider the
following model of ordinary differential equations (Figure 7):

Dynamics for the visitor population:

dSv

dt
= (1− ρ)Λ−β

Ir + Iv
N+m

Sv − qSv;

dIv

dt
= β

Ir + Iv
N+m

Sv + εβ
Ir + Iv
N+m

Rv − γIv − qIv;

dRv

dt
= ρΛ+ γIv − εβ

Ir + Iv
N+m

Rv − qRv;

(19)

Dynamics for the resident population:

dSr

dt
= −β

Ir + Iv
N+m

Sr − σSr;

dIr

dt
= β

Ir + Iv
N+m

Sr + εβ
Ir + Iv
N+m

Rr − γIr;

dRr

dt
= σSr + γIr − εβ

Ir + Iv
N+m

Rr,

(20)

where Sv, Iv, and Rv are the subpopulation sizes of susceptible, infective, and
immune visitors respectively. Similarly Sr, Ir, and Rr are the corresponding
subpopulation sizes about the residents. The population sizes of residents
and visitors staying in the community are denoted by N = Sr + Ir + Rr and
m = Sv + Iv + Rv respectively. The resident population size N is constant
independently of time t, as seen from d(Sr + Ir + Rr)/dt = 0 for any t by
the system (20). From Assumption H3 in Section 3.1.1, the community starts
the acceptance of visitors from the outside in the considered season after a
transmissible disease has already invaded in it. The visitor population size m
could be reasonably assumed to be less than the population size of residents
N: m < N, whereas we shall not specifically assume so but consider the
mathematically general case of m in the subsequent sections without any
constraint except form > 0. On the other hand, as given in the following part,
we will take an assumption on the visitor population size m accompanying
with a confinement for the net entry rate of visitors Λ.

All parameters are positive. Parameter ρ is the proportion of immune
visitors at the entry (0 6 ρ 6 1). Proportion 1− ρ of visitors is susceptible at
the entry. Parameter q is the per capita exit rate of visitor. Thus the expected
duration of a visitor’s stay in the community is given by 1/q.

Parameter εβ is the reinfection coefficient for immune resident and
visitor, while β is the infection coefficient for susceptible ones. Then the
infection forces for the susceptible individual and the immune individual are
respectively given by β(Ir + Iv)/(N+m) and by εβ(Ir + Iv)/(N+m) for both
resident and visitor. Remark that, in the setup for our modeling, the visitors
do not form any specific subcommunity distinct from the resident population.
From Assumption H3, they are temporal visitors for tourism, business etc.
For this setup, we could assume that most of visitors are independent of
the others. Thus, for a mathematical simplification, the influence of their
movement on the epidemic dynamics is introduced in the epidemic dynamics
by the mean-field approximation. Further, although the visitors’ contribution
to the infection forces would be different from the residents’ one because
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Figure 7: Scheme of the model for the epidemic dynamics in a community accepting
temporal visitors, given by the system of (19) and (20).

of the difference in the mobility/behavioral pattern, the infection forces
have their same contributions in our modeling here. This modeling may
be regarded as an oversimplification, though we think that our modeling
would still worth being considered to get a cue for the discussion about the
influence of visitors on the epidemic dynamics within a community.

From Assumption H9 in Section 3.1.1, our modeling assumes that the
immunity is imperfect or partial against the infection. Because of the cross-
immunity by the obtained antigen, we reasonably assume that 0 6 ε 6
1 in our model, so that the reinfection coefficient εβ is not beyond the
coefficient for susceptible β. That is, the reinfection after the vaccination or
recovery from the disease generally has a smaller likelihood than that for
the susceptible. For the extremal case of ε = 1, the vaccination or recovery
does not work at all to reduce the risk of reinfection. For ε = 0, the recovery
and vaccination give the perfect immunity so that there is no likelihood
of reinfection. Thus the parameter ε means an index for the likelihood of
reinfection after the recovery or vaccination, so that it can be regarded as
an index for the risk of reinfection. Remark here again that the reinfection
in our modeling is assumed to be not due to the waning of immunity (like
for the SIRS models) but due to the imperfect immunity, and hence also the
vaccinated individual has a risk to get infected, as introduced by Assumption
H9.

Parameter γ is the recovery rate of an infective individual, and the
recovered individual gets immunity, which is however imperfect. Only the
susceptible residents can get the vaccination, with rate σ, and it is not
available for any visitor staying in the community. Since the vaccination is
imperfect from Assumption H9, it works to reduce the risk of infection but
is unable to protect the vaccinated individual from the infection.

Assumption for the visitor population size in the community

According to the dynamics for the visitor population (19), we have

dm

dt
= Λ− qm,

where m = m(t) := Sv(t) + Iv(t) +Rv(t) is the visitor population size at time
t, Λ the net entry rate of visitors, and q the per capita exit rate of visitor.
Now let us consider the stationary situation with respect to the temporal
change of visitor population size. This means that the number of visitors is
assumed to be stationary, which may be regarded as a consequence of the
regulation of their entry by the community, following the assumptions with
H4 and H6 given in Section 3.1.1. Therefore we mathematically assume the
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situation to satisfy that dm/dt = 0. Hence we put Λ = qm, and hereafter
treat the visitor population size m as a positive constant.

The initial condition

Following the assumption of the stationary visitor population size with
Λ = qm as given in the above, we have the following dynamics for the visitor
population at the disease-free state:

dSv

dt
= (1− ρ)qm− qSv;

dRv

dt
= ρqm− qRv,

where Rv means the subpopulation size of immune visitors when they enter
in the disease-free community. It can be easily found that this dynamics
results in an eventual approach to the equilibrium state such that (Sv,Rv)→
((1− ρ)m, ρm) as t → ∞ for any non-negative initial condition such that
Sv(0) > 0 and Rv(0) = m− Sv(0) > 0. For this reason, let us assume the
following initial condition for the epidemic dynamics with the model given
by the system of (19) and (20):

(Sv, Iv,Rv,Sr, Ir,Rr) =
(
(1− ρ)m, 0, ρm,Sr0, Ir0,Rr0

)
, (21)

where Sr0 + Ir0 + Rr0 = N (a positive constant) with Sr0 > 0, Ir0 > 0 and
Rr0 > 0. This initial condition defines the situation when the community
starts the acceptance of visitors from the outside, even under the existence
of disease in it. The setup of this initial condition as our modeling follows
Assumption H3 in Section 3.1.1.

3.2 basic reproduction number

For our model given by the system of (19) and (20), we can derive the
following formula of the basic reproduction number R0 (Appendix B.1):

R0 =
1

γ︸︷︷︸
the expected
duration of
infectivity.

×
[
β

N

N+m︸ ︷︷ ︸
the supremum of the
expected new cases
per unit time for the
resident.

+
{
β
(1− ρ)m

N+m
+ εβ

ρm

N+m

}
︸ ︷︷ ︸
the supremum of the expected new cases per
unit time for the visitor, given by the sum
of secondary infections for susceptible and
immune visitors.

]

= R00

{
1− (1− ε)ρ

µ

1+ µ

}
, (22)

where µ := m/N, and for a convenience in the following arguments, we
define R00 := β/γ, which is the basic reproduction number for the community
when no visitor comes in (i.e., m = 0). Note that this basic reproduction
number is fundamentally for the epidemic dynamics in the community after
it starts the acceptance of visitors.

From the formula (22), we can immediately find that the basic reproduction
number R0 is less than 1 independently of the nature of accepted visitors
if R00 < 1. Hence, if the disease fails its invasion in the community with
R00 < 1 before starting the acceptance of visitors, the number of infectives in
the community cannot turn to increase in the early period after the acceptance
of visitors starts. As we will see in the later sections of the analysis on our
model, this is valid only in the early period after the acceptance of visitors
starts.
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Figure 8: The dependence of the basic reproduction number R0 given by (22) on
parameters (1− ε)ρ and µ := m/N. Numerically drawn with R00 = 1.4.

As for the dependence of R0 on the nature of accepted visitors, we
note that R0 is monotonically decreasing in terms of µ when the visitors
contain some immune ones (i.e., ρ > 0). Moreover, R0 becomes smaller as
the proportion of immune visitors at the entry ρ gets larger. If any visitor is
susceptible, that is, when ρ = 0, there is no contribution of the visitors to the
basic reproduction number R0, that is, R0 = R00.

As an extremal case, if the immunity gained by the vaccination or recovery
from the disease does not work at all to reduce the risk of reinfection, that is,
if ε = 1, the basic reproduction number R0 is independent of the acceptance
of visitors. This is easily understandable, since the reinfection is regarded as
the same as the infection for the susceptible so that the immune individual is
regarded as equivalent to the susceptible according to the epidemic dynamics
when ε = 1. Such an extreme case may be regarded as corresponding to an
SIS type of the epidemic dynamics, where the state transition in terms of the
disease follows the susceptible–infective–susceptible structure.

As the other extremal case, if the immunity is perfectly effective to make
the immune individual unable to be reinfected, that is, if ε = 0, the entry
of immune visitors works to reduce the value of R0 for the community.
This extremal case may be regarded as corresponding to an SIR type of the
epidemic dynamics, where the state transition in terms of the disease follows
the susceptible–infective–removed structure.

From these arguments with the basic reproduction number R0 given by
(22), We can get the following result on the influence of the acceptance of
visitors at the early stage of the disease invasion in the community (Figure 8):

Theorem 3.1. The acceptance of visitors influences the basic reproduction number
R0 given by (22) for the epidemic dynamics with the system of (19) and (20) as
follows:

(i) The acceptance of visitors makes R0 smaller than R00 if and only if the
visitors contain some immune, and its decrease becomes bigger as the number
of accepted visitors gets larger;

(ii) When R00 > 1, if

ρ 6 ρ0∞ :=
1

1− ε

(
1−

1

R00

)
,

then R0 > 1 independently of the number of accepted visitors;

(iii) When R00 > 1, if and only if ρ > ρ0∞, the acceptance of visitors so many as

µ >
1− 1/R00

(1− ε)ρ− (1− 1/R00)
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makes R0 < 1.

The result (i) in Theorem 3.1 means that the acceptance of visitors does not
help the invasion success of a transmissible disease as long as R00 6 1, and
instead it could work to suppress the invasion if the community accepts a
sufficiently large number of visitors with a sufficiently large proportion of
immune, as indicated by the results (ii) and (iii).

Note that these arguments and result are about the effect of the acceptance
of visitors on the temporal change of the number of infectives only in the
early period after the community starts the acceptance of visitors. They
cannot be necessarily applied for its long-term temporal change. It may be
possible that the number of infectives turns to increase in a later period,
independently of what final state the epidemic dynamics approaches, as we
will actually see in the later sections of the analysis on our model.

3.3 mathematical results on the model

3.3.1 Non-dimensional transformation of the system

Since the population sizes of visitors and residents are assumed constant
independently of time, the above six dimensional system of (19) and (20) can
be mathematically reduced to the following closed four dimensional one,
making use of Sv + Iv + Rv = m and Sr + Ir + Rr = N:

dSv

dt
= (1− ρ)qm−β

Ir + Iv
N+m

Sv − qSv;

dIv

dt
= β

Ir + Iv
N+m

Sv + εβ
Ir + Iv
N+m

(m− Sv − Iv) − γIv − qIv;

dSr

dt
= −β

Ir + Iv
N+m

Sr − σSr;

dIr

dt
= β

Ir + Iv
N+m

Sr + εβ
Ir + Iv
N+m

(N− Sr − Ir) − γIr.

Now we apply the following transformation of variables and parameters for
this four dimensional system:

τ := γt; xv(t) :=
Sv(t)

m
; yv(t) :=

Iv(t)

m
; xr(t) :=

Sr(t)

N
; yr(t) :=

Ir(t)

N
;

µ :=
m

N
; c :=

q

γ
; ω :=

σ

γ
,

and then we can derive the following non-dimensinalized system:

dxv

dτ
= (1− ρ)c−R00

yr + µyv

1+ µ
xv − cxv;

dyv

dτ
= R00

yr + µyv

1+ µ
xv + εR00

yr + µyv

1+ µ
(1− xv − yv) − (1+ c)yv;

dxr

dτ
= −R00

yr + µyv

1+ µ
xr −ωxr;

dyr

dτ
= R00

yr + µyv

1+ µ
xr + εR00

yr + µyv

1+ µ
(1− xr − yr) − yr,

(23)

where R00 := β/γ as before. Remark that the symbol R00 is formally
introduced now as a dimensionless parameter for the non-dimensionalized
system given by (23), while its meaning is given in Section 3.2 as the basic



3.3 mathematical results on the model 25

reproduction number for the community when no visitor comes in. The
initial condition (21) now becomes

(xv(0),yv(0), xr(0),yr(0)) = (1− ρ, 0, xr0,yr0)

with xr0 := Sr0/N = 1− Ir0/N = 1− yr0. In the following sections, we shall
analyze the non-dimensionalized system (23) to investigate the nature of the
epidemic dynamics by our model with the system of (19) and (20).

3.3.2 Dynamics without reinfection

In this section, we consider the system without reinfection, that is, with ε = 0,
while we will consider our model only with ε > 0 in the subsequent sections.
For the system (23) with ε = 0, we can easily find that xr → 0 and yr → 0

as τ → ∞. In other words, since the epidemic dynamics for the resident
population is governed by an SIR model with the continuous vaccination for
the susceptibles, the disease eventually disappears in the resident population,
and the residents come to make no contribution to the epidemic dynamics.
This means that, for our model of (19) and (20) without reinfection, no endemic
state can be established as long as the community does not accept any visitor
from the outside. Thus we consider the case of µ > 0 hereafter in this section,
when the community accepts the visitors.

By the local stability analysis with the eigenvalues of Jacobi matrix at the
equilibrium, we can easily find that the endemic equilibrium E+0(x̃

∗
v, ỹ∗v, 0, 0)

with

x̃∗v =
(1+ c)(1+ µ)

R00µ
; ỹ∗v = c

(1− ρ
1+ c

−
1+ µ

R00µ

)
(24)

is locally asymptotically stable when it exists. Then we can get the following
theorem on the epidemic dynamics given by (23) with ε = 0 (Appendix B.2):

Theorem 3.2. For the system (23) with ε = 0, if and only if the condition

R00 >
1

1− ρ

(
1+

1

µ

)
(1+ c) (25)

is satisfied, the endemic equilibrium E+0(x̃
∗
v, ỹ∗v, 0, 0) with (24) uniquely exists, and

it is globally asymptotically stable. Otherwise, the disease-eliminated equilibrium
E00(1− ρ, 0, 0, 0) is globally asymptotically stable.

See Figure 9(a, b) for numerical examples.
From the basic reproduction number R0 given by (22) with ε = 0, we

can easily find that R0 > 1 if the condition (25) is satisfied, while the inverse
does not necessarily hold. Hence we can get the following result:

Corollary 3.2.1. Even when the disease successfully invades in the community
with R0 > 1, the disease without reinfection eventually gets eliminated unless the
condition (25) is satisfied.

When the condition (25) is unsatisfied with R0 > 1, the number of infectives
increases at the initial stage of disease spread in the community, and then
it eventually turns to decrease toward zero, as numerically exemplified in
Figure 9(a).

For ρ = 1, the condition (25) cannot be satisfied:
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(a) (b)

(c) (d)

Figure 9: Temporal variations by the system (23). Numerically drawn with (a)
(ε,µ, ρ) = (0.0, 0.2, 0.1) (R0 = 7.87); (b) (ε,µ, ρ) = (0.0, 0.5, 0.1)
(R0 = 7.73); (c) (ε,µ, ρ) = (0.1, 0.2, 0.1) (R0 = 7.88); (d) (ε,µ, ρ) =

(0.1, 0.5, 0.8) (R0 = 6.08); and commonly R00 = 8.0; c = 1.0; ω = 1.0;
(xv(0),yv(0), xr(0),yr(0)) = (1 − ρ, 0.0, 0.99, 0.01). In (a, d), the system
approaches the disease-eliminated equilibrium, and in (b, c), it approaches
the endemic equilibrium.

Corollary 3.2.2. If the community accepts only immune visitors, the epidemic
dynamics without reinfection necessarily approaches the disease-eliminated equilibrium.

Therefore, when the reinfection is impossible/negligible, the acceptance of
visitors with a high immune proportion at the entry does not cause the
endemicity of disease.

We must remark that the endemic equilibrium E+0 is sustained only
by the visitor subpopulation, while no resident contributes to the epidemic
dynamics at the equilibrium because all residents have eventually become
immune by the past infection or vaccination (Figure 9(a, b)). From Theorem 3.2,
for the disease with a sufficiently high infectivity, the acceptance of many
visitors with a sufficiently small immune proportion at the entry can cause
such an apparent endemicity in the community. Therefore, as seen in Figure 9(a,
b), when the community successfully controls and reduces the number of
visitors to make µ sufficiently small, or if the community suspends accepting
the visitors, the endemic state can be disrupted, and then the disease gets
eliminated in the community. However, as we will see in the subsequent
sections, if the disease is accompanied by a reinfectivity, this could not be
the case (Figure 9(c, d)).

3.3.3 Dynamics with no visitor

Next we consider the model of (19) and (20) with reinfection, that is, with
ε > 0, when the community does not accept any visitor from the outside.
Thus we analyze the following system derived from (23) with xv = yv ≡ 0
and µ = 0:

dxr

dτ
= −R00yrxr −ωxr;

dyr

dτ
= (1− ε)R00yrxr − εR00y

2
r −

(
1− εR00

)
yr.

(26)
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(a) (b) (c)

Figure 10: Application of the isocline method for the system with no visitor (26) when
(a) εR00 < 1; (b) εR00 = 1; (c) εR00 > 1.

As already mentioned in Section 3.2, tthe basic reproduction number for this
epidemic dynamics is defined as R0 = R00 = β/γ. It is easy to find that there
are two feasible equilibria for this system of (xr,yr): the disease-eliminated
equilibtium E0(0, 0) and the endemic equilibrium E+

(
0, 1− 1/(εR00)

)
. The

endemic equilibrium E+ exists when and only when εR00 > 1.
Making use of the local stability analysis for the equilibrium of the system

(26), we can easily find that the equilibrium E0 is locally asymptotically stable
if εR00 < 1, and unstable if εR00 > 1. The endemic equilibrium E+ is locally
asymptotically stable whenever it exists. Taking account of the result on the
local stability of equilibria, the isocline method for the two dimensional
system (26) can further give the following result (see Figure 10):

Theorem 3.3. For the system (26) with no visitor,

(i) if and only if εR00 6 1, the disease-eliminated equilibrium E0 is globally
asymptotically stable;

(ii) if and only if εR00 > 1, the endemic equilibrium E+ exists and is globally
asymptotically stable, while E0 is unstable.

This result was shown for a mathematically equivalent SIRI model in [131].
From this result, we find that, even with the basic reproduction number

R00 > 1, the community approaches the disease-eliminated equilibrium
E0 if R00 6 1/ε with 0 < ε < 1. In such a case, the number of infectives
increases at the initial stage of disease spread in the community, and then it
eventually turns to decrease toward zero. If and only if the basic reproduction
number is sufficiently large as R00 > 1/ε, the disease becomes endemic in
the community.

As shown in the previous section, no endemicity arises in the community
with a non-reinfectious disease when no visitor is accepted. Now the result
obtained in this section indicates that the endemicity of a disease can arise in
the community even with no visitor if the disease has both sufficiently high
infectivity (R00 > 1) and sufficiently high reinfectivity (ε > 1/R00).

3.3.4 Dynamics with visitors

Disease-eliminated equilibrium

For the system (23) with visitors, we can get the following result on the local
stability of the disease-eliminated equilibrium E00(1−ρ, 0, 0, 0) (Appendix B.3):

Theorem 3.4. The disease-eliminated equilibrium E00 is unstable if

εR00 > G(µ, ρ) :=
[{ 1
ε
(1− ρ) + ρ

} 1

1+ c

µ

1+ µ
+

1

1+ µ

]−1
, (27)
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while it is locally asymptotically stable if the inverse inequality of (27) is satisfied.

It can be easily seen that the condition (27) becomes equivalent to (25) as
ε→ 0. This shows a mathematical consistency of Theorem 3.4 to Theorem 3.2.

Moreover we can prove the following result about the relation of the basic
reproduction number R0 defined by (22) to the condition (27) (Appendix B.4):

Corollary 3.4.1. When R0 6 1, the disease-eliminated equilibrium E00 is locally
asymptotically stable.

This result is consistent with the biological/epidemiological meaning of the
basic reproduction number with respect to the invasion success of a disease
in a population, which was described in Section 3.2 and references therein.
Under the condition that R0 < 1 at the initial stage of a disease invasion
in a population, the number of infectives is expected to decrease toward
the disease elimination. In a sense of epidemic dynamics, such a decline of
the infective subpopulation toward the elimination must follow the locally
asymptotic stability of the disease-free equilibrium (as referred in most
literatures), which corresponds here to the disease-eliminated equilibrium
E00. The result of Corollary 3.4.1 shows this consistency.

Endemic equilibrium

From the equations of (23), if the endemic equilibrium E++(x
∗
v,y∗v, x∗r ,y∗r )

with y∗v > 0 and y∗r > 0 exists for ρ < 1, it must satisfy that

R00
y∗r + µy∗v
1+ µ

= c
1− ρ− x∗v

x∗v
,

y∗v =
1− ρ− x∗v

x∗v

(1− ε)x∗v + ε

1+ 1/c+ ε(1− ρ− x∗v)/x
∗
v

,

y∗r =
1− ρ− x∗v

x∗v

ε

1/c+ ε(1− ρ− x∗v)/x
∗
v

,

(28)

and x∗r = 0. In contrast, at the endemic equilibrium E++ for ρ = 1, we have

εR00
y∗r + µy∗v
1+ µ

(1− y∗v) − (1+ c)y∗v = 0,

εR00
y∗r + µy∗v
1+ µ

(1− y∗r ) − y
∗
r = 0,

(29)

and x∗v = 0, x∗r = 0, instead of (28). We can obtain the following result on the
existence of E++ (Appendix B.5):

Theorem 3.5. The endemic equilibrium E++ uniquely exists if and only if the
condition (27) is satisfied.

Hence, when the disease-eliminated equilibrium E00 is locally asymptotically
stable, the endemic equilibrium E++ does not exist, and when E00 is unstable,
E++ uniquely exists.

For the local stability of the endemic equilibrium E++ for (23), we can
get the following result:

Theorem 3.6. When the endemic equilibrium E++ exists, it is locally asymptotically
stable.

This theorem can be proved by the eigenvalue analysis on the Jacobi matrix
for (23) at the endemic equilibrium E++, applying the Routh-Hurwitz



3.3 mathematical results on the model 29

criterion (Appendix B.6). Although we could not get any analytical result
on the global stability of the endemic equilibrium E++, our numerical
calculations imply that it is globally asymptotically stable when it exists.
We then have the mathematical consistency of Theorems 3.4, 3.5, and 3.6 to
Theorem 3.2 as for the case with no reinfection, ε = 0.

3.3.5 Influence of the acceptance of visitors

Shift in endemicity

First we can easily find the following features of G(µ, ρ) defined in (27):

• G(0, ρ) = 1.

• G(µ, ρ) is monotonically increasing in terms of ρ for any µ > 0.

• G(µ, ρ) is


monotonically increasing in terms of µ if ρ > ρs := 1−

c

1/ε− 1
;

constant (≡ 1) independently of µ if ρ = ρs;

monotonically decreasing in terms of µ if ρ < ρs.

• G(µ, ρ) < 1 for any positive µ and ρ < ρs if and only if ε < 1/(1+ c).

• G(µ, 0) is



monotonically increasing in terms of µ if ρs < 0, that is, ε >
1

1+ c
;

constant (≡ 1) independently of µ if ρs = 0, that is, ε =
1

1+ c
;

monotonically decreasing in terms of µ if ρs > 0, that is, ε <
1

1+ c
.

• G(µ, 0)


> 1 for any µ > 0 and ε >

1

1+ c
;

> 1 for any µ > 0 and ε <
1

1+ c
.

• inf
µ∈(0,∞)

G(µ, ρ) =


G(0, ρ) = 1 for ε >

1

1+ c
;

lim
µ→∞G(µ, ρ) = G∞(ρ) := 1+ c

(1− ρ)/ε+ ρ
< 1 for ε <

1

1+ c
.

• sup
µ∈(0,∞)

G(µ, ρ) =

 G∞(ρ) > 1 for ρ > ρs;

G(0, ρ) = 1 for ρ < ρs.

• inf
(0,∞)×(0,1)

G(µ, ρ) =


G(0, 0) = 1 for ε >

1

1+ c
;

lim
µ→∞G(µ, 0) = ε(1+ c) < 1 for ε <

1

1+ c
.

• sup
(0,∞)×(0,1)

G(µ, ρ) = lim
µ→∞G(µ, 1) = 1+ c.

Then from these mathematical features of G(ρ,µ), and Theorems 3.4, 3.5,
and 3.6, we can get the following result on the disease endemicity in the
community accepting the visitors (see Figures 11 and 12):
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(a) (b) (c)

endemic
endemic

endemic

disease-eliminated disease-eliminated disease-eliminated

Figure 11: Parameter region and boundary indicated by the condition (27). The
boundary curve is given by G(µ, ρ). (a) ε < 1/(1+ c); (b) ε = 1/(1+ c);
(c) ε > 1/(1+ c). Numerically drawn with (a) ε = 0.10; (b) ε = 0.25; (c)
ε = 0.40, commonly for c = 3.0. Solid curves are for µ = 0.25, 0.5, 0.75, 1.0
in each figure. Dotted curve indicates G∞(ρ).

endemic

disease-eliminated

endemic

disease-eliminated

endemic

disease-eliminated

(a) (b) (c)

Figure 12: (ε, R00)-dependence of the endemicity, derived from the condition (30) in
Theorem 3.7. Numerically drawn for (a) ρ = 0.0; (b) ρ = 0.6; (c) ρ = 1.0,
commonly with c = 1.0. For the region Ω+, the acceptance of visitors may
change the endemic situation of the community for the disease-eliminated
equilibrium as described in Theorem 3.8, while, for the region Ω−, it may
drive the situation of the community approaching the disease-eliminated
equilibrium toward the endemic equilibrium as described in Theorem 3.9.
For the region out of Ω− and Ω+, the endemicity is independent of
whether the community accepts visitors or not.

Theorem 3.7. Independently of whether the community accepts the visitors or not,
it necessarily approaches an endemic equilibrium if εR00 > max

[
1, G∞(ρ)],

while it necessarily approaches the disease-eliminated equilibrium if εR00 6
min

[
G∞(ρ), 1], where

G∞(ρ) := lim
µ→∞G(µ, ρ) =

1+ c

(1− ρ)/ε+ ρ
.

Only when

min
[
G∞(ρ), 1] < εR00 < max

[
1, G∞(ρ)], (30)

the endemicity could significantly depend on the acceptance of visitors.

The inequality (30) gives a necessary condition for which the acceptance
of visitors could change the epidemic situation in the community from the
endemic equilibrium to the disease-eliminated equilibrium or vice versa. The
corresponding parameter regions are shown as Ω− and Ω+ in Figure 11.
Numerical examples of such a change of endemicity by the acceptance of
visitors are given in Figure 13(a, c).

Further from the monotonicity of G(µ, ρ) in terms of µ and ρ as described
in the above, we find the following result on the condition with respect to the
influence of the acceptance of visitors on the endemicity in the community:
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(a) (b) (c)

Figure 13: Temporal variations of infective subpopulations yr and yv by the systems
(23) and (26). Numerically drawn for the model (26) until τ = 40 until
τ = 40 and model (23) for τ > 40, with (a) (ε,µ, ρ) = (0.2, 0.9, 0.3) (R0 =

3.55; εR00 = 0.8); (b) (ε,µ, ρ) = (0.3, 0.9, 0.3) (R0 = 3.60; εR00 = 1.2); (c)
(ε,µ, ρ) = (0.3, 0.9, 0.9) (R0 = 2.81; εR00 = 1.2); and commonly R00 = 4.0;
c = 1.0; ω = 1.0; (xr(0),yr(0)) = (0.99, 0.01); (xv(40),yv(40)) = (1− ρ, 0.0).
In (a) and (c), the endemicity is changed before and after starting the
acceptance of visitors, while in (b) the system remains at an endemic state
before and after it.

Corollary 3.7.1. Independently of whether the community accepts the visitors or
not, it necessarily approaches an endemic equilibrium if

εR00 > sup
(0,∞)×(0,1)

G(µ, ρ) = 1+ c,

while it necessarily approaches the disease-eliminated equilibrium if

εR00 6 inf
(0,∞)×(0,1)

G(µ, ρ) = min
[
1, ε(1+ c)

]
.

Only when

min
[
1, ε(1+ c)

]
< εR00 < 1+ c, (31)

the endemicity could significantly depend on the acceptance of visitors.

As seen in Figures 11 and 12, such an influence to cause a change of
endemicity depends on the nature of accepted visitors (i.e., the number,
the immune proportion, and the duration of stay).

Moreover, from the features of G(µ, ρ) described in the above, we find
that, if εR00 > G∞(ρ) > 1, the disease is endemic independently of how
many visitors the community accepts even under the condition (31), as seen
in Figure 11. Thus, in comparison to the result for the community with no
visitor (i.e., µ = 0) given by Theorem 3.3, we can get the following result (see
Figure 12):

Theorem 3.8. Suppose that the disease was endemic under the condition that
1 < εR00 < 1+ c before the community accepts visitors. If the community accepts
visitors with an immune proportion

ρ 6 ρ∞ :=
1

1− ε

(
1−

1+ c

R00

)
, (32)

the disease remains endemic independently of how many visitors are accepted. If the
community accepts visitors with an immune proportion ρ > ρ∞, then the acceptance
of visitors so many as

µ > µc :=
1− 1/(εR00)

1/(εR00) − {(1− ρ)/ε+ ρ}/(1+ c)
(33)
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Figure 14: (ρ,µ)-dependence of the endemicity, derived from the condition (27) with
the results given by Theorems 3.4, 3.5, and 3.6: (a, b) ε < 1/(1 + c);
(c) ε > 1/(1 + c). Numerically drawn for (a) (R00, ε, c) = (4.0, 0.2, 1.0)
(εR00 = 0.8); (b) (R00, ε, c) = (4.0, 0.3, 1.0) (εR00 = 1.2); (c) (R00, ε, c) =
(1.8, 0.8, 1.0) (εR00 = 1.44), each of which satisfies the condition (31) in
Corollary 3.7.1.

makes the community approach the disease-eliminated equilibrium. Even if ρ > ρ∞,
the acceptance of visitors with µ 6 µc does not sufficiently shift the endemicity, and
the disease remains endemic.

The critical value ρ∞ satisfies the equation εR00 = G∞(ρ∞). The latter
case of ρ > ρ∞ in Theorem 3.8 corresponds to the parameter region Ω+ in
Figure 12. Figure 14(b) shows a numerical example of the (ρ,µ)-dependence
in such a case when εR00 > 1.

Since µc defined by (33) is monotonically decreasing in terms of ρ when
εR00 > 1, we note that

µc > µc
∣∣
ρ=1

= µc1 :=
1− 1/(εR00)

1/(εR00) − 1/(1+ c)
, (34)

where µc1 > 0 for 1 < εR00 < 1+ c. Hence we get the following corollary:

Corollary 3.8.1. When 1 < εR00 < 1+ c, if the community accepts visitors few
enough to have µ < µc1, the disease remains endemic independently of how much
proportion of visitors is immune at the entry.

This result is numerically pointed out in Figure 14(b, c).
Moreover we note that, when ρ∞ defined by (32) is negative, that is,

when R00 < 1+ c, the first case in Theorem 3.8 does not occur. Then the
(ρ,µ)-dependence becomes as shown by Figure 14(c), where there is a finite
value of µ beyond which the community approaches the disease-eliminated
equilibrium, independently of the immune proportion in the visitors at the
entry:

µc0 := µc
∣∣
ρ=0

=
1− 1/(εR00)

1/(εR00) − 1/{ε(1+ c)}
. (35)

Corollary 3.8.2. When 1 < εR00 < ε(1+ c), if the community accepts visitors so
many as µ > µc0, the disease goes eliminated independently of how much proportion
of visitors is immune at the moment of their immigration. When ε(1+ c) 6 εR00 <
1+ c, only the acceptance of visitors with ρ > ρ∞ and µ > µc can change the
endemicity and lead the community to the disease-eliminated equilibrium.

Hence the value µc0 gives a sufficient number of accepted visitors which
is effective to suppress the spread of disease in the community when 1 <
εR00 < ε(1+ c). See the numerical examples in Figure 13(b, c).
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Figure 15: Parameter region and boundary indicated by the condition (27) with the
results given by Theorems 3.4, 3.5, and 3.6 when the community accepts
only immune visitors with ρ = 1. Numerically drawn with R00 = 4.0 and
c = 1.0.

In contrast, when the risk of reinfection is so weak as ε < 1/(1 + c),
the acceptance of visitors may cause the inverse influence on the epidemic
dynamics, as numerically indicated by Figure 14(a):

Theorem 3.9. Suppose that the disease was getting eliminated under the condition
that ε(1+ c) < εR00 < 1 before the community accepts visitors. If the community
accepts visitors with an immune proportion ρ > ρ∞, the disease keeps getting
eliminated independently of how many visitors are accepted. If the community
accepts visitors with an immune proportion ρ < ρ∞, then the acceptance of visitors
so many as µ > µc induces the endemicity, and the disease becomes endemic. Even if
ρ < ρ∞, the acceptance of visitors so few as µ 6 µc does not induce the endemicity,
and the disease keeps getting eliminated.

The situation considered in this theorem corresponds to the parameter region
Ω− in Figure 12, and is numerically exemplified by Figure 13(a). Theorem 3.9
indicates that, if the proportion of immune visitors is so low as ρ < ρ∞, there
exists the upper threshold µc for the number of accepted visitors to suppress
the revival of the disease spread after starting the acceptance of visitors in
the community where the disease was getting eliminated.

Acceptance of only immune visitors

When the community accepts only immune visitors, that is, when µ > 0 with
ρ = 1, G(µ, 1) is necessarily greater than 1 and monotonically increasing in
terms of µ. Then, from Theorem 3.8, we can find that only the acceptance of
visitors so many as µ > µc1 can induce the disease-eliminated equilibrium in
the community where the disease was endemic before starting the acceptance
of visitors. As defined by (34), the critical value µc1 depends on the risk of
reinfection, and then, from Theorems 3.7 and 3.8, we can find the following
result (see Figures 14 and 15):

Corollary 3.8.3. Suppose that the disease was endemic under the condition that
εR00 > 1 before the community accepts only immune visitors. If εR00 > 1+ c,
the endemicity remains independently of how many visitors the community accepts.
If 1 < εR00 < 1+ c, the acceptance of visitors so many as µ > µc1 is effective to
make the disease eliminated.

Therefore the community under an endemic situation could have a preferable
influence to suppress the endemicity by accepting only immune visitors only
when the reinfectivity is sufficiently low as indicated by Figure 15.

If the community was approaching the disease-eliminated equilibrium
with the risk of reinfection so low as εR00 6 1, the community keeps
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Figure 16: Parameter region and boundary indicated by the condition the condition
(27) with the results given by Theorems 3.4, 3.5, and 3.6 when all visitors
accepted by the community is susceptible with ρ = 0: (a) R00 > 1+ c;
(b) R00 = 1+ c; (c) R00 < 1+ c. Numerically drawn with (a) c = 1.0; (b)
c = 3.0; (c) c = 5.0, and commonly R00 = 4.0.

approaching the disease-eliminated equilibrium even after starting the acceptance
of only immune visitors, independently of how many visitors the community
accepts.

Acceptance of only susceptible visitors

Now let us consider the case where all visitors accepted by the community
are susceptible, that is, when µ > 0 with ρ = 0. Then, from Theorem 3.9,
we find three different cases according to the influence of the acceptance of
visitors as shown in Figure 16, taking account of the features of G(µ, 0) given
at the beginning of this section. For this case, we can get the following result:

Corollary 3.9.1. When the disease was getting eliminated under the condition that
εR00 6 1, the acceptance of only susceptible visitors induces

no endemicity if εR00 6 ε(1+ c);

no endemicity if εR00 > ε(1+ c) and µ 6 µc0;

the endemicity if εR00 > ε(1+ c) and µ > µc0.

In contrast, when the disease was endemic under the condition that εR00 > 1, the
acceptance of only susceptible visitors induces

no change in the endemicity if εR00 > ε(1+ c);

no change in the endemicity if εR00 < ε(1+ c) and µ 6 µc0;

the elimination of disease if εR00 < ε(1+ c) and µ > µc0.

The critical value µc0 is defined by (35).
Therefore the acceptance of only susceptible visitors could have the

counter effect according to the endemicity, depending on the infectivity of
disease. Only for a moderately high infectious disease such that 1/ε < R00 <
1+ c, the acceptance of only susceptible visitors so many as µ > µc0 can
lead the community to the disease-eliminated equilibrium. For the disease
with a low reinfectivity such that 1 + c < R00 6 1/ε, the acceptance of
only susceptible visitors so many as µ > µc0 can lead the community to the
endemic equilibrium.

Further, as indicated by Figure 16, we find that there is a sufficient value
of µ which determines the epidemic situation in the community:
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(a) (b)

(c) (d)

Figure 17: The µ-dependence of endemic sizes. Numerically drawn by (28) with (a)
(ε, ρ) = (0.2, 0.4) (εR00 = 0.8, µc = 0.56); (b) (ε, ρ) = (0.25, 0.4) (εR00 =

1.0, µc = 0.0, ρc = 0.67), (c) (ε, ρ) = (0.3, 0.1) (εR00 = 1.2, µc < 0,
ρc = 0.40), (d) (ε, ρ) = (0.3, 0.8) (εR00 = 1.2, µc = 1.67, ρc = 0.40), and
commonly R00 = 4.0; c = 1.0.

Corollary 3.9.2. If R00 > 1+ c, the acceptance of only susceptible visitors so many
as

µ >
1+ c

R00 − (1+ c)

necessarily makes the disease endemic. In contrast, if R00 < 1+ c, the acceptance of
only susceptible visitors so many as

µ >
(R00 − 1)(1+ c)

(1+ c) −R00

necessarily makes the disease eliminated.

The former case means an unpreferable influence of the sufficiently large
number of visitors for the community with the spread of a highly infectious
disease, while the latter does a preferable influence for the community with
the spread of a moderately infectious disease.

Change in endemic size

Figure 17 shows the numerically drawn µ-dependence of endemic sizes
y∗r and y∗v at the endemic equilibrium given by (28). As the figure implies,
the endemic size necessarily has a monotonic dependence on the number
of accepted visitors, represented now by µ, about which we can get the
following analytical result (Appendix B.7):

Theorem 3.10. The endemic sizes y∗r , y∗v, and the total endemic size

z∗ :=
y∗r + µy∗v
1+ µ

=
I∗r + I∗v
N+m

(36)

are monotonically increasing in terms of µ if and only if εR00 6 1 or
εR00 > 1;

ρ < ρc :=
1− ε2R00 − εc

(1− ε)εR00
.

(37)



36 the acceptance of visitors promotes the disease spread?

(a) (b) (c)

d
is
e
a
s
e
-
e
li
m
in
a
te
d

d
is
e
a
s
e
-
e
li
m
in
a
te
d

disease-eliminated

Figure 18: (ρ,µ)-dependence of the endemic size y∗r . Numerically drawn contour
maps for three cases correspond to those in Figure 14: (a) εR00 = 0.8; (b)
εR00 = 1.2 and ρc = 0.40; (c) εR00 = 1.44 and ρc = −3.31, where the
parameter values are respectively the same as in Figure 14.

It can be easily found that ρc < 1 when εR00 > 1. See the numerically drawn
(ρ,µ)-dependence of the endemic size y∗r in Figure 18.

We remark that, as shown in this section, the endemic equilibrium for
ρ = 1 exists only when εR00 > 1. Then we can find the following result too
(Appendix B.8):

Corollary 3.10.1. When the community accepts only immune visitors (i.e., ρ = 1),
the endemic size is monotonically decreasing in terms of µ.

This result could be regarded as included in Theorem 3.10 because any
condition given in Theorem 3.10 cannot be applicable when ρ = 1. We can
see the numerical examples in Figure 18(b, c).

When ρc defined by (37) is non-positive with εR00 > 1, any ρ cannot
be smaller than ρc, so that the endemic size is necessarily monotonically
decreasing in terms of µ:

Corollary 3.10.2. If εR00 > max
[
1, 1/ε− c

]
, the endemic size is necessarily

monotonically decreasing in terms of µ.

The numerical example of Figure 18(c) illustrates the case.
For the critical case of ρ = ρc > 0 with εR00 > 1, we can derive the

explicit values at the endemic equilibrium E00 from (28) (Appendix B.7):

x∗v =
c

(1− ε)R00
; y∗v = y∗r = z∗ = 1−

1

εR00
. (38)

Hence the endemic sizes are independent of the number of accepted visitors
in this case:

Corollary 3.10.3. For ρ = ρc > 0 with εR00 > 1, the endemic sizes y∗r , y∗v, and
the total endemic size z∗ are determined independently of µ.

A numerical example is given in Figure 18(b). We note it necessary for ρc > 0
with εR00 > 1 that 1/ε− c > 1, that is, ε(1+ c) < 1. Moreover the case of
Corollary 3.10.3 can appear only when 1 < εR00 < 1/ε− c.

Additionally we can find the following relations among the specific values
ρs, ρ∞, and ρc for the immune proportion of accepted visitors at the entry:

Corollary 3.10.4. It holds that ρc < ρ∞ and ρc < ρs.

The proof is easy by calculating the differences ρ∞ − ρc and ρs − ρc and
showing them positive. Numerical calculation of Figure 18(b) demonstrates
this result.
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Figure 19: Classification of the parameter region of (ε, ρ) according to the µ-
dependence of the change in the endemic size. Numerically drawn with
R00 = 4.0 and c = 1.0. Regions Ω± correspond to those in Figure 12.

Consequently, as indicated by Figure 19, the larger number of accepted
visitors makes the endemic size bigger only when the immune proportion
of accepted visitors at the entry is sufficiently small under the epidemic
situation with a sufficiently low risk of infection.

3.4 discussion

The results of our model imply that the acceptance of temporal visitors from
the outside may induce a significant change of the epidemic state in the
community. Contrary to an intuitive expectation, the acceptance of visitors
does not necessarily make the epidemic situation worse in the community.
Only when the reinfectivity of the disease is sufficiently weak, the acceptance
of visitors may induce the endemicity if the community accepts the visitors
only with a sufficiently low immune proportion. Furthermore, when the
reinfectivity is high, the acceptance of a sufficiently large number of visitors
may induce the elimination of the disease if the community can regulate to
accept the visitors with a sufficiently high immune proportion.

The visitors certainly play a role of recruitment of hosts for the disease
spread in the community. The visitors with a higher susceptible proportion
could be regarded as a larger supply of highly susceptible individuals in the
community, and they provide a fast recruitment of new infectives. In contrast,
the visitors with a high immune proportion cause only a slow recruitment
of new infectives with the reinfection. For these reasons, the influence of
the visitor acceptance on the epidemic dynamics with a reinfectious disease
must depend on the immune proportion in the visitors at the entry. On
the other hand, the entry of many visitors could induce a dilution of the
infective density in the community at the same time, which is regarded as an
advantageous influence of the visitor acceptance against the disease spread.
In the epidemic dynamics with our model, a balance of these counteractive
factors of the visitor acceptance with respect to the disease spread could
significantly affect the consequence of epidemic dynamics in the community.

As a result, a preferable acceptance of visitors must be regulated to have
a sufficiently large immune proportion according to the public health in the
community. In this sense, the best policy for the visitor acceptance would
be to allow the entry only for the immune visitors. From the results on our
model, such an acceptance of only immune visitors may lower the endemic
size, and further suppress the endemicity to induce the elimination of the
disease spread in the community.

In contrast, when the community was on the way to the disease-eliminated
equilibrium before starting the acceptance of visitors, the acceptance of
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visitors without any epidemiological regulation may cause the revival of
the disease spread in the community. Such a case would occur by reduced
cautiousness of the disease before starting the acceptance of visitors, which
is caused by the reason that the number of infective residents became rather
small in comparison to that at the outbreak.

Our model could be regarded as a consideration on the epidemic dynamics
in a season. In this sense, the number of visitors may be beyond the number
of residents in the community (i.e., µ > 1), as some popular touristic local
places like Venice in the vacation season, or a certain place attracting visitors
like a newly found gold mine. As another example, we could consider a
community accepting many evacuees from a certain calamity. Even though
the number of visitors would be smaller than the number of residents in
most cases (i.e., µ < 1), our results imply that the influence of the visitor
acceptance could depend on the infectivity and reinfectivity in the epidemic
dynamics, and the regulation on the epidemiological nature of accepted
visitors.

Since the infectivity and reinfectivity are not only determined by the
nature of disease itself but also by social custom, the sanitary condition,
and the people’s behavior [57–59,144–148], the influence of the visitor acceptance
could depend also on social factors in the community which accepts the
visitors under the epidemic dynamics. Such social factors could be affected
by the situation of disease spread during the epidemic dynamics in the
community. For example, some strategic/non-strategic transmission of information
about the disease spread or a public health campaign to prevent the further
disease spread could alter people’s social behavior, and subsequently the risk
of infection/reinfection. Hence if the infectivity and reinfectivity would be
changeable in the epidemic dynamics, the influence of the visitor acceptance
would be qualitatively changed.

The results from our model imply such a possibility that a shift of the
infectivity and/or reinfectivity to the weaker would induce an epidemic
situation in which the acceptance of visitors causes the increase in the
epidemic size or the revival of disease spread even with the endemicity. If
so, there would be repetitive revivals of disease spread in the community,
driven by a temporal shift of the infectivity and/or reinfectivity which could
bring a feedback influence on the policy to control the disease spread in
the community. Such theoretical/mathematical researches on the relation
between the disease spread and the nature of hosts are interesting and require
further development.
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4.1 assumptions and modeling

4.1.1 Assumptions

The strains from the same species or different species interact with competition.
They compete not only for the host population by infecting as many healthy
individuals as possible, but also for the growth-limiting resources within
the host individual [149–151]. For example, they compete for the healthy cells,
which could be one of the identical resources within the host individual,
and only one strain can persist. We consider the superinfection as one
of the results of strains competition within the host individual. For our
mathematical modeling, we set up the following assumptions:

• Strains compete for the host population. We assume that the infection
force of infectives with strain k for the healthy individuals is given by
βkIk.

• Strains compete for the resources within a host following a strict
hierarchy order of competitive dominance.

• Superinfection occurs when a more dominant strain j takes over a host
infected by a less dominant strain k. For the infectives who hold strain
k, we assume that the infection force of infectives Ij with strain j is
given by εjkβjIj under the possibility εjk.

• The quarantine efficiency is determined by the detectability of strain.

• The recovered individual gets immunity lasting in the epidemic season
under consideration.

• The influence of disease in demographic change is negligible in the
time scale of considered epidemic dynamics.

Although there are some studies have shown that the more virulent strains
of rodent malaria, the more competitive advantage within the hosts [152],
there is no necessary relationship between the competitive dominance, the
transmissibility, and the virulence [153,154]. We shall focus on the distribution
of detectability and consider that the transmissibility and the possibility of
superinfection are independent of strains (i.e., bk = b and εjk = ε for all k
and j < k).

39
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Susceptible class

Infectives class
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Recovered class

Susceptible class

Figure 20: The state transition in the epidemic dynamics of our model. S, Ik, Qk,
and R (k = 1, 2, . . . ,n) are population densities of susceptibles, infectives
who hold strain k as the strain of the highest dominance, corresponding
isolated and recovered individuals respectively, where 1 6 i < j < k.

4.1.2 Modeling

With the assumptions in Section 4.1.1, our model is given by the following
system of ordinary differential equations (Figure 20):

dS

dt
= µN−

n∑
k=1

βIkS− µS;

dI1
dt

= βI1S+
n∑
k=2

εβI1Ik − σ1I1 − ρ1I1 − µI1;

dIj

dt
= βIjS+

n∑
k=j+1

εβIkIj −
j−1∑
k=1

εβIjIk

−σjIj − ρjIj − µIj (1 < j < n);

dIn

dt
= βInS−

n−1∑
k=1

εβIkIn − σnIn − ρnIn − µIn;

dQk
dt

= σkIk −αkQk − µQk (k = 1, 2, . . . ,n);

dR

dt
=

n∑
k=1

ρkIk +
n∑
k=1

αkQk − µR,

(39)

where S, Ik,Qk, and R are population densities of susceptibles, infectives who
hold strain k, corresponding isolated and recovered individuals respectively,

The total population size is denoted by N = S+
n∑
k=1

Ik +
n∑
k=1

Qk + R. βIk

gives the infection force of strain k for the susceptible with the coefficient
β, and εβIj gives that for the infective with strain j of the lower dominance.
Parameter σk is the quarantine rate for the infective who holds strain k,
which reflects the detectability of strain k. Parameters αk and ρk are the
recovery rates for the infective with strain k under and out of the isolation,
respectively. µ is the natural death rate.

4.2 basic reproduction number

To derive the basic reproduction number for the model (39), we use the
next-generation method. The model (39) has the disease-free equilibrium
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E0 = (N, 0, . . . , 0). We can derive the next-generation matrix G = FV−1,
where F and G are diagonal matrices given by

F = diag(βN,βN, · · · ,βN);

V = diag(σ1 + ρ1 + µ,σ2 + ρ2 + µ, · · · ,σn + ρn + µ).

Thus we have

FV−1 = diag(R0,1, R0,2, · · · , R0,n),

where

R0,k :=
βN

σk + ρk + µ
(k = 1, 2, · · · ,n). (40)

The basic reproduction number for the system (39) mathematically given by

R0 = max{R0,1, R0,2, · · · , R0,n}.

The basic reproduction number R0 for the system (39) is given by the
maximum of the expected number of new cases. This R0 is meaningful only
if we consider all strains are included in the initial stage with 0 < Ik(0)� 1

(k = 1, 2, . . . ,n). The number of new cases infected by per infective individual
is defined for each strain, which is given by R0,k (k = 1, 2, . . . ,n). At the
initial stage, if the initial invasion includes only strain k, we have dIk(t)/dt >
0 with Ik(0) > 0, Ik(0)� 1, and Ij(0) = 0 (j 6= k). In such a case, we have the
basic reproduction number given by R0,k. Let us call R0,k the strain-specific
basic reproduction number.

For the mathematical convenience, we define a set Ω := {k | R0,k > 1},
which represents the strain with R0,k > 1. The set Ω is empty when R0 6 1.

4.3 mathematical results on the model

4.3.1 Non-dimensionalization

We apply the following parameter transformation to non-dimensionalize the
model (39) (k = 1, 2, · · · ,n):

τ := µt; u :=
S

N
; vk :=

Ik
N

; qk :=
Qk
N

; w :=
R

N
;

b :=
βN

µ
; γk :=

σk
µ

; ak :=
αk
µ

; ηk :=
ρk
µ

,
(41)

then our model can be rewritten as:
du

dτ
= 1− b

( n∑
k=1

vk

)
u− u;

dv1
dτ

= bv1u+ εb
( n∑
k=2

vk

)
v1 − (1+ γ1 + η1)v1;

dvj

dτ
= bvju+ εb

( n∑
k=j+1

vk

)
vj − εb

( j−1∑
k=1

vk

)
vj

−(1+ γj + ηj)vj (1 < j < n);

dvn

dτ
= bvnu− εb

(n−1∑
k=1

vk

)
vn − (1+ γn + ηn)vn;

dqk
dτ

= γkvk − akqk − qk (k = 1, 2, . . . ,n);

dw

dτ
=

n∑
k=1

ηkvk +
n∑
k=1

akqk −w

(42)
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with the initial condition that u(0) = u0 > 0, v1(0) = v01 > 0, vj(0) = v
0
j > 0,

vn(0) = v0n > 0, qk(0) = 0, w(0) = 0 (1 < j < n), and u0 +
n∑
k=1

v0k = 1.

From (40), the strain-specific reproduction number is given by

R0,k =
b

1+ γk + ηk
(k = 1, 2, . . . ,n). (43)

Hereafter, we assume that R0,j 6= R0,k for j 6= k.

4.3.2 Model without superinfection

In this section, we consider that superinfection never happens (ε = 0). This
is the case when there is no such order of competition dominance among
strains. Once a host is infected with a strain, such strain is considered as
completely owning that host. From (41), model (39) without superinfection
can be nondimensionalized as:

du

dτ
= 1− b

( n∑
k=1

vk

)
u− u;

dvk
dτ

= bvku− (1+ γk + ηk)vk (k = 1, 2, . . . ,n);

dqk
dτ

= γkvk − akqk − qk;

dw

dτ
=

n∑
k=1

ηkvk +
n∑
k=1

akqk −w.

(44)

We can obtain the following result on the stability of the equilibrium for
the model without superinfection (Appendix C.1):

Theorem 4.1. For the model without superinfection (ε = 0), that is, for the
model (44),

(i) ifΩ is empty, E0 is is globally asymptotically stable. Otherwise, E0 is unstable;

(ii) if Ω is not empty, we have a unique locally asymptotically stable single strain
endemic equilibrium E` given by

u∗ =
1

R0,`
; v∗` =

R0,` − 1

b
; v∗k = 0; q∗` =

γ`v
∗
`

a` + 1
; q∗k = 0, (45)

where ` such that R0,` = R0.

WhenΩ is empty, that is, when R0,k 6 1 for any k, the system (44) necessarily
approaches the disease-free equilibrium. When Ω is not empty, that is, when
there exists ` such that R0,` > 1, if the system (44) approaches the endemic
equilibrium, it consists of the infectives with the strain which has the largest
strain-specific basic reproduction number. Therefore, If and only if Ω is
not empty, when there is a single strain ` which has the basic reproduction
number R0,` > 1 or when all strains with the basic reproduction number
greater than one have the same basic reproduction number, there is a single
endemic equilibrium.

On the other hand, if we consider that there exist some j such that
R0,j = R0,k > 1 (j 6= k), we have an endemic equilibrium consisting of
both infectives with strain j and infectives with strain k, while v∗j and v∗k are
alternatively positive or zero at the equilibrium.
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From (45), we have the equilibrium endemic size z∗ at E` is given by

z∗ := v∗` + q
∗
` =

1+ γ`/(a` + 1)

1+ γ` + η`

(
1−

1

R0,`

)
=
1+ γ`/(a` + 1)

1+ γ` + η`

(
1−

1+ γ` + η`
b

)
. (46)

It is easy to see that the endemic size z∗ at E` is monotonically decreasing
in terms of 1/R0,`. We can also have the following results about the γ`-
dependence on the equilibrium endemic size z∗ at E` (Appendix C.2):

Theorem 4.2. For the model without superinfection (ε = 0), that is, for the
model (44) with R0,` = R0 > 1,

(i) if b(η`−a`) 6 (1+η`)
2, the equilibrium endemic size z∗ at E` is monotonically

decreasing in terms of γ`;

(ii) if b(η` − a`) > (1 + η`)
2, the equilibrium endemic size z∗ at E` takes a

maximum value for a specific value of γ` which is given by −(1 + η`) +√
b(η` − a`).

Moreover, the results shown in Theorems 4.1 and 4.2 hold even if the
transmissibility depends on strains (i.e., bj 6= bk for j 6= k).

4.3.3 Model with superinfection

Boundedness for the solution

Since the first (n+ 1) equations in the model (42) is closed, it is sufficient to
consider the stability with the reduced closed system of model (42). We set
the following mathematical results on the boundedness for the solution of
the reduced system of model (42) (Appendix C.3):

Lemma 4.1. For the initial condition such that u(0) = u0 > 0, v1(0) = v01 > 0,
vj(0) = v

0
j > 0 (j = 2, 3, . . . ,n− 1), vn(0) = v0n > 0, and u(0) +

∑n
k=1 vk(0) =

u0 +
∑n
k=1 v

0
k = 1, the solution of the reduced closed system of model (42) belongs

to the region D for any τ > 0, where

D :=
{
(u, v1, . . . , vn)

∣∣u > 0, vk > 0 (k = 1, 2, . . . ,n),u+

n∑
k=1

vk < 1
}

. (47)

Feasible equilibrium

First we can get the following result on the reduced closed system of
model (42) (Appendix C.4):

Lemma 4.2. If R0,k 6 1, the strain necessarily die out as τ→∞.

If the strain with the strain-specific reproduction number less than or
equal to 1, such a strain can not persist in the population. On the other hand,
it is necessary to have the strain-specific reproduction number greater than 1

to persist such a strain. For model (42), we have the disease-free equilibrium
E0 always exists. Making use of the eigenvalue analysis, we can easily get
the following result about the local stability of E0 (Appendix C.5):

Lemma 4.3. The disease-free equilibrium E0 is locally asymptotically stable if Ω is
empty. If Ω is not empty, it is unstable.
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Making use of the result in Lemmas 4.1, 4.2, and 4.3, we can get the
following result about the stability of E0:

Theorem 4.3. The disease-free equilibrium E0 is globally asymptotically stable in D
if Ω is empty, where D is given in (47). Otherwise, if Ω is not empty, it is unstable.

When Ω is not empty, that is, when there are some strain k such that
R0,k > 1, we have some endemic equilibria where at least one strain persists.
If there exists a strain ` such that R0,` > 1, we have a single strain endemic
equilibrium E` given by

u∗ =
1

R0,`
; v∗` =

R0,` − 1

b`
; v∗k = 0; q∗` =

γ`v
∗
`

a` + 1
; q∗k = 0; w∗ = η`v∗` + a`q

∗
` ,

(48)

where k = 1, 2, . . . ,n and k 6= `.

Single strain endemic equilibrium

We can get the following result about the stability of E` given in (48)
(Appendix C.6):

Theorem 4.4. When the equilibrium E` exists with R0,` > 1 and satisfies

min
k<`

{
1

R0,k

}
>

1

R0,`
+
ε

b
(R0,` − 1); (49)

min
k>`

{
1

R0,k

}
>

1

R0,`
−
ε

b
(R0,` − 1), (50)

it is globally asymptotically stable in D given in (47). Otherwise, if the condition
(49) or (50) is unsatisfied, E` is unstable even when it exists.

When R0,k > 1 for all k = 1, 2, . . . ,n, if there exists a globally asymptotically
stable single strain endemic equilibrium E`, all the other single strain endemic
equilibria Ek (k 6= `) are unstable even they exist.

From Theorem 4.4, we have the following results:

Corollary 4.4.1. For the strain which has R0,j = min{R0,k} with R0,j > 1

(k = 1, 2, . . . ,n), the single strain endemic equilibrium Ej is necessarily unstable.

From Theorems 4.3 and 4.4, when there is more than one strain with
strain-specific reproduction number greater than 1, if the system does not
approach a single strain endemic equilibrium, it will approach an endemic
state persisting more than one strains.

4.3.4 Dependence on the distribution of strain-specific basic reproduction number

From Corollary 4.2, we know that a strain k may persist only if it has the
strain-specific reproduction number R0,k > 1. In this section, we assume
that R0,k > 1 for any k = 1, 2, . . . ,n.

Monotonically decreasing

If the strain-specific basic reproduction number is monotonically decreasing
following the strain’s order of competitive dominance (i.e., R0,k+1 < Rk for
all k), we have the single strain endemic equilibrium E1 is necessarily globally
asymptotically stable since the condition (50) with ` = 1 is always satisfied.
From Corollary 4.4.1, we have Ek are unstable for all k > 1. Therefore, we
can get the following result:
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Figure 21: Temporal variations for n strain model with n = 6.
Numerically drawn with (a) γ1 = 1.5; (b) γ1 = 3.0; (c)
γ1 = 4.5. Commonly, b = 10.0; γk = 0.8; ηk = 1.0
(k = 2, 3, . . . , 6); ε = 0.6; (u(0), v1(0), v2(0), v3(0), v4(0), v5(0), v6(0)) =

(0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01).

Theorem 4.5. If R0,k+1 > Rk with R0,k > 1 for all k = 1, 2, . . . ,n, the system
(42) necessarily approaches the single strain endemic equilibrium E1.

If the more dominant strain has a lower strain-specific basic reproduction
number, only the most dominant strain (i.e., strain 1) can persist while any
other subordinate strains disappear. In this case, it is impossible to have more
than one strains at the endemic state.

Monotonically increasing

If the strain-specific basic reproduction number is monotonically decreasing
following the strain’s order of competitive dominance (i.e., R0,k+1 > Rk
for all k), we have the system (42) may approach a single strain endemic
equilibrium, depending on the conditions (49) and (50). When the condition
(49) or (49) is unsatisfied for any ` = 1, 2, . . . ,n, we have the system (42)
approaches an endemic state where more than one strains persist.

Let us assume that γ1 > 0, γk = 0, η1 = ηk = η for k 6= 1, then we have
R0,1 < R0,k for k 6= 1. We can obtain the following result:

Theorem 4.6. When γ1 > 0, γk = 0, and η1 = ηk = η with R0,k > 1 for any
k 6= 1, the system (42) approaches an endemic state where more than one strains
persist if

1

2

{
− (1+ η+ ε) +

√
(1+ η− ε)2 + 4εb

}
< γ1 < ε

(
b

1+ η
− 1

)
.

When the recovery rate is independent of strains, if the most dominant strain
(i.e., strain 1) is the only detectable strain while any other subordinate strains
are undetectable, the system may approach an endemic equilibrium at which
the infectives holding different strains persist. If the detectability for the
infection with strain 1 is sufficiently low, the system approaches the endemic
equilibrium E1 (see Figure 21(a)). On the other hand, if the detectability for
the infection with strain 1 is sufficiently high, the system approaches the
endemic equilibrium E2 (see Figure 21(c)). Only if the detectability for the
infection with strain 1 is in an intermediate range, the system approaches
an endemic equilibrium where strain 1 and strain 2 persist, while the other
strains get eliminated (see Figure 21(b)).

If γj > 0 and γk = 0 for j 6= 1 and k 6= j, we have the endemic equilibrium
E1 is necessarily locally asymptotically stable, while other endemic equilibria
Ek (k 6= 1) are unstable. If there is the only detectable strain j which is not the
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most dominant strain (j 6= 1), while other strains k (k 6= j) are undetectable,
the system approaches an endemic equilibrium where there are only the
infectives with strain 1, and no infectives with strain k (k 6= 1) exists.

4.3.5 Two strain model

In this section, we shall consider the model (42) of two strains (n = 2):

du

dτ
= 1− bv1u− bv2u− u;

dv1
dτ

= bv1u+ εbv1v2 − (1+ γ1 + η1)v1;

dv2
dτ

= bv2u− εbv1v2 − (1+ γ2 + η2)v2;

dq1
dτ

= γ1v1 − a1q1 − q1;

dq2
dτ

= γ2v2 − a2q2 − q2;

dw

dτ
= η1v1 + η2v2 + a1q1 + a2q2 −w,

(51)

with u+ v1 + v2 + q1 + q2 +w = 1 and the initial condition that

(u(0), v1(0), v2(0),q1(0),q2(0),w(0)) = (u0, v01, v01, 0, 0, 0).

where u0 > 0, v01 > 0, v02 > 0, and u0 + v01 + v
0
2 = 1. We suppose that

R0,1 6= R0,2, where R0,1 and R0,2 are defined by (43). The system (51) has
the disease-free equilibrium E0 = (1, 0, 0, 0, 0, 0) and may have the endemic
equilibria E1 = (u∗, v∗1, 0,q∗1, 0,w∗), E2 = (u∗, 0, v∗2, 0,q∗2,w∗), and E12 =

(u∗, v∗1, v∗2,q∗1,q∗2,w∗) where u∗ > 0, v∗1 > 0, v∗2 > 0, q∗1 > 0, q∗2 > 0, and
w∗ > 0.

In the absent of superinfection (i.e., ε = 0), from the results derived
in Section 4.3.2, we know that, if and only if R0,1 6 1 and R0,2 6 1,
the system (51) necessarily approaches the disease-free equilibrium E0.
If R0,1 > 1 and R0,2 6 1, the system (51) approaches the single strain
endemic equilibrium E1. If R0,1 6 1 and R0,2 > 1, it approaches the single
strain endemic equilibrium E2. If R0,1 > 1 and R0,2 > 1, the system (51)
approaches E1 when R0,1 > R0,2, while it approaches E2 when R0,2 > R0,1.

With the presence of superinfection where 0 < ε < 1, we can get the
following result on the existence of the equilibrium for the system (51)
(Appendix C.7):

Lemma 4.4. For the system (51),

(i) the disease-free equilibrium E0 always exists;

(ii) the endemic equilibrium E1 exists if R0,1 > 1, where

u∗ =
1

R0,1
; v∗1 =

R0,1 − 1

b
; v∗2 = 0; q∗1 =

γ1v
∗
1

a1 + 1
; q∗2 = 0; w∗ = η1v∗1 + a1q

∗
1;

(iii) the endemic equilibrium E2 exists if R0,2 > 1, where

u∗ =
1

R0,2
; v∗1 = 0; v∗2 =

R0,2 − 1

b
; q∗1 = 0; q∗2 =

γ2v
∗
2

a2 + 1
; w∗ = η2v∗2 + a2q

∗
2;
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Figure 22: Temporal variations for the two strain model. Numerically drawn with
(a) γ2 = 0.9; (b) γ2 = 0.5; (c) γ2 = 0.2. Commonly, γ1 = 0.8;
η1 = 0.6; a1 = 2.0; η2 = 0.6; a2 = 3.0; b = 3.0; ε = 0.8;
(u(0), v1(0), v2(0),q1(0),q2(0),w(0)) = (0.9, 0.05, 0.05, 0, 0, 0).

(iv) the endemic equilibrium E12 exists if and only if R0,2 > R0,1 > 1 and

1

1− ε̂

( 1

R0,1
− ε̂
)
<

1

R0,2
(52)

1

R0,2
<

1

(1− ε̂) + ε̂R0,1
· 1

R0,1
(53)

are satisfied, where

ε̂ :=
ε

1+ γ2 + η2
. (54)

and

u∗ =

{
1+

b

ε

(
1

R0,1
−

1

R0,2

)}−1

; v∗1 =
1

ε

(
u∗ −

1

R0,2

)
; v∗2 =

1

ε

(
1

R0,1
− u∗

)
;

q∗1 =
γ1v
∗
1

a1 + 1
; q∗2 =

γ2v
∗
2

a2 + 1
; w∗ = η1v∗1 + η2v

∗
2 + a1q

∗
1 + a2q

∗
2.

(55)

If R0,1 6 1 and R0,2 6 1, there is not any equilibrium other than the disease-
free equilibrium E0. If R0,1 > 1 or R0,2 > 1, we may have three endemic
equilibria with the persistence of a single strain or the coexistence of two
strains (Figure 22).

From Theorem 4.3, we have the disease-free equilibrium E0 is globally
asymptotically stable if and only if R01 6 1 and R02 6 1. We can also obtain
the following result about the stability of E1, E2, and E12 for the two strain
model (51) (Appendix C.8):

Theorem 4.7. For the two strain model (51),

(i) E1 is globally asymptotically stable only if the condition given by the inverse
inequality in (53) is satisfied;

(ii) E2 is globally asymptotically stable only if the condition given by the inverse
inequality in (52) is satisfied;

(iii) E12 is always globally asymptotically stable whenever it exists.

From the results in Theorem 4.7, when E1 or E2 is globally asymptotically
stable, we have E12 does not exists. When E12 exists, we have E1 and E2 are
unstable. We can also get the following results from Theorem 4.7:
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Figure 23: (γ1,γ2)-dependence of the existence and stability of equilibria for the two strain
model. Numerically drawn for b = 8.0. η1 = η2 = 1.0; ε = 0.8, where γc1 :=

−(1+η1)+
{
(1+η1−ε)+

√
(1+η1−ε)2+ 4εb

}
)/2 ≈ 1.2.

Corollary 4.7.1. When E1 is globally asymptotically stable, E2 is unstable and vice
versa.

Corollary 4.7.2. When E12 exists, both of E1 and E2 exist, and they are unstable.

From Theorem 4.7 with (52) and (53), we can draw the (γ1,γ2)-dependence
of the existence and stability of equilibria for the two strain model (Figure 23).
As shown by Figure 23, strain 2 can persist only if strain 1 has a sufficiently
high detectability. The harder the strain 2 is to detect, the more likely it
can persist. Moreover, strain 1 and strain 2 can coexist only for certain
intermediate ranges of γ1 and γ2. If both strains have sufficiently high
detectabilities, it is less likely to have both strains coexist.

4.4 discussion

In this work, we consider a mathematical model on the epidemic dynamics
of a disease transmission with n strains which follows an order of the
competitive dominance according to the infection success in the host. In our
model, when no superinfection occurs, the disease becomes eliminated or
alternatively the endemic state arises with only the strain which has the
largest basic reproduction number while all the other strains get eliminated.
For the persisting strain with a sufficiently low transmissibility, the detectability
of the infection with such a strain can reduce the endemic size. On the other
hand, for the persisting strain with a sufficiently high transmissibility, the
endemic size takes maximum value for a specific value of the detectability of
the infection with such a strain.

For the two strain model with superinfection, we show a possibility
that the system goes to the endemic equilibrium where there are infectives
with strain 1 and infectives strain 2. If the transmissibility of strain 1 (or
strain 2) is sufficiently large, the system approaches the endemic equilibrium
which consists of infectives with only strain 1 (or strain 2). Only if the
transmissibilities of strain 1 and strain 2 are under an intermediate ranges
with R0,2 > R0,1, these two strain can co-exist at the endemic equilibrium,
that is, there exist infectives with strain 1 and infectives with strain 2 at the
endemic equilibrium.

For the n strain model with superinfection, we find it is possible that
there are more than one strain persisting at the endemic equilibrium. The
model with n strain which have the same transmissibility to the susceptible
and the possibility of superinfection to the infectives with subordinate strain
shows that, if there is no detectable strain other than the most dominate
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strain (i.e., strain 1) with R0,1 > 1, it is likely to persist more than one strain
at the endemic equilibrium state. If the unique detectable strain is not the
most dominate strain but a subordinate strain k (k > 1) with R0,k > 1, the
system approaches the endemic equilibrium where there are the infectives
with only strain 1.

With the presence of superinfection, the subordinate may persist at the
endemic equilibrium. If the system approaches the endemic equilibrium
at which not only one strain persists, surprisingly, the endemic size is not
necessarily reduced by the superinfection possibility. Depending on the
characteristics of the strains, superinfection could either support or suppress
the endemic size.





5 C O N L U S I O N

The emergence and spread of infectious diseases have posed significant
challenges to public health concerns, and the social nature including social
response, social sensitivity, community’s policy, and detectability of infection
has been considered as playing a critical role in the disease transmission.

Social behavior changes triggered by risk perception such as wearing
masks, taking medication, vaccination, and keeping social distance can
further alter the evolution of an epidemic outbreak. Especially, the social
response with sensitivity and insensitivity could cause the emergence of
recurring epidemic outbreaks, and the strong social insensitivity would
stabilize the temporal variation of the infective size, certainly raising the
endemic size.

People’s displacement due to social and political unrest as well as the
natural migration of disease vectors to new areas on the epidemic outbreak
could have a significant influence on the spread of infectious diseases. The
acceptance of visitors under such an epidemic dynamics with the risk of
reinfection could not only support the endemicity but also suppress it by
either shifting the endemicity or reducing the endemic size, depending on
the nature of infectious disease. It is therefore essential to develop effective
measures to mitigate the spread of an infectious disease, taking into account
the characteristics of such a disease.

Moreover, the emergence of mutant or novel strains of infectious diseases
could provide a challenge to clinical diagnosis due to the lack of knowledge
about the strains or the limitation of testing techniques. Such strains are
clearly under the exploitative competition for the host and for the reproduction
in the host. Even when an individual is infected by a hardly detectable novel
or mutant strain, the superinfection of another detectable strain could serve
the infected individual to be diagnosed and quarantined, which in turn may
help to suppress the disease spread.

The spread of transmissible diseases is a major public health concern
that can result in significant morbidity and mortality, as seen in recent
pandemics like COVID-19. Understanding of the complex relation between
social nature and disease transmission could enable policymakers and
healthcare professionals to develop targeted interventions to mitigate the
spread of transmissible diseases and minimize the occurrence of repeated
epidemic outbreaks. Such a kind of theoretical/mathematical works on the
relation of social nature to the epidemics would also be valuable for reducing
the burden of infectious diseases on global health.
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AA P P E N D I X F O R C H A P T E R 2

a.1 proof of lemma 2 .1 in section 2 .3 .3

From (8), it is necessary for the existence of E+ that the following equation
in terms of M has a positive root M =M∗:

δ

η
M = 1−

1

R0

β0
β(M)

. (A.1)

Since β(M) is continuous, positive, and decreasing in terms of M ∈ [0,∞)

from the assumption introduced in Section 2.1 and β(0) = β0, the right
side of (A.1) is a decreasing function of M and its supremum value is given
by 1 − 1/R0 for M = 0. Hence, if 1 − 1/R0 6 0, the right side of (A.1)
is non-positive for any M > 0, so that we do not have any positive root
M =M∗ for the equation (A.1). Inversely, if 1− 1/R0 > 0, the right side of
(A.1) is continuously decreasing from 1− 1/R0 > 0 at M = 0, while the left
side of (A.1) is linearly increasing from 0 at M = 0. Thus we find that the
equation (A.1) necessarily has a unique positive root M =M∗ in this case.
Consequently, if and only if 1− 1/R0 > 0, that is, R0 > 1, the equation (A.1)
has a unique positive root M =M∗.

When M∗ > 0 exists with R0 > 1, it is satisfied from (8) that

0 < v∗ = 1−
1

R0

β0
β(M∗)

< 1−
1

R0

β0
β(0)

= 1−
1

R0
< 1.

Therefore, with a positive root M =M∗ for (A.1) with R01 > 1, we have a
reasonable value v∗ ∈ (0, 1) at the endemic equilibrium E+. These arguments
prove Lemma 2.1.

a.2 proof of lemma 2 .2 in section 2 .3 .4

First, it is easily seen from the system (4) that the disease-free equilibrium
always exists. Next, suppose that an endemic equilibrium with M∗ = 0

exists. From (9), we have v∗ = 1− 1/R0 and G(v∗) = 0. Therefore, for v∗ > 0,
it is necessary that R0 > 1. Besides, from G(v∗) = 0, it is necessary that
v∗ = 1− 1/R0 6 θc, that is, R0 6 (1− θc)

−1. Inversely, consider the case
where 1 < R0 6 (1− θc)

−1. From (9), we have

v∗ = 1−
1

R0

β0
β(M∗)

6 1−
1

R0

β0
β(0)

= 1−
1

R0
,

since β(M) is a decreasing function of M with β(0) = β0. Then, from
R0 6 (1− θc)

−1, we have 1− 1/R0 6 θc, so that v∗ 6 θc. This means that
G(v∗) = 0, and subsequently M∗ = G(v∗)/δ = 0 from (9). These arguments
prove (ii) of Lemma 2.2.

Now suppose that an endemic equilibrium with v∗ and M∗ > 0 exists.
From M∗ = G(v∗)/δ > 0 in (9), v∗ must be larger than θc to satisfy that
G(v∗) > 0. Then, G(v∗) = η(v∗ − θc) > 0 from (5), and v∗ = ηM∗/δ+ θc
from (9). Therefore, from (9), the following equation in terms of M must
have a positive root M =M∗:

δ

η
M+ θc = 1−

1

R0

β0
β(M)

. (A.2)

63



64 appendix for chapter 2

0

(a) (b) (c)

Figure 24: Sketches of the vector flow in the (v,M)-phase plane for the system (4) with
the nullclines. (a) R0 6 1; (b) 1 < R0 6 (1− θc)

−1; (c) R0 > (1− θc)
−1.

Since the right side of (A.2) is monotonically decreasing in terms of M while
the left side is linearly increasing, we find that a positive root M = M∗

uniquely exists if and only if

θc < 1−
1

R0

β0
β(0)

= 1−
1

R0
,

that is, R0 > (1− θc)
−1. From the former equation in (9) and v∗ = ηM∗/δ+

θc, we have

θc < v
∗ = 1−

1

R0

β0
β(M∗)

< 1−
1

R0
(A.3)

for all M∗ > 0. Hence, when a positive root M =M∗ for the equation (A.2)
exists, we have v∗ ∈ (θc, 1− 1/R0) at the same time. Hence (iii) of Lemma 2.2
is proved.

Since 1− 1/R0 → θc as R0 → (1− θc)
−1 + 0, we find from (A.3) that

v∗ → θc as R0 → (1 − θc)
−1 + 0 Then, from (A.2), we have M∗ → 0 as

R0 → (1− θc)
−1 + 0. These arguments prove (iv) of Lemma 2.2.

a.3 proof of theorem 2 .2 and corollary 2 .2 .2 in section 2 .3 .4

When R0 6 1, the vector flow in the (v,M)-phase plane indicates that
(v(τ),M(τ)) necessarily approaches the unique equilibrium E0, and then E0
is globally asymptotically stable (Figure 24(a)). When 1 < R0 6 (1− θc)

−1,
the vector flow in the phase plane shows that (v(τ),M(τ)) goes far away
from the equilibrium E0 and approaches the equilibrium E+0, where E0 is
unstable while E+0 is globally asymptotically stable (Figure 24(b)).

Next let us consider the case of R0 > (1− θc)
−1 (Figure 24). From (4),

we have

dv

dτ
= R0v

{β(M)

β0
(1− v) −

1

R0

}
< R0v

(
1− v−

1

R0

)
,

for any M > 0 and v ∈ (0, 1) since β(M) is monotonically decreasing in
terms of M and β(0) = β0. Thus we have dv/dτ < 0 for v > 1− 1/R0 , so
that the trajectory must go to the left direction in the (v,M)-phase plane as
long as v > 1− 1/R0. Thus the trajectory with v(0) > 1− 1/R0 must enter
the region where v < 1− 1/R0 at a certain moment. If v(τ1) < 1− 1/R0 at a
τ1 > 0, v(τ) is always less than 1− 1/R0 for any τ > τ1, because v(τ) cannot
become larger than 1− 1/R0 again.
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In the region where v 6 θc, we have dM/dτ = −δM < 0 for any M > 0.
In the region where θc < v < 1− 1/R0 and M > (1− 1/R0 − θc)η/δ, we
have

dM

dτ
= η(v− θc) − δM 6 η(v− θc) −

(
1−

1

R0
− θc

)
η

= η
(
v− 1+

1

R0

)
< 0

from (4), so that the trajectory must go down in the region of the (v,M)-
phase plane where 0 < v < 1− 1/R0 and M > (1− 1/R0 − θc)η/δ. Thus the
trajectory with M(0) > (1− 1/R0−θc)η/δ must enter the region where M <

(1− 1/R0− θc)η/δ. Consequently we find that the trajectory from any initial
condition (v(0),M(0)) ∈ U = (0, 1− 1/R0)× [0, (1− 1/R0 − θc)η/δ) must
remain in U for any τ > 0. From Lemma 2.2. there is only the equilibrium
E++ in the domain U when R0 > (1− θc)

−1. Further, making use of the
standard eigenvalue analysis on the Jacobi matrix J(E++) for E++, we can
show that, if the equilibrium E++ exists, it is locally asymptotically stable.

As a result of these arguments with Lemma 2.2, the unique equilibrium
E++ in the domain U is locally asymptotically stable when R0 > (1− θc)

−1.
Therefore, from Poincaré–Bendixson Theorem, the equilibrium E++ for the
system (4) is globally asymptotically stable when R0 > (1− θc)

−1 for any
M(0) > 0 and v(0) > 0. This proves Theorem 2.2.

When R0 6 (1− θc)
−1, from the vector flow in the (v,M)-phase plane

shown in Figure 24(a, b), it is easily seen that the trajectory must monotonically
approach the equilibrium E0 when R0 6 1, and the equilibrium E+0 when
1 < R0 6 (1− θc)

−1.
Further, when R0 > (1−θc)

−1, we have the discriminant of the characteristic
equation for the Jacobi matrix J(E++), ∆ given by (11). If ∆ > 0, the
eigenvalues λ1 and λ2 are both negative as shown in the above. Then the
system (4) monotonically approaches E++. If ∆ < 0, the eigenvalues λ1
and λ2 are imaginary with a negative real part. In this case, the system (4)
approaches E++ with a damped oscillation. This proves Corollary 2.2.2.

a.4 proof of theorem 2 .3 in section 2 .3 .5

First let us consider the case where the social response changes much faster
than the epidemic dynamics. Then we apply the QSSA to put dM/dτ ≈ 0.
Thus we assume

M(τ) ≈ G(v(τ))
δ

(A.4)

for any τ > 0. Substituting (A.4) for (4), we get the approximated dynamics
about v:

dv

dτ
= ϕ(v)v :=

{
R0
β0
β
(G(v)
δ

)
(1− v) − 1

}
v. (A.5)

When v 6 θc, we have G(v) = 0, and then the equation (A.5) becomes a
logistic equation same as (6). When v > θc, we have G(v) = η(v− θc). In this
case, we can easily find that dϕ/dv < 0 for any v > 0 because of β′(M) < 0

for any M > 0. Since ϕ(θc) = R0(1− θc) − 1, we have ϕ(v) < 0 for any
v > θc if ϕ(θc) 6 0, that is, if R0 6 (1− θc)

−1. On the other hand, we have
ϕ(1) = −1 < 0. Hence, if ϕ(θc) > 0, that is, if R0 > (1− θc)

−1, there is a
unique value of v, v = v∗ ∈ (θc, 1) such that ϕ(v∗) = 0, ϕ(v) > 0 for v < v∗,
and ϕ(v) < 0 for v > v∗.
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As a result, we find that, if R0 6 1, dv/dτ < 0 for any τ > 0. Then
v → 0 as τ → ∞ in a monotonic manner. If 1 < R0 6 (1− θc)

−1, v must
reach θc at a certain finite time for any v(0) > θc because dv/dτ < 0 for any
v > θc. For v(0) 6 θc, the equation (A.5) becomes the logistic equation (6)
as mentioned above. Then v monotonically approaches 1− 1/R0 < θc when
1 < R0 < (1 − θc)

−1. When R0 = (1 − θc)
−1, we have dv/dτ = 0 for

v = θc = 1− 1/R0. This means that v = θc is the equilibrium for (A.5).
Hence we find that v→ θc = 1− 1/R0 as τ→∞ when R0 = (1− θc)

−1.
In contrast, if R0 > (1 − θc)

−1, we have dv/dτ > 0 in (6) for any
positive v 6 θc. Hence v must necessarily become greater than θc from
any positive v(0) < θc. Once v becomes greater than θc, v → v∗ as τ → ∞
in a monotonic manner because of the sign of ϕ(v) and ϕ(v∗) = 0 as shown
above. Consequently, these arguments prove Theorem 2.4 for the case where
the social response changes extremely fast.

Next let us consider the case where the social response changes much
slower than the epidemic dynamics. Then we apply the QSSA to put dv/dτ ≈
0 with v ∈ [0, 1). Thus we have

v(τ) ≈ 0 or v(τ) ≈ 1− 1

R0

β0
β(M(τ))

6 1−
1

R0
(A.6)

for any τ > 0. Since we have the initial value M(0) = 0, we find that v(τ) ≈ 0
if R0 6 1, while v(τ) is approximated by the latter in (A.6) if R0 > 1. Thus,
when R0 6 1, we have M ≈ 0 for any τ > 0, because G(v) = 0 so that
dM/dt ≈ 0 for any τ > 0 with M(0) = 0. Let us consider hereafter the case
of R0 > 1. When v 6 θc, we have G(v) = 0, and dM/dτ = −δM < 0 for any
M > 0. When v > θc, substituting the latter approximation in (A.6) for (4),
we get the approximated dynamics about M:

dM

dτ
= ψ(M) := η

(
1−

1

R0

β0
β(M)

− θc

)
− δM.

We can easily find that dψ(M)/τ < 0 for any M > 0 because β′(M) < 0

for any M > 0. Since ψ(0) = η(1 − 1/R0 − θc), if ψ(0) 6 0, that is, if
R0 6 (1− θc)

−1, we have ψ(M) < 0 for any M > 0. On the other hand, we
have ψ(M)→ −∞ as M→∞. Hence, if ψ(0) > 0, that is, if R0 > (1− θc)

−1,
there is a unique value of M, M =M∗ > 0 such that ψ(M∗) = 0, ψ(M) > 0

for M <M∗, and ψ(M) < 0 for M >M∗.
As a result, we find that, if R0 6 1, M → 0 as τ → ∞ in a monotonic

manner. If 1 < R0 6 (1− θc)
−1, we have v < 1− 1/R0 < θc for any τ > 0

from (A.6). Then we have dM/dτ < 0 for any M > 0. Thus, we have M→ 0

as τ→∞ in a monotonic manner for any positive M(0). If R0 > (1− θc)
−1,

we also have v < 1− 1/R0 < θc for any τ > 0 from (A.6). Then we have
dM/dτ > 0 for any M < M∗, and dM/dτ < 0 for any M > M∗. Thus
M→M∗ as τ→∞ in a monotonic manner. Finally we have Theorem 2.4.

a.5 proof of theorem 2 .4 in section 2 .3 .6

The discriminant ∆ given by (15) can be rewritten as

∆ = f(x) := x2 − 2
(
δ+

2

R0
aη
)
x+ δ2 (A.7)

with

x =
v∗

1− v∗
=

(R0 − 1)δ+ aηθc
δ+ aη(1− θc)

. (A.8)
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There are two distinct positive roots x− and x+ (x− < x+) of the equation
f(x) = 0 as given by (17). We have f(x) < 0 for and only for x ∈ (x−, x+).
Hence, from the inequality x− < x < x+ with (A.8), we can derive the
condition θc− < θc < θc+ with (16), since f(x) < 0 means the negative
discriminant (15) so that the eigenvalue for E++ is imaginary. Therefore,
a damped oscillation occurs if (16) is satisfied, These arguments prove
Theorem 2.4.

a.6 proof of corollary 2 .4 .1 in section 2 .3 .6

When θc± = 1− 1/R0, we have x± = R0 − 1 from (16) and (17), where x±
is defined by the roots of the equation f(x) = 0 given by (A.7) in A.5. We
have dx−/dR0 > 0 and dx+/dR0 < 0 from (17). Then there are uniquely
determined positive roots Rinf

0 and Rcc0 of equations x± = R0 − 1 with
respect to R0, where Rcc0 > Rinf

0 > 1. We have R0 − 1 < x− for R0 < Rinf
0 ,

x− < R0 − 1 < x+ for Rinf
0 < R0 < Rcc0 , and R0 − 1 > x+ for R0 > Rcc0 .

Therefore, we have θc− > 1− 1/R0 for R0 < Rinf
0 , θc− < 1− 1/R0 < θc+

for Rinf
0 < R0 < Rcc0 , and θc+ < 1 − 1/R0 for R0 > Rcc0 . The damped

oscillation does not occur for R0 < Rinf
0 independently of θc.

For θc± = 0, we have x± = (R0 − 1)δ/(δ+ aη) from (16) and (17). There
are uniquely determined positive roots Rc0 and R

sup
0 of equations x± =

(R0 − 1)δ/(δ + aη) with respect to R0, where R
sup
0 > Rc0 > 1. We have

(R0 − 1)δ/(δ+ aη) < x− for R0 < Rc0 , x− < (R0 − 1)δ/(δ+ aη) < x+ for
Rc0 < R0 < R

sup
0 , and (R0 − 1)δ/(δ+ aη) > x+ for R0 > R

sup
0 . Therefore

we have θc− > 0 for R0 < Rc0 , θc− < 0 < θc+ for Rcc0 < R0 < R
sup
0 , and

θc+ < 0 for R0 > R
sup
0 . The damped oscillation does not occur for R0 > R

sup
0

independently of θc.
We note that there is no case where 0 < θc− < θc+ < 1− 1/R0 from the

definition of θc±. Therefore, we can subsequently find it not valid that Rcc0 6

Rc0 . Hence, as a consequence, R
sup
0 > Rcc0 > Rc0 > Rinf

0 > 1. Further, we
have 1−R0 < θ

c
− for R0 < Rinf

0 , 1−R0 > θ
c
− > 0 for Rinf

0 < R0 < Rc0 , and
θc− < 0 for R0 > Rc0 . On the other hand, we have 1−R0 < θ

c
+ for R0 < Rcc0 ,

1−R0 > θ
c
+ > 0 for Rcc0 < R0 < R

sup
0 , and θc+ < 0 for R0 > R

sup
0 . When

θc > 1− 1/Rcc0 , if R0 6 Rcc0 , then E++ does not exist since R0 6 Rcc0 6
(1− θc)

−1. If R0 > Rcc0 , we have R0− 1 > x+, that is, θc+ < 1− 1/R0. There
is no damped oscillation since θc > 1− 1/Rcc0 > 1− 1/R0 > θ

c
+. Therefore

the damped oscillation does not occur for θc > 1− 1/Rcc0 independently of
R0. These arguments prove the Corollary 2.4.1.

a.7 proof of corollary 2 .4 .2 in section 2 .3

If δ = 0, we have v∗ = θc and the discriminant (11) as

∆ =
θc

1− θc

(
θc

1− θc
−
4aη

R0

)
.

The discriminant ∆ becomes negative if and only if

θc < θ
c
+ =

4aη

R0 + 4aη
. (A.9)

We have θc+ > 1− 1/R0 if and only if

R0 6 Rcc0 =
1

2
(1+

√
1+ 16aη). (A.10)
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Hence, when the condition (A.10) is satisfied for R0 > 1, the condition (A.9)
holds for any θc < 1 − 1/R0. That is, ∆ < 0 whenever E++ exists with
θc ∈ (0, 1− 1/R0). From Corollary 2.2.2, the damped oscillation does not
occur for θc > 1− 1/R0. This proves Corollary 2.4.2(i). Unless (A.10) is not
satisfied, that is, if R0 > Rcc0 , then we have θc+ < 1− 1/R0. Hence in this
case, from Corollary 2.2.2, we obtain the result of Corollary 2.4.2(ii). For the
other case, we have θc > 1− 1/R0 or θc > θc+, that is, E++ does not exist or
it exists with ∆ > 0. Therefore a damped oscillation occurs only in the cases
described in Corollary 2.4.2.

a.8 proof of corollary 2 .4 .3 in section 2 .3

From (A.8) as aη→∞, we have x→ θc/(1− θc) and

∆→
(

θc

1− θc

)
+ δ2 −

(
θc

1− θc

)
lim
aη→∞

(
δ+

1

R0
aη

)
< 0.

Besides, x→ R0 − 1 and

∆→ (R0 − 1− δ)
2 > 0

as aη→ +0 or δ→∞. These results prove Corollary 2.4.3.

a.9 proof of corollary 2 .4 .4 in section 2 .3 .6

With θc = 0, the discriminant (15) becomes

∆|θc=0 =
δ

R0
2(aη+ δ)2

g(aη),

where

g(aη) :=

{
δ− 4

(
1−

1

R0

)}
(aη)2

− 2δ

{
2

(
1−

1

R0

)
+ (R0 − 1− δ)

}
aη+ δ(R0 − 1− δ)

2

with (14). For δ 6= 4(1 − 1/R0), we have g(aη) < 0 when 4(1 − 1/R0) <
δ < min{R0, (R0 + 2)(1− 1/R0)} with R0 > 2 and (aη)c− < aη < (aη)c+, or
when δ < 4(1− 1/R0) and aη > (aη)c+, where (aη)c± are given in (18). For
δ = 4(1− 1/R0), we have

g(aη) = 4

(
1−

1

R0

)2{
(R0 − 4)

2

(
1−

1

R0

)
− 2(R0 − 2)aη

}
.

Then g(aη) < 0 for aη > (R0 − 4)
2(R0 − 1)/{2R0(R0 − 2)} > 0 with R0 > 2.

These prove Corollary 2.4.4.
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b.1 derivation of R0 in section 3 .2

In our model, the new cases consist of residents and visitors. Therefore,
from the conceptual definition and the mathematical feature of the basic
reproduction number, we shall derive it here from the following conditions:

d(Iv + Ir)

dt

∣∣∣∣
0<Iv+Ir�1

> 0 for R0 > 1;
d(Iv + Ir)

dt

∣∣∣∣
0<Iv+Ir�1

< 0 for R0 < 1,

for the initial condition (21) with 0 < Iv(0) + Ir(0) = 0+ Ir0 � 1. This is
because the basic reproduction number is defined as the expected number
of new infectives produces by one infective individual in an environment
consisting of only susceptibles. Following Assumption H3 in Section 3.1.1, we
shall adopt the initial condition (21) in order to define the basic reproduction
number. Then, in place of the above conditions, we can use the followings:

d(Iv + Ir)

dt

∣∣∣∣
t=0

> 0 for R0 > 1;
d(Iv + Ir)

dt

∣∣∣∣
t=0

< 0 for R0 < 1

for the initial condition (21) with 0 < Iv(0) + Ir(0) = 0+ Ir0 � 1. Remark
that, in this context about the situation to define the basic reproduction
number of our model, the initial infective must be a resident, which matches
Assumption H3 in Section 3.1.1. Then, making use of (21), we have

d(Iv + Ir)

dt

∣∣∣∣
t=0

=
{
β
(1− ρ)m+ Sr0

N+m
+ εβ

ρm+ Rr0

N+m
− γ
}
Ir0.

Thus we find that

d(Iv + Ir)

dt

∣∣∣∣
t=0

> 0 if and only if
β

γ

(1− ρ)m+ Sr0

N+m
+
εβ

γ

ρm+ Rr0

N+m
> 1.

Consequently we can define the basic reproduction number R0 as follows:

R0 = sup
(Sr0,Rr0)

{ β
γ

(1− ρ)m+ Sr0

N+m
+
εβ

γ

ρm+ Rr0

N+m

}
= sup
Sr0

{ β
γ

(1− ρ)m+ Sr0

N+m
+
εβ

γ

ρm+N− Sr0

N+m

}
= sup
Sr0

{ β
γ

(1− ρ)m

N+m
+
εβ

γ

ρm+N

N+m
+

(1− ε)β

γ

Sr0

N+m

}
=
β

γ

(1− ρ)m+N

N+m
+
εβ

γ

ρm

N+m
.

This formula can be rewritten as given by (22) to clarify the meaning.

69
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b.2 proof of theorem 3 .2 in section 3 .3 .2

From the arguments in the first paragraph of Section 3.3.2, we find that the
dynamics given by (23) with ε = 0 necessarily approaches the dynamics with
the following limiting system in terms of the visitor population:

dx̃v

dτ
= (1− ρ)c−R00

µ

1+ µ
ỹvx̃v − cx̃v;

dỹv

dτ
= R00

µ

1+ µ
ỹvx̃v − (1+ c)ỹv.

(B.1)

The feasible equilibria are Ẽ0(1− ρ, 0) and Ẽ+(x̃∗v, ỹ∗v) with (24). The former
Ẽ0 corresponds to the disease-eliminated equilibrium for the system (23),
E00(1 − ρ, 0, 0, 0), and so does the latter Ẽ+ to the endemic equilibrium
E+0(x̃

∗
v, ỹ∗v, 0, 0). The endemic equilibrium E+0 can exist when and only

when the condition (25) is satisfied. By the local stability analysis with the
eigenvalues of the Jacobi matrix at the equilibrium, we can easily find that
the endemic equilibrium E+0 is locally asymptotically stable when it exists.
In the following part, we shall consider its global stability.

First we set the following mathematical result on the boundedness for
the solution of the system (B.1):

Lemma B.1. For any initial condition
(
x̃v(0), ỹv(0)

)
in the domain

D :=
{(
x̃v, ỹv

)
| x̃v > 0, ỹv > 0, x̃v + ỹv < 1− ρ

}
, (B.2)

the solution
(
x̃v(τ), ỹv(τ)

)
of (B.1) stays in D for any τ > 0.

Proof. We can obtain the following features from (B.1) for the initial condition(
x̃v(0), ỹv(0)

)
∈ D:

dx̃v

dτ

∣∣∣∣
xv=0

= 1− ρ > 0; ỹv(τ) = ỹv(0) exp
[∫τ
0

{
R00

µ

1+ µ
x̃v(s) − (1+ c)

}
ds

]
> 0.

The first inequality indicates that x̃v cannot reach 0 from the initial value
x̃v(0) > 0. The second equation indicates that ỹv is necessarily positive for
any τ > 0 and ỹv(0) > 0. Then, from

d
(
x̃v + ỹv

)
dτ

∣∣∣∣∣
x̃v+ỹv=1−ρ

= −ỹv < 0

for ỹv > 0, we can find that x̃v + ỹv cannot become x̃v + ỹv = 1− ρ for any
τ > 0 and initial condition in D.

Lemma B.1 means that the domain D is invariant for the dynamics given
by (B.1). Further, when the endemic equilibrium Ẽ+ exists, satisfying the
condition (25), we find from (24) that

x̃∗v + ỹ∗v = (1− ρ)
c

c+ 1
+
1+ µ

µ

1

R00

< (1− ρ)
c

c+ 1
+
1+ µ

µ

1

c+ 1
(1− ρ)

µ

1+ µ
= 1− ρ.

Hence we have the following result:
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(a)

0 0

(b)

Figure 25: Application of the isocline method for the system (B.1) when the condition
(25) is (a) not satisfied; (b) satisfied.

Lemma B.2. When Ẽ+(x̃∗v, ỹ∗v) exists, it must belong to the domain D defined by
(B.2).

When the condition (25) is not satisfied, that is, when the endemic
equilibrium does not exist, we can easily find that the disease-eliminated
equilibrium is globally asymptotically stable, making use of the isocline
method shown by Figure 25(a). In contrast, as seen from Figure 25(b), when
the condition (25) is satisfied and the endemic equilibrium Ẽ+ exists, the
stability cannot be determined only by the isocline method.

When the endemic equilibrium Ẽ+ exists, let us consider the following
function of (x̃v, ỹv) in the domain D defined by Lemma B.1:

V
(
x̃v, ỹv

)
:=

1

2

{
(x̃∗v − x̃v) + (ỹ∗v − ỹv)

}2
+
(
x̃∗v + c

1+ µ

R00µ

)(
ỹv − ỹ∗v − ỹ∗v ln

ỹv

ỹ∗v

)
.

(B.3)

It can be easily found that V
(
x̃∗v, ỹ∗v

)
= 0 and V

(
x̃v, ỹv

)
> 0 for any(

x̃v, ỹv
)
6=
(
x̃∗v, ỹ∗v

)
in D. Further, making use of (B.1), we can derive

dV

dτ
= −

(
x̃∗v − x̃v

)2
−

µ

1+ µ
x̃∗v
(
ỹ∗v − ỹv

)2,

which becomes zero only for
(
x̃v, ỹv

)
=
(
x̃∗v, ỹ∗v

)
, and negative for any(

x̃v, ỹv
)
6=
(
x̃∗v, ỹ∗v

)
in D. These features of V indicates that it is a Lyapunov

function according to the endemic equilibrium Ẽ+ for the system (B.1).
Therefore, when the endemic equilibrium Ẽ+ exists for the system (B.1), it is
globally asymptotically stable with respect to the dynamics given by (B.1)
with the initial condition in D. Since the dynamics of (23) with ε = 0 must
eventually approach that of (B.1), this result shows the global stability of the
endemic equilibrium for (23).

b.3 proof of theorem 3 .4 in section 3 .3 .4

The characteristic equation det(J00 − λE) = 0 with the Jacobian matrix J00
according to the disease-eliminated equilibrium E00(1 − ρ, 0, 0, 0) for the
system (23) becomes

(−1−λ)(−ω−λ)

∣∣∣∣∣∣∣
{
1−(1−ε)ρ

}
R00

µ

1+µ
−(1+ c)−λ

{
1−(1−ε)ρ

}
R00

µ

1+µ

εR00
µ

1+µ
εR00

1

1+µ
− 1−λ

∣∣∣∣∣∣∣ = 0.
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Hence we have two negative eigenvalues −1 and −ω with the other two
given by the roots of the equation that the above 2× 2 determinant is equal
to zero. Both of them have negative real parts if and only if

{
1− (1− ε)ρ

}
R00

µ

1+ µ
− (1+ c) + εR00

1

1+ µ
− 1 < 0;[{

1− (1− ε)ρ
}
R00

µ

1+ µ
− (1+ c)

](
εR00

1

1+ µ
− 1
)

−
{
1− (1− ε)ρ

}
R00

µ

1+ µ
· εR00

µ

1+ µ
> 0,

that is, 
{
1− (1− ε)ρ

}
R00

µ

1+ µ
− (1+ c) + εR00

1

1+ µ
− 1 < 0;{

1− (1− ε)ρ
}
R00

µ

1+ µ
− (1+ c) + (1+ c)εR00

1

1+ µ
< 0.

Therefore we find that the second inequality gives the necessary and sufficient
condition that every eigenvalue has a negative real part. It can be expressed
as the inverse inequality of (27). At the same time, we can find that, if the
inverse of the above second inequality is satisfied, there exists an eigenvalue
with a positive real part. Then the disease eliminated equilibrium E00 is
unstable.

b.4 proof of corollary 3 .4 .1 in section 3 .3 .4

It is sufficient to show that {G(µ, ρ)}−1 < 1/(εR00) when R0 6 1. From the
definition of R0 defined by (22), we have R0 6 1 if and only if

1

εR00
>
1

ε

{
1− (1− ε)ρ

µ

1+ µ

}
.

Then we can derive

1

ε

{
1− (1− ε)ρ

µ

1+ µ

}
− {G(µ, ρ)}−1

=
1− ε

ε
+

µ

1+ µ

{
1−

1

ε

1

1+ c
− ρ

1− ε

ε

(
1−

1

1+ c

)}
>
1− ε

ε
+

µ

1+ µ

(
1−

1

ε
− ρ

1− ε

ε

)
=
1− ε

ε

{
1− (1− ρ)

µ

1+ µ

}
> 0.

Therefore, we find that {G(µ, ρ)}−1 < 1/(εR00) when R0 6 1, and then the
inverse equality of (27) is satisfied.

b.5 proof of theorem 3 .5 in section 3 .3 .4

First we consider the case of ρ = 1. From (29), we can derive the following
equations about y∗v and y∗r :

y∗r =
(1+ c)y∗v
1+ cy∗v

; ϕ(y∗v) :=
εR00
1+ µ

( 1+ c

1+ cy∗v
+ µ
)
(1− y∗v) − (1+ c) = 0. (B.4)

The function ϕ(y) is monotonically decreasing in terms of y > 0, and
ϕ(1) = −(1+ c) < 0. Hence, if and only if ϕ(0) > 0, the equation ϕ(y) = 0
has a unique positive root y = y∗v < 1. We remark from the first equation



B.6 proof of theorem 3 .6 in section 3 .3 .4 73

of (B.4) that y∗r is uniquely determined for each positive y∗v < 1 such that
0 < y∗r < 1. Therefore, if and only if ϕ(0) > 0, the endemic equilibrium E++

exists when ρ = 1. It is easy to show that the condition that ϕ(0) > 0 is
necessary and sufficient to make (27) hold with ρ = 1.

Next, from (28) in the case of µ > 0 and ρ < 1, we can derive an equation
ψ(ζ∗) = 0 in terms of ζ∗ := (1− ρ− x∗v)/x

∗
v with

ψ(ζ) :=
c(1+ µ)

R00
−

ε

1/c+ εζ
−

µ

1/c+ 1− ε

{
ε
1/c+ ρ(1− ε)

1/c+ 1+ εζ
+

(1− ε)(1− ρ)

1+ ζ

}
.

(B.5)

Since x∗v ∈ (0, 1−ρ) for the endemic equilibrium, we have ζ∗ ∈ (0,∞). We can
easily find that ψ(ζ) is monotonically increasing in terms of ζ > 0. Further
ψ(ζ) → c(1+ µ)/R00 as ζ → ∞. Hence the equation ψ(ζ) = 0 necessarily
has a unique positive root ζ∗ if and only if ψ(0) < 0, which can be easily
proved to be equivalent to the condition (27). With ζ∗ > 0, the equilibrium
value x∗v is uniquely determined by x∗v = (1− ρ)/(1+ ζ∗).

On the other hand, with the second equation of (28), we can derive

x∗v + y∗v = g(x∗v) :=
1/c

1+ 1/c− ε
x∗v +

1− ε

1+ 1/c− ε

{ (1− ρ)(1+ 1/c)
1+ 1/c− ε

−
ε

1− ε

}
+
ε(1− ρ)(1+ 1/c)

(1+ 1/c− ε)2
1/c+ (1− ε)ρ

(1+ 1/c− ε)x∗v + ε(1− ρ)
.

Then we can easily find that g(x) is concave with g(0) = 1 and g(1− ρ) =
1− ρ < 1, so that g(x) < 1 for x ∈ (0, 1− ρ). This result indicates that, if the
equation ψ(x) = 0 has a unique positive root x∗v such that 0 < x∗v < 1− ρ,
the value y∗v is reasonably determined by the second equation of (28) such
that x∗v + y∗v < 1. Moreover, by the third equation of (28), the value y∗r is
reasonably determined at the same time such that 0 < y∗r < 1. Finally, from
these arguments, if and only if ψ(0) < 0, which is equivalent to the condition
(27), the endemic equilibrium E++ uniquely exists when ρ < 1.

b.6 proof of theorem 3 .6 in section 3 .3 .4

The Jacobian matrix about the endemic equilibrium E++ becomes

J(E++) :=



−(B+ c) −
µ

1+ µ
R00x

∗
v 0 −

1

1+ µ
R00x

∗
v

(1− ε)B µΞ− (εB+ 1+ c) 0 Ξ

0 0 −(B+ω) 0

0 µΦ (1− ε)B Φ− εB− 1


,

where

B := R00
y∗r + µy∗v
1+ µ

; Φ :=
y∗r

y∗r + µy∗v
;

Ξ :=
1+ c

µ

µy∗v
y∗r + µy∗v

=
1+ c

µ

(
1−

y∗r
y∗r + µy∗v

)
=
1+ c

µ
(1−Φ).
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Then the characteristic polynomial for the eigenvalue λ about E++ can be
obtained as

∣∣J(E++) − λE
∣∣ = (B+ω+ λ)h(λ) with

h(λ) := −

∣∣∣∣∣∣∣∣∣∣∣∣∣

−(B+ c+ λ) 0 −
1

1+ µ
R00x

∗
v

(1− ε)B −(εB+ 1+ c+ λ) Ξ

0 µ(εB+ 1+ λ) Φ− εB− 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ3 + a2λ

2 + a1λ+ a0, (B.6)

where

a2 = cΦ+ 1+ c+B+ 2εB;

a1 = (c+B+ εB)cΦ+ (B+ c)(2εB+ 1) + εB(εB+ 1) +
(1− ε)µ

1+ µ
R00x

∗
vB;

a0 = εB(B+ c)(εB+ 1+ cΦ) +
(1− ε)µ

1+ µ
R00x

∗
vB(εB+ 1).

Thus we have a negative eigenvalue λ = −(B+ω) and the cubic equation
h(λ) = 0 given by (B.6) to determine the other three eigenvalues for E++.

Every coefficient of h(λ) is positive: a2 > 0, a1 > 0, and a0 > 0. Since
0 < Φ < 1, we have

a2 > a
′
2 := 1+ c+B+ 2εB > 0;

a1 > a
′
1 := (B+ c)(2εB+ 1) + εB(εB+ 1) +

(1− ε)µ

1+ µ
R00x

∗
vB > 0;

a0 < a
′
0 := εB(B+ c)(εB+ 1+ c) +

(1− ε)µ

1+ µ
R00x

∗
vB(εB+ c),

and subsequently find that

a2a1 − a0 > a
′
2a
′
1 − a

′
0 = (εB+ 1+ c)(εB+ 1)(c+B+ εB)

+ (1+ ε)B
{
(B+ c)(2εB+ 1) + εB(εB+ 1)

}
+

(1− ε)µ

1+ µ

{
1+ (1+ ε)B

}
R00x

∗
vB > 0.

(B.7)

Consequently from the Routh-Hurwitz criterion, we can find that all roots
of h(λ) = 0 have negative real parts. Therefore it has been proved that every
eigenvalue for E++ has negative real part. This result shows Theorem 3.6
about the local stability of E++ when it exists.

b.7 proof of theorem3 .10 and corollary 3 .10 .3 in section 3 .3 .5

As shown in the proof for Theorem 3.5 (Appendix B.5), the endemic size can
be determined by the unique positive root ζ = ζ∗ of the equation ψ(ζ) = 0
with (B.5) for ρ < 1 under the condition (27). From the equation ψ(ζ∗) = 0,
we can derive

∂ζ∗

∂µ
=

1+ εcζ∗ − εR00
KµR00(1/c+ εζ∗)

(B.8)

with

K :=
ε2

(1/c+ εζ∗)2
+

µ

1/c+ 1− ε

{
ε2

1/c+ (1− ε)ρ

(1/c+ 1+ εζ∗)2
+

(1− ε)(1− ρ)

(1+ ζ∗)2

}
> 0.
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First for εR00 6 1, we find from (B.8) that ∂ζ∗/∂µ > 0 for any ζ∗ > 0
and µ > 0. Since x∗v = (1− ρ)/(1+ ζ∗), we then have ∂x∗v/∂µ < 0. Lastly we
can get the following result:

Lemma B.3. x∗v is monotonically decreasing in terms of µ > 0 when ρ < 1 and
εR00 6 1.

Next for εR00 > 1, the partial derivative (B.8) indicates that ∂ζ∗/∂µ > 0
if and only if ζ∗ > ζc := (εR00 − 1)/(εc), while ∂ζ∗/∂µ < 0 if and only if
ζ∗ < ζc. Since ψ(ζ) is monotonically increasing in terms of ζ > 0, such that
ψ(ζ) < 0 for ζ < ζ∗ and ψ(ζ) > 0 for ζ > ζ∗ under the condition (27), we
find that ∂ζ∗/∂µ > 0 if and only if ψ(ζc) < 0, while ∂ζ∗/∂µ < 0 if and only
if ψ(ζc) > 0. Since ζc is independent of µ, this result indicates that the sign
of ∂ζ∗/∂µ is determined independently of µ. Hence we obtain the following
lemma:

Lemma B.4. x∗v > 0 is monotonic in terms of µ > 0 when ρ < 1.

Now we can derive

ψ(ζc) =
µ{εc− 1+ ε2R00 + ε(1− ε)R00ρ}

εR00(1+ εR00/c){1+ (εR00 − 1)/(εc)}
. (B.9)

Thus we can result that ψ(ζc) < 0 if and only if ρ < ρc where ρc is defined
by (37). That is, ∂ζ∗/∂µ > 0 if and only if ρ < ρc. Lastly we have

Lemma B.5. x∗v > 0 is monotonically decreasing in terms of µ > 0 if and only if
ρ < ρc when ρ < 1 and εR00 > 1.

It can be easily found that ρc < 1 when εR00 > 1.
In the critical case of ρ = ρc > 0 with εR00 > 1, we have ψ(ζc) = 0

in (B.9), which means that ζ∗ = ζc and subsequently ∂ζ∗/∂µ = 0. Actually,
from ζ∗ = ζc, we find that x∗v = (1− ρ)/(1+ ζc), the endemic sizes y∗r , y∗v,
and z∗ defined by (36) are independent of µ, as given by (38) which are
derived by (28). This result gives Corollary 3.10.3.

On the other hand, from (28), we can easily find that the endemic sizes
y∗r , y∗v, and z∗ are monotonically decreasing in terms of x∗v > 0. Therefore,
from Lemma B.4, we can get the following lemma:

Lemma B.6. The endemic sizes y∗r , y∗v, and z∗ are monotonic in terms of µ when
ρ < 1.

Consequently, from Lemmas B.3, B.4, B.5, and B.6, we can obtain the result
of Theorem 3.10 for ρ < 1.

b.8 proof of corollary 3 .10 .1 in section 3 .3 .5

In case of ρ = 1, the unique positive root of ϕ(y) = 0 with (B.4) gives the
endemic size y∗v under the condition (27) with ρ = 1 (Appendix B.5). Then,
from the equation ϕ(y∗v) = 0, we can derive

∂y∗v
∂µ

=
1− y∗v − (1+ c)/(εR00)

(1+ c)2/(1+ cy∗v)
2 + µ

. (B.10)

When εR00 6 1+ c, we have ∂y∗v/∂µ < 0 for any µ > 0. Therefore we obtain
the following result:

Lemma B.7. The endemic sizes y∗r and y∗v are monotonically decreasing in terms of
µ when ρ = 1 and εR00 6 1+ c.
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From the first equation in (B.4), we note that the endemic size y∗r is monotonically
increasing in terms of y∗v.

When εR00 > 1 + c, ∂y∗v/∂µ > 0 if and only if y∗v < ycv := 1 − (1 +

c)/(εR00), while ∂y∗v/∂µ < 0 if and only if y∗v > ycv . Sinceϕ(y) is monotonically
decreasing in terms of y > 0, such that ϕ(y) > 0 for y < y∗v and ϕ(y) < 0
for y > y∗v. Hence, ∂y∗v/∂µ > 0 if and only if ϕ(ycv) < 0, while ∂y∗v/∂µ < 0 if
and only if ϕ(ycv) > 0. Now we can derive

ϕ(ycv) =
c(1+ c)

(1+ µ)(εR00 − c)
> 0

for εR00 > 1+ c. Therefore we have the following result:

Lemma B.8. The endemic sizes y∗r and y∗v are monotonically decreasing in terms of
µ when ρ = 1 and εR00 > 1+ c.

Consequently, from Lemmas B.7 and B.8, the endemic sizes y∗r and y∗v are
monotonically decreasing in terms of µ when ρ = 1.
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c.1 proof of theorem 4 .1 in section 4 .3 .2

Since the first (n+ 1) equations equation in the model (44) is closed, we shall
consider the reduced system of the first (n+ 1) equations in model (44). We
can derive the Jacobi matrix J(E0) for the equilibrium E0 is given by

J(E0) =



−1 −b1 −b2 · · · −bn

0 b1

(
1−

1

R0,1

)
0 · · · 0

...
...

...
. . . · · ·

0 0 0 · · · bn

(
1−

1

R0,n

)


.

It is clear that the eigenvalues of J(E0) are λ0 = −1 < 0 and λk = b(1−

1/R0,k) (k = 1, 2, 3, . . . ,n). Thus E0 is unstable if there exists ` where ` ∈ Ω,

that is, R0 > 1. For R0 6 1, from du/dτ, if u → 1, we have
n∑
k=1

bvi → 0.

Thus we have vk → 0 as τ→∞ (k = 1, 2, . . . ,n). If u→ u∗ < 1, since

n∑
k=1

dvk
dτ

<

n∑
k=1

bvk(u− 1) < 0

for R0 6 1, then vk → 0 as τ → ∞ (k = 1, 2, . . . ,n). Thus we have u →
1 as τ → ∞ from du/dτ. Therefore, we have shown that E0 is globally
asymptotically stable if and only if R0 6 1, while it is unstable when R0 > 1.

Next we consider the local stability of the endemic equilibrium E` for the
model (44). Making use of (45), we derive the characteristic equation of the
Jacobi matrix J(E`) for the equilibrium E`{
λ2 +R0,`λ+ (1+ γ` + η`)

(
1−

1

R0,`

)}∏
k6=`

{
(1+ γk + ηk)

(
R0,k

R0,`
− 1

)
− λ

}
= 0

There are two eigenvalues λ1 and λ2 satisfying

λ1 + λ2 = −R0,` < 0 and λ1λ2 = (1+ γ` + η`)

(
1−

1

R0,`

)
> 0.

Thus λ1 and λ2 have negative real parts. The other eigenvalues are negative
if and only if R0,` > R0,k for any k = 1, 2, . . . ,n and k 6= `. Thus the endemic
equilibrium E` is locally asymptotically stable. If there exist some k such that
R0,k > R0,`, there is a positive eigenvalue for the characteristic equation
of the Jacobi matrix J(E`) for the endemic equilibrium E`. Thus we have
E` is unstable. Therefore, there is a unique locally asymptotically stable
endemic equilibrium E` with R0,` = R0. These arguments show the proof of
Theorem 4.1.
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c.2 proof of theorem 4 .2 in section 4 .3 .2

From (46), we can derive

∂z∗

∂γ`
=

1

b`(a` + 1)(1+ γ` + η`)2
{−(1+ γ` + η`)

2 + b`(η` − a`)}.

If

b`(η` − a`) 6 (1+ η`)
2,

we have ∂z∗/∂γ` < 0 for any γ` > 0. Then z∗ is monotonically decreasing in
terms of γ`. If

b`(η` − a`) > (1+ η`)
2,

since 1+ γ` + η` < b`, we have

∂z∗

∂γ`

∣∣∣∣
γ`→b`−(1+η`)−0

=
1

b`(a` + 1)(1+ γ` + η`)2
{−b`

2 + b`(η` − a`)}

=
1

(a` + 1)(1+ γ` + η`)2
{−b` + (η` − a`)}

<
1

(a` + 1)(1+ γ` + η`)2
{−(1+ η`) + (η` − a`)}

= −
1

(1+ γ` + η`)2
.

Thus there exists a unique positive root of ∂z∗/∂γ` = 0 which is given by

γ` = −(1+ η`) +
√
b`(η` − a`)

where z∗ takes a maximum value. We have shown the proof of Theorem 4.2.

c.3 proof of lemma 4 .1 in section 4 .3 .3

From the equations of v1, vj (j = 2, 3, . . . ,n − 1), and vn in the reduced
system of model (42), we have

v1(τ) = v1(0) exp
[
b

∫τ
0
u(s) + ε

{ n∑
k=2

vk(s)
}
ds−

τ

R0,1

]
;

vj(τ) = vj(0) exp
[
b

∫τ
0
u(s) + ε

{ n∑
k=j+1

vk(s) −

j−1∑
k=1

vk(s)
}
ds−

τ

R0,j

]
;

vn(τ) = vn(0) exp
[
b

∫τ
0
u(s) − ε

{n−1∑
k=1

vk(s)
}
ds−

τ

R0,n

]
.

Hence it holds that v1(τ) > 0, vj(τ) > 0, and vn(τ) > 0 for any τ > 0 with
v1(0) = v

0
1 > 0, vj(0) = v

0
j > 0 (j = 2, 3, . . . ,n− 1), vn(0) = v0n > 0. Besides,

since du
dτ

∣∣
u=0

= 1 > 0, we have u(τ) > 0 for any τ > 0 with u(0) = u0 > 0.
Next, from (42), we have

d

dτ

(
u+

n∑
k=1

vk

)∣∣∣∣
u+
∑n
k=1 vk>1

=

[
1− u−

n∑
k=1

(1+ γk + ηk)vk

]
u+
∑n
k=1 vk>1

=

[
1− u−

n∑
k=1

vk −

n∑
k=1

(γk + ηk)vk

]
1−u−

∑n
k=1 vk60

< 0,

so that u +
∑n
k=1 vk < 1 for any τ > 0 with u(0) +

∑n
k=1 vk(0) = u0 +∑n

k=1 v
0
k = 1. Consequently we have Lemma 4.1.
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c.4 proof of lemma 4 .2 in section 4 .3 .3

From (42), we have

dv1
dτ

< b
(
u+

n∑
k=2

vk −
1

R0,1

)
v1 = b

(
u+

n∑
k=1

vk − v1 −
1

R0,1

)
v1 < b

(
1− v1 −

1

R0,1

)
v1;

(C.1)

dvj

dτ
< b

(
u+

n∑
k=1
k6=j

vk −
1

R0,j

)
vj = b

(
u+

n∑
k=1

vk − vj −
1

R0,j

)
vj < b

(
1− vj −

1

R0,j

)
vj;

(C.2)

dvn

dτ
< b

(
u−

1

R0,n

)
vn < b

(
1−

n∑
k=1

vk −
1

R0,n

)
vn < b

(
1− vn −

1

R0,n

)
vn

(C.3)

for any τ > 0 because u +
∑n
k=1 vj < 1 for any τ > 0 from Lemma 4.1.

Thus we find that the right sides of (C.1), (C.2), and (C.3) are always non-
positive when R0,k 6 1 for all k. Therefore, when R0,k 6 1 for all k, we have
dvk/dτ < 0 for all k and any τ > 0. That is, vk → 0 as τ → ∞ for all k if
R0,k 6 1 for all k. We have shown the proof of Lemma 4.2.

c.5 proof of lemma 4 .3 in section 4 .3 .3

The Jacobi matrix J(•) for the reduced system of model (42) is given by

J(•) =



−
1

u∗
−bu∗ −bu∗ −bu∗ · · · −bu∗ −bu∗

bv∗1 ∆1(•) εbv∗1 εbv∗1 · · · εbv∗1 εbv∗1

bv∗2 −εbv∗2 ∆2(•) εbv∗2 · · · εbv∗2 εbv∗2

bv∗3 −εbv∗3 −εbv∗3 ∆3(•) · · · εbv∗3 εbv∗3

...
...

...
...

. . .
...

...

bv∗n −εbv∗n−1 −εbv∗n−1 −εbv∗n−1 · · · ∆n−1(•) εbv∗n−1

bv∗n −εbv∗n −εbv∗n −εbv∗n · · · −εbv∗n ∆n(•)



,

(C.4)

where

∆1(•) = bu∗ + εb
n∑
k=2

v∗k − (1+ γ1 + η1);

∆j(•) = bu∗ + εb
( n∑
k=j+1

v∗k −

j−1∑
k=1

v∗k

)
− (1+ γj + ηj) (1 < j < n);

∆n(•) = bu∗ − εb
n−1∑
k=1

v∗k − (1+ γn + ηn).

(C.5)
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The characteristic equation of the Jacobi matrix J(E0) for the disease-free
equilibrium E0 is given by

(λ+ 1)

n∏
k=1

{
b

(
1−

1

R0,k

)
− λ

}
= 0.

If R0 < 1, all eigenvalues of J(E0) have negative real parts. Thus we have E0
is locally asymptotically stable if R0 < 1. If R0 > 1, that is, if there exists
k such that R0,k > 1, there exists a positive eigenvalue b(1− 1/R0,k) for
the Jacobi matrix J(E0). Thus we have the disease-free equilibrium E0 is
unstable if R0 > 1. Taking account of Lemma 4.3, we have shown the proof
of Theorem 4.3.

c.6 proof of theorem 4 .4 in section 4 .3 .3

We can get the following result of the local stability of E`:

Lemma C.1. The single strain endemic equilibrium E` exists and is locally asymptotically
stable if conditions (49) and (50) are satisfied with R0,` > 1. If the condition with
the inverse inequality of (49) or (50) is satisfied, it is unstable.

Proof. For the endemic equilibrium E` where only the infectives with strain `
persist and there is no infectives with strain k (k 6= `), from (C.4) with (C.5),
we have the characteristic equation of the Jacobi matrix J(E`) is given by{

λ2 +R0,`λ+ b

(
1−

1

R0,`

)}∏
k6=`

(
∆k(E`) − λ

)
= 0.

There exists two eigenvalues λ1 and λ2 satisfying

λ1 + λ2 = −R0,` < 0 and λ1λ2 = b

(
1−

1

R0,`

)
> 0.

Thus λ1 and λ2 have negative real parts with R0,` > 1. The other eigenvalues
are negative if and only if ∆k(E`) < 0 for any k 6= `, that is,

Then we have the endemic equilibrium E` is locally asymptotically stable
if the above conditions are satisfied. If there exists i where k 6= ` such that
∆k(E`) > 0, that is, if the inverse inequality of (49) or (50) is satisfied, the
endemic equilibrium E` is unstable.

Let us consider the following function of u, v`, and vk when E` exists
(k = 1, 2, . . . ,n and k 6= `):

V(u, v1, . . . , v`, . . . , vn) :=
1

2u∗
(u− u∗)2 +

(
v` − v

∗
` − v

∗
` ln

v`
v∗`

)
+
∑
k6=`

vk

with u∗ = 1/R0,`, v∗` = (R0,` − 1)/b. Taking account of Lemma 4.1, it holds
that V > 0 for any (u, v1, . . . , vn) ∈ D\{E`} and V = 0 for E`. Then, making
use of the equations in (42) we can derive the following time-derivative:

dV

dτ
= −

1

u∗
(u− u∗)2

(
1+ b

n∑
k=1

vk

)
+

{(
1

R0,`
−

1

R0,k

)
+
ε

b
(R0,` − 1)

} `−1∑
k=1

bvk
v`

+

{(
1

R0,`
−

1

R0,k

)
−
ε

b
(R0,` − 1)

} n∑
k=`+1

bvk
v`

. (C.6)
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The second term of (C.6) is negative when the condition (49) is satisfied,
while the third term of (C.6) is negative when the condition (50) is satisfied.
Then the derivative dV/dτ is always negative under the conditions (49) and
(50), taking account of Lemma 4.1. Besides, when the corresponding left and
right sides of (49) and (50) are equal to each other, the second and third
terms of (C.6) becomes zero, and the derivative dV/dτ is negative unless
u = u∗. Since the value u temporally varies as long as (u, v1, . . . , v`, . . . , vn) 6=
(u∗, 0, . . . , v∗` , . . . , 0) even when u = u∗ at a certain finite moment, we note
from (C.6) that the derivative dV/dτ is negative for almost every time τ > 0
unless (u, v1, . . . , v`, . . . , vn) 6= (u∗, 0, . . . , v∗` , . . . , 0).

As a result, the derivative dV/dτ is always negative under the conditions
(49) and (50), and then the function V is always decreasing as time passes.

c.7 proof of lemma 4 .4 in section 4 .3 .5

Lemma 4.4 (i) and (ii) can be easily shown. Let us consider the existence of
the endemic equilibrium E12. Since the first three equations in the model (51)
is closed, we can consider the endemic equilibrium E12(u

∗, v∗1, v∗2) for the
system of the first three equations in the model (51), where u∗, v∗1, and v∗2
are given in (55). Let us consider first the positiveness of u∗, v∗1, and v∗2.
From (55), the positiveness holds if and only if

1

R0,2
< u∗ <

1

R0,1
. (C.7)

We remark that, if the condition (C.7) is satisfied, then R0,1 < R0,2, 0 <
u∗ < 1, and R0,2 > 1. We have the first inequality of the condition (C.7)
can be rewritten as the inequality (52), and the second inequality of the
condition (C.7) can be rewritten as the inequality (53) with (54). If the
condition (52) is satisfied, since R0,2 > 1, we have

1

1− ε̂

( 1

R0,1
− ε̂
)
<

1

R0,2
< 1.

Thus it is necessary that R0,1 > 1 to satisfy the condition (52). Since

1

(1− ε̂) + ε̂R0,1
· 1

R0,1
−

1

1− ε̂

( 1

R0,1
− ε̂
)
=

1

1− ε̂
·
ε̂(R0,1 − 1)

(1− ε̂) + ε̂R0,1
> 0

when R0,1 > 1, we have the condition (C.7) is satisfied if and only if the
inequalities (53) and (52) are satisfied with R0,2 > R0,1 > 1. Thus E12 exists
only if the conditions (53) and (52) are satisfied. Since the corresponding
equilibrium E12 for the system (51) satisfies that u∗ + v∗1 + v

∗
2 + q

∗
1 + q

∗
2 +

w∗ = 1, we have the consistent equilibrium values for E12 exists if and
only if u∗, v∗1, and v∗2 are positive. Therefore, the endemic equilibrium
E2 for the system of the first three equations in the model (51), and the
corresponding endemic equilibrium E2 for the system (51) exist if and only
if the conditions (53) and (52) are satisfied with R0,2 > R0,1 > 1. When E12
exists, E1 and E2 is necessarily exist. We have shown the proof of Lemma 4.4
(iii).
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c.8 proof of theorem 4 .7 in section 4 .3 .5

Theorem 4.7 (i) and (ii) can be shown by Theorem 4.4. As for the equilibrium
E12, we can derive the Jacobi matrix J(E12)

J(E12) =


−
1

u∗
−bu∗ −bu∗

bv∗1 0 εb1v
∗
1

bv∗2 −εbv∗2 0


.

From (55), we can derive the characteristic equation given by

λ3 +
1

u∗
λ2 + b2(u∗v∗1 + u

∗v∗2 + ε
2v∗1v

∗
2)λ+

1

u∗
ε2b2v∗1v

∗
2 = 0. (C.8)

Since all coefficients of equation (C.8) are positive and they satisfy that

b2

u∗
(u∗v∗1 + u

∗v∗2 + ε
2v∗1v

∗
2) −

b2

u∗
ε2v∗1v

∗
2 = b2(v∗1 + v

∗
2) > 0,

according to Routh-Hurwitz stability criterion, the endemic equilibrium E12
is locally asymptotically stable. Then we consider the following function of
u, v1, and v2 when E12 exists:

V(u, v1, v2) :=
1

2u∗
(u− u∗)2 +

(
v1 − v

∗
1 − v

∗
1 ln

v1
v∗1

)
+
(
v2 − v

∗
2 − v

∗
2 ln

v2
v∗2

)
.

It is easily found that V > 0 for any (u, v1, v2) ∈ D\{E12} and V = 0 for
E12, where D := {(u, v1, v2) | u > 0, v1 > 0, v2 > 0,u+ v1 + v2 < 1}. Then,
making use of the first three equations in (51) we can derive the following
time-derivative:

dV

dτ
= −

1

u∗
(u− u∗)2(b1v1 + b2v2 + 1). (C.9)

Since the value u temporally varies as long as (u, v1, v2) 6= (u∗, v∗1, v∗2) even
when u = u∗ at a certain finite moment, we note from (C.9) that the derivative
dV/dτ is negative for almost every time τ > 0 unless (u, v1, v2) = (u∗, v∗1, v∗2).
Hence the function V is always decreasing as time passes. Thus the function
V defines a Lyapunov function for the equilibrium E12. Finally we have
that, whenever the two strain endemic equilibrium E12 exists, it is globally
asymptotically stable. The above arguments show the proof of Theorem 4.7
(iii).
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