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Abstract

1 Introduction

Sexual selection has been viewed as a powerful agent in shaping many traits
in behaviour, morphology, and life history (Mayr 1972; Trivers 1972; Warner
1980). It has also been implicated in the maintenance of several reproductive
pholymorphisms. Some of those polymorphisms are simple ontogeneric changes
by males in species that experience intense sexual selection. In some of these
species, younger males with low-cost, nonaggressive mating behaviours coex-
ist with older males who engage in intense competition that has a potentially
higher reproductive yield (Gadgil 1972; Howard 1978; Trivers 1972). Other
polymorphisms involve the coexistence of two types of males of which one is
usually larger and more aggressive than another, and remain distinct through-
out their lives (Constantz 1975; Gadgil 1972; Hamilton 1979). Also, appar-
ently stable mixtures of two different sexual types, dioecious and sex-changing
hermaphrodite individuals, are common in fishes and pandalid shrimps (Charnov
1979; Reinboth 1970; Ronbertson and Warner 1978; Warner and Ronbertson
1978).

Aspects of the reproductive biology of the labroid fishes which have received
considerable attention from evolutionary biologists include the adaptive signifi-
cance of, and the relationships about: i) the protogynous hermaphroditism and
the occurrence and coexistence of various sexual phenotypes, ii) the differently
structured social and mating systems, and iii) the existence of distinct, sex-
specific color phases. The labroid fishes live on reefs in the tropics and the
temperate zone. Many labroid species are hermaphrodites and could change
their sex from female to male. In some labroid species, however, there are not
only hermaphroditic but also dioecious individuals. The dioecious individuals
are born as primary male (not result of sex change). Primary males become
sexually mature with the same color to females (initial phase) and make repro-
ductive activity. When primary males become large in size, their color changes
to vivid color (terminal phase). On the other hand, females make reproductive
activity, and could change sex to male when they become large in size. Those
sex-changed males from females change their color to the terminal phase. Two
color types of males, which are initial and terminal phases, are observed in
dioecious species. Reinboth (Reinboth 1957; Reinboth 1961; Reinboth 962a;
Reinboth 962b) reported that mature males with two different color types exist
in the labroid fishes, and classified the labroid fishes into two types of species:
One has both initial and terminal phase males together (diandric species) , and
another has only terminal phase males (monandric species).

Terminal and initial phase males have the difference in their mating be-
haviours. Females of many labroid fishes migrate to specific spawning sites on
the outer or the downcurrent edges of reefs (Threshoer 1984). Such spawn-
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ing sites have been suggested to give the best opportunity for eggs to be car-
ried rapidly off the reef and away from reef-based predators (Johannes 1978;
Jones 1981; Moyer and Yogo 1982; Randall and Randall 1963; Robertson 1981;
Robertson and Hoffman 1977; Warner and Leigh 1975). Terminal phase males
make territories above prominent rocks on the offshore reef slope on which fe-
males prefer spawning in mating season. These territories are maintained at
the same location during some successive days. Sibuno et al. (Shibuno and
Kakuda 1993) studied spawning sites and spawning migration paths of females
of the protogynous wrasse, Halichoeres marginatus. They observed that small
females migrate to the spawning sites near their home range, whereas large fe-
males migrate to various spawning sites located within a wide area, including
downcurrent sites. Females tend to gather at some specific territorial males
selected by the position the territory, the body size and the color. Each territo-
rial male constructs its mating group consisting of females in its territory, and
tends to exclude the other males from its territory and to spawn with females
in its mating group. Fertilization is made external and with no parental care.
Territorial males at the center of the spawning sites can experience significantly
higher successful matings than those at the periphery (Moyer and Yogo 1982).

In fishes, the relation between the phylogenesis and the appearance of herma-
phroditic fishes is not obvious in general. However, it has been considered
that the evolution from dioecious to hermaphrodites has occurred (Smith 1975).
Ghiselin (Ghiselin 1969) and Warner (Warner 975a; Warner 1984) constructed
and analyzed the size-advantage model, and suggested that if mating system is
polygamy and large males can make mating with many females, then hermaphroditic
individuals which can make reproductive activity as female in small size are more
advantageous than dioecious individuals. Consequently, they theoretically con-
jectured that the evolution from dioecism to hermaphrodite has occurred. In
labroid fishes, indeed, there are many monandric species. How do the initial
males make mating? Why are there diandric species in labroid fishes? Initial
male of labroid fish makes the two types of mating behaviour. We call one
the sneaking, and the other the group spawning. There are two kinds of the
sneaking: One is such that the initial phase males invade into the territory of
terminal phase male and watch for the mating moment by terminal phase male.
At a mating moment, initial phase male rushes into the pair and fertilizes the
spawned eggs by shedding gametes into the water. Another is such that the
initial phase males follow a female into a territory. When the female tries to
court the territory owner, the initial male makes mating with the female by
tactile stimulation. In this paper, we call these two types of mating behaviour
the sneaking. In contrast, the group spawning is made between group consist-
ing of initial phase males and a female. Those initial phase males pursue the
female in the group and subject her to spawn in the group by frequent tactile
stimulation.

The reproductive activity of initial phase males could be considered to be
also reflected to their proportion in the whole population. In case of Pseu-
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dolabrus japanicus with the small proportion (6%) of initial phase males, only
the sneaking is observed, while, in case of Halichoeres tenuispinis with the large
proportion (50%), the group spawning is mainly observed (Nakazono 1979).
Some labroid fish has the proportion of initial phase males and the mating be-
haviour which be affected by the property of habitat, for instance, as in case
of Thalassoma bifasciatum (Mayr 1972; Ronbertson and Warner 1978; Warner
and Hoffman 980a; Warner and Hoffman 980b; Warner and Ronbertson 1978;
Warner and Leigh 1975).

Warner and Hoffman (Warner and Hoffman 980a; Warner and Hoffman
980b) studied how the population of the terminal and the initial phase males
of T. bifasciatum changes as the local population gets larger. Local popula-
tion could be considered in proportion to the area of reef on which it is settled.
Warner et al. (Warner and Leigh 1975) suggested that the sex-change and the
color transition might be socially controlled in each local population. As the
local population gets larger, the proportion of terminal phase males tends to
decrease (see Fig. 1(a)) and the proportion of initial phase males to increase
(see Fig. 2), while the number of the terminal phase males tend to increase
(see Fig. 1(b)). Only for the local population with the size greater than 200,
the group spawning was observed, and it was more likely to be observed as local
population gets larger. In the local population with the size less than 200, the
sneaking was observed.

In labroid fishes, terminal phase males can efficiently control females of their
mating group whose size is small, so the successful matings of initial phase males
with the sneaking behaviour from such mating group is expected small. As the
mating group size gets larger, terminal phase males could not efficiently control
females so that the successful matings of initial phase males with the sneaking
behaviour is expected to increase. We can consider that the difference of the
size distribution of mating groups could cause to change the expected successful
matings of the sneakers.

Hirata and Seno (Hirata and Seno 1996) considered how the spatial size dis-
tribution of territories depends on the spatial distribution of resource related
to the mating activity, constructing and analyzing the mathematical model.
Especially, they considered the territories made by males for purposes of mat-
ing and the spatial distribution of females. They considered that the mating
group is formed in the territory of each territorial male, and its size signifi-
cantly depends on the territory size. They introduced the ranking order among
territories. When the spatial density distribution of females is given, provided
that each territorial male could select their territory size to maximize its mating
success, theoretically the expected size distributions of territories and mating
groups is determined. They suggested that the spatial size distribution of terri-
tories considerably depends on how the resource related to the mating activity,
including the female density, is distributed in space. That is, the mating groups
have the various size distribution according to the spatial density distribution
of resources.
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In Chapter 2, we consider how the size distribution of mating groups is
related to the existence of sneakers. We consider the population in which male
has alternative two different mating strategies. One is to make a mating group
of females in its territory. Another is to make the sneaking. Male with
the sneaking behaviour invades into the territory of another male and watches
for the mating moment by its territory owner. He joins a pair at a mating
moment and tries to make the mating with the female of it. In this paper, we
call these two mating strategies the mating group strategy and the it sneaking
strategy, and do males with each strategy the territorial male and the sneaker.
In Chapter 2, we construct and analyze a mathematical model for the invasion
of sneaking strategy against the mating group strategy, and discuss how the
invasion success depends on the size distribution of mating groups.

When the sneaker population is established, how related is the size distri-
bution of mating groups to the frequency of sneakers in the population? In
Chapter 3, we construct and analyze a mathematical model for the coexistence
of the mating group strategy and the sneaking one, and discuss the dependence
of the frequency of sneakers on the size distribution of mating groups. We
analyze also the sex ratio derived from the model and imply that it would be
also significantly affected by the size distribution of mating groups.

2 Invasion of Sneaking Strategy

In this section, we consider the invasion of the sneaking strategy against the
mating group strategy.

2.1 ASSUMPTIONS

Reproductive Behaviour of Territorial Male

Territorial male forms the mating group of females. The frequency dis-
tribution f(x) of mating group size x is now assumed to satisfy the following
conditions:

df(x)
dx

≤ 0 (1)

f(x) > 0 (2)

∫ max

min

f(x)dx = 1, (3)

where min and max denote the minimum and the maximum mating group
sizes to be considered. We assume that f(x) continuous function in [min,
max]. Each territorial male makes mating with females of own mating group.



5

Female makes mating only one in a mating season. We consider the successful
matings as the number of mating in a mating season. As the territorial male
keeps the large mating group size, he would spend the greater amount of time
and energy to keep its own mating group and to keep females in its territory.
In this reason, the available time and energy for matings would decrease. So,
now, we assume that territorial male with mating group size x can obtain the
mating success A(x) in a mating season, which satisfy the following conditions:

dA(x)
dx

≥ 0 (4)

0 ≤ A(x) < +∞. (5)

Indeed, in labroid fishes, Moyer and Yago (Moyer and Yogo 1982) suggested that
territorial males at the center of the spawning site can experience significantly
higher successful matings than those at the periphery. Each territorial male
make mating with females of own mating group We assume that female make
mating only one in a mating season.

We consider the fitness as the expected number of offsprings which survive to
the next mating season, and let Wm(x) denote the fitness function of territorial
male with mating group size x.

Reproductive Behaviour of Sneaker

Sneakers are assumed to have the common mating behaviour: Sneakers
could make sneaking at each of mating moments by the territorial male. Only
one sneaker could make sneaking at each of any mating moments by territorial
male. Sneaker is wandering at random around the habitat space and is assumed
to encounter a mating moment with probability α.

The probability of sneaking success is assumed to depend on the size of the
mating group where the mating occurs. As the mating group size gets larger,
the probability of sneaking success would increase. Territorial male keeps on
the alert for the sneaker trying to make the mating activity. That is, if the
territorial male keeps on the intense alert for the sneaker, the frequency of the
successful sneakings would decrease, while that of the successful matings would
decrease, too. In labroid fishes, the reproductive activity is made during the
specific period of day in the mating season. Therefore, if territorial male tries to
mate with the more females, he could keep on the less alert for the sneakers. So,
indeed, it is observed that the labroid fishes have such tendency that territorial
male makes mating even when the sneaker exists very near the mating site.
Sufficient frequency of mating chances could increase the expected fitness gain,
even though its loss due to the sneaking would be expected large.

The probability that the sneaker succeeds in sneaking at a mating moment
in the mating group with size x is now assumed to be given by p(x) which
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satisfies the followings:

dp(x)
dx

≥ 0 (6)

p(0) = 0 (7)

p(x) ≤ 1. (8)

When the sneaking is successful, the sneaker can fertilize a portion σ of the
average number of eggs per mating.
Let Ws denote the fitness function of sneaker within the considered population.

2.2 MODELING

General Model

At first, we consider the population in which all males take the mating group
strategy. We consider the fitness Wm(x) of a male with the mating group size
x in the following form:

Wm(x) = lmA(x)Ef for x ∈ [min, max], (9)

where Ef represents the expected number of spawned eggs per female per mat-
ing, and lm does the survival rate of a eggs fertilized by territorial male till the
next mating season. A(x) indicates that the number of mating of territorial
male with the mating group size x, we say it the successful matings. We consider
that the sufficiently small number of sneakers initially invade in the population
in which all males take the mating group strategy. Then we consider the fitness
Ws of a sneaker as follows (see Appendix A):

The probability that a territorial male is the male with the mating group
in the range of size [x, x + dx] is given by f(x)dx. The total population
of territorial male is given now by Mm, so that the total expected number of
territorial males with the mating group in the range of size [x, x + dx] is given
by

Mmf(x)dx.

Therefore, the total expected successful matings for the territorial male with
the mating group in the range of size [x, x + dx] is given by

A(x)Mmf(x)dx.

Therefore, the expected successful matings is given by∫ max

min

A(x)Mmf(x)dx. (10)
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The probability that a mating is encountered by the sneaker is given by α.
Therefore, the probability that a mating in the mating group size x is succeeded
in sneaking is given by

αp(x).

If the sneaking is successful, the sneaker can fertilize a portion σ of the average
number of eggs Ef per mating. So the expected number of eggs fertilized by a
sneaker per mating is given by

αp(x)σEf .

The expected number of eggs sneaked by a sneaking is∫ max

min

αp(z)σEf
A(z)Mmf(z)∫ max

min A(y)Mmf(y)dy
dz. (11)

The expected number of eggs deprived by a sneaker in a mating season is given
by ∫ max

min

αp(z)σEfA(z)Mmf(z)dx.

Considering that survival rate ls of the eggs fertilized by the sneaker till the
next mating season, we can obtain ws as follows:

Ws = ls

∫ max

min

αp(x)σEf A(x)Mmf(x)dx. (12)

where Mm represents the total population of territorial males with the territory,
and ls does the survival rate of a egg fertilized by a sneaker till the next mating
season.

Now, the territorial male has the fitness Wm as shown in Fig. 3. If

Ws < Wm(x) for ∀x ∈ [min, max], (13)

then the sneaking strategy can not invade. If the male individual makes the
mating behaviour as sneaker, it is expected for him to obtain the fitness Ws as
shown in Fig. 3. The fitness of sneaker is higher then that of the territorial
male which has the mating group in the range of size [min, x∗], and less than
it in the range of size [x∗, max]. Then we consider that the frequency of the
sneakers could increase in the population, that is, the sneaking strategy can
invade against the mating group strategy. More generally speaking, if

∃x ∈ [min, max] s.t. Ws > Wm(x), (14)

the sneaking strategy can invade.

Frequency Distribution Function of Mating Group Size
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We consider the following frequency distribution function f(x) of mating
group size x, which satisfies (1), (2) and (3) (Fig. 4):

f(x) =
B

e−Bmin − e−Bmax
e−Bx for x ∈ [min, max], (15)

where B is a positive constant related with the extent of the variance of the
distribution. As B gets larger, the variance of the distribution gets smaller.
As B → 0, f(x) converges to an x-independent constant 1/(max−min), that is,
to the uniform distribution. On the other hand, as B → +∞, f(x) converges
to the dirac’s delta function δ(min − x), so that every mating groups have the
identical size min.

Probability Function of Sneaking Success

We introduce the following sneaking success probability function p, which
satisfies (6), (7) and (8) (Fig. 5):

p(x) = 1 − e−βx for x ∈ [min, max], (16)

where β is a positive constant. As x increases, p(x) monotonically approaches
1 from the below. As β gets larger, the easiness of the sneaking success gets
larger. As β → +∞, p(x) uniformly converges to the constant probability 1.

Function of Successful Matings

We consider the following function a of the successful matings of territorial
male with mating group size x, which satisfies (4) and (5):

A(x) = x for x ∈ [min, max]. (17)

2.3 Analysis

In this section, we analyze the fitness Wm(x) and Ws given by (9) and (12).
Now, Wm(x) and Ws are rewritten as follows:

Wm(x) = xEf lm for x ∈ [min, max] (18)

Ws =
BασEf lsMm

e−Bmin − e−Bmax

∫ max

min

ye−By(1 − e−βy)dy. (19)

When Wm(x) and Ws satisfy (14), the sneaking strategy can invade against
the mating group strategy. Now, Wm(x) monotonically increases in terms of
x. So if

Ws > min
x∈[min,max]

Wm(x) = Wm(min), (20)
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the sneaking strategy can invade.
We consider the dependence of the invasion success of the sneaking strategy

on the range of mating group size, that is, on min and max. We can show that
Ws monotonically increases in terms of max (see Appendix B). If Wm(min)
and Ws(min, max) satisfy

Wm(min) ≤ lim
max→min

Ws(min, max), (21)

then Wm(min) ≤ Ws(min, max) for any max. (21) is rewritten in the following
form:

e−βmin ≤ 1 − E

where

E =
lm

ασlsMm
=

lmEf < x >

ασEfMm < x >

< x >=
∫ max

min

A(y)f(y)dy.

lmEf < x > represents the mean fitness of territorial male in terms of the
mating group size x. ασEfMm < x > represents the fitness of sneaker with the
maximum success probability of sneaking, p(x) = 1 for any x. That is, it means
the maximum fitness of sneaker. Therefore, we can consider that the parameter
E represents the advantage of the sneaking strategy against the mating group
strategy. We can consider that, when E < 1, the sneaking strategy has more
advantage than the mating group strategy, while, when E > 1, the mating
strategy does than the sneaking strategy.

When E < 1 and min ≥ K = log(1 − E)−1/β , Wm(min) ≤ Ws(min, max)
for any max. When E < 1 and min ≤ K or E > 1,

Wm(min) > lim
max→min

Ws(min, max).

In this case, since Ws(min, max) monotonically increases in terms of max, if
min for which Wm(min) and Ws(min, max) satisfy

Wm(min) < lim
max→+∞Ws(min, max) (22)

exists, then the positive root max∗ for Wm(min) = Ws(min, max) for such min
uniquely exists, and Wm(min) ≤ Ws(min, max) for max ≥ max∗. For min
satisfies

Wm(min) ≥ lim
max→+∞Ws(min, max),

Wm(min) > Ws(min, max) for any max.
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We classify the invasion success of the sneaking strategy into the case when
E < 1 and when E > 1.

At first, we consider the case when E < 1. The dependence of the invasion
success on the minimum mating group size min and the wide (max − min)
of the frequency distribution of females changes according to B and β. The
parameter B represents the extent of the variance of the frequency distribution
of mating group size, and β does the easiness of sneaking. As B gets larger,
the variance decreases. As β gets larger, the easiness increases.

We classify the parameter region of B and β into the two region which are I
and II (see Fig. 6(a)). For B and β in the region of I in Fig. 6(a), we show
the dependence of the invasion success on min and (max−min) in Fig. 6(a-1),
and for II, in Fig. 6(a-2). Fig. 6(a-2) and (a-2) respectively correspond to
the larger and the smaller variances.

The common property when E < 1 is that the critical value K , which
is given by log(1 − E)−1/β , exists, and for min greater than K, the sneaking
strategy can invade for any width (max − min).

Fig. 6(a-1) shows that, for B and β in the region of Iin 6(a), when min < K,
the sneaking strategy can not invade for sufficiently small width (max − min).
Furthermore, there is the critical value J of the width (max − min), and for
(max−min) > J , the sneaking strategy can invade for any min. For the width
(max − min) < J , the sneaking strategy can invade for intermediate value of
min.

For II, as shown in Fig. 6(a-2), there are the critical values of min, say
min1 and min2 (min1 < min2). For min of the range of size [min1, min2],
the sneaking strategy can not invade for any width (max − min).

We show the dependence of the boundary curve for the invasion success on
B and β in Fig. 6(b). Fig. 6(b) shows that the region of min and (max−min)
for which the sneaking strategy can invade gets small as B gets larger and β
does smaller. That is, the invasion of the sneaking strategy becomes more
different as the variance of the frequency distribution of mating group sizes and
the easiness of sneaking gets smaller.

Additionally, we show the dependence of the invasion success on min and
max in Fig. 7(a). For some values of B and β, as shown in Fig. 7(a), there
is the values of max, say max1 and max2 (max1 < max2). For max in the
region of size [max1, K] and [K, max2], the necessary region of min for the
invasion success is divided into discontinuous region (see Fig. 7(a) and (b)).

Next, we consider when E > 1. We show the dependence of invasion success
on min and (max − min) in Fig. 8(a). As shown in Fig. 8(a), there is the
critical value min∗, and for min > min∗, the sneaking strategy can not invade
for any width (max − min). For min < min∗, a certain width between the
minimum and the maximum mating group size is necessary for the invasion
of the sneaking strategy , and the necessary width monotonically increases as
min gets larger. When E > 1, min∗ uniquely exists (see Appendix C). min∗

monotonically decreases as B gets larger and β does smaller. As B → 0+,
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min∗ becomes +∞, and β → +∞, it does 0 (see Appendix D). As β → 0+,
min∗ becomes 0. As β → +∞, min∗ becomes a constant 1/{B(1 − E)} (see
Appendix D). The boundary curve for the invasion success of sneaking strategy
depends on B and β. The dependence of its curve on B and β is shown in Fig.
8(b). Fig. 8(b) shows that the boundary for the invasion success of sneaking
strategy moves to left as B gets larger, or β does smaller. Fig. 8(b) shows
that, similar to the case when E < 1, the invasion of the sneaking strategy
becomes more different as the variance of the frequency distribution of mating
group sizes and the easiness of sneaking gets smaller.

the frequency of the territorial males with large mating group size decrease.
So as B gets larger, succeeding in sneaking is difficult. Therefore, it is considered
that the fitness of the sneaker will decrease, and the invasion of the sneaking
strategy against the mating group strategy is more difficult.

2.4 DISCUSSION

In this section, we constructed and analyzed the mathematical model for the
invasion of the sneaking strategy against the mating group strategy. We an-
alyzed the dependence of the invasion success on the frequency distribution of
mating group size, that is, on the parameter B, min, max and (max − min).

When E < 1, as shown in Fig. ??, for sufficiently large min, the sneaking
strategy can invade, while, when E > 1, as shown in Fig. 8, it can not invade.
The opposite results are obtained in these two cases. We assume that the
probability of sneaking success gets large as the mating group size gets larger.
As min gets larger, the frequency of territorial males with large mating group
size increases. Therefore, the mean probability of sneaking success increases
as min gets larger. While, since Wm(x) monotonically increases in terms of
x, Ws(min) monotonically increases as min gets larger. That is, as min gets
larger, both territorial with minimum mating group size and sneaker can obtain
the more benefit. However, in the case when E < 1, the sneaking strategy is
more advantage than the mating group strategy, in the case when E >, it is
not. Therefore, these opposite results are obtained.

As the extent of variance of the frequency distribution of mating group
size, which is represented by B, gets larger, the frequency of the territorial
males with large mating group size decreases, and with small mating group size
increases. We assume that the probability of the sneaking success depends on
the mating group size, that is, as the mating group size gets larger, the mean
probability increases. We showed that B gets larger, the sneaker turned to
disadvantage, and the invasion of the sneaking strategy against the mating group
strategy becomes difficulty. We can consider that B represents the preference of
females against the specific mating site and territorial male. Indeed, in labroid
fishes, females prefer the specific spawning sites on the outer or the downcurrent
edges of reefs (Threshoer 1984) and tend to gather at a specific territorial male
selected by the position of the territory, the body size and the color. In this
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case, a specific male, which is strong, large and with vivid color, can obtain
greater benefit than other males. Under such strong selection against male, the
sneaking strategy is likely to appear, however, our result suggests the opposite
argument.

3 Frequency of Sneakers at the Equilibrium State

3.1 ASSUMPTIONS AND GENERAL MODEL

In this section, we consider the coexistence of mating group and sneaking strate-
gies. Additionally to the assumptions in the previous modelling for the invasion
success of sneaking strategy, we assume the following assumptions:
The population of territorial males Mm and sneakers Ms are at the stationary
state. We consider the successful matings as the mating number in a mating
season. Female makes mating only one in a mating season. The territorial
male with the mating group size x can obtain the successful matings

A(x)D(Ms, Mm) (23)

where D(Ms, Mm) satisfy the following conditions:

∂D(Ms, Mm)
∂Ms

≤ 0
∂D(Ms, Mm)

∂Mm
≥ 0 (24)

0 ≤ D(Ms, Mm) ≤ 1. (25)

Territorial male must defend females from sneakers, however it spend a avail-
able time and energy for the mating activity. As the sneaker population gets
larger, territorial males must spend much time and energy to defend females
from sneakers. While, as the population of territorial males gets larger, the
number of sneakers that gather per territorial male must get small, that is, the
time and energy which must be spent to defend females from sneakers should
decrease. Therefore, we assume that the successful matings of territorial male
monotonically decrease in terms of Ms, and monotonically increases in terms of
Mm, and (24) and (25) correspond to it.

As the sneaker population gets larger, the probability that a mating mo-
ment is encountered by sneakers becomes larger so that the expected number of
sneakers per mating moment increases. That is, as the sneaker population gets
larger, territorial male comes not to be able to efficiently defend paired female
from sneakers , and the probability of sneaking success per mating moment in-
creases. Furthermore, as the mating group size gets larger, the probability of
sneaking success increases. In the assumptions in the previous modeling, we
assume the probability of sneaking success the probability that sneaker succeeds
in sneaking at a mating moment when it is encountered by sneakers, while, in
this section, we does it the probability that a mating moment is encounted and



13

succeeded in sneaking by whole sneakers. The probability p(x, Ms) that a
mating in the mating group with size x is successfully sneaked conditions:

∂p(x, Ms)
∂x

≥ 0
∂p(x, Ms)

∂Ms
≥ 0 (26)

0 ≤ p(x, Ms) ≤ 1. (27)

We consider the fitness of territorial male Wm(x) as follows (see Appendix
E):

When the sneaking is successful, the sneaker can fertilize a portion σ of the
average number of eggs per mating. So the expected number of eggs deprived
by sneakers per mating in the mating group with size x is

p(x, Ms)σEf . (28)

Therefore, in a mating season, the expected number of eggs that the whole
sneakers deprive a territorial male with mating group size x is given by

A(x)D(Ms, Mm)p(x, Ms)σEf . (29)

So the expected number of eggs that a territorial male with mating group size
x can fertilize in a mating season.

A(x)D(Ms, Mm){1 − p(x, Ms)σ}Ef . (30)

By considering the survival rate lm of the eggs fertilized by territorial male till
the next mating season, we can define Wm(x) as follows:

Wm(x) = lmA(x)D(Ms, Mm){1 − p(x, Ms)σ}Ef (31)
for x ∈ [min, max] (32)

Next, we consider the fitness of sneaker Ws. The probability that a territo-
rial male is in the range of size [x, x + dx] is given by f(x)dx. So the expected
number of territorial males in the range of size [x, x + dx] is given by

Mmf(x)dx. (33)

From (29) and (33) the expected number of eggs of which the whole sneakers
can deprive the whole territorial males in the range of size [min, max] in a
mating season is given by∫ max

min

A(x)D(Ms, Mm)p(x, Ms)σEfMmf(x)dx. (34)

Considering the survival rate ls of eggs fertilized by sneakers till the next mating
season, we can obtain Ws per sneaker as follows:

Ws = ls
1

Ms

∫ max

min

A(x)D(Ms, Mm)p(x, Ms)σEfMmf(x)dx (35)
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Additionally, we consider the expected fitness Wf of female Wf as the expected
number of offsprings which survive to the next mating season:

The probability that a female in the mating group with size x can successfully
mate is given by

A(x)D(Ms, Mm)
x

. (36)

If a female can mate with a territorial male with mating group size x, the
expected number of eggs fertilized by the sneaker per mating is given by (28),
and that fertilized by a territorial male is given by

{1 − p(x, Ms)σ}Ef . (37)

Considering the survival rates lm and ls of eggs fertilized by territorial male and
sneaker, when a female can mate in the mating group with size x, the expected
number of survival eggs spawned by her is given by

lsp(x, Ms)σEf + lm{1 − p(x, Ms)σ}Ef . (38)

From (36) and (38), we can define the expected number Wf (x) of survival eggs
of a female when she is in the mating group with size x as follows:

Wf (x) =
A(x)D(Ms, Mm)

x
{lsp(x, Ms)σEf + lm{1 − p(x, Ms)σ}Ef}.

Therefore, the expected number of survival eggs of a female when she is in the
mating group in the range of size [min, max] is given by

Wf =
∫ max

min

Wf (x)f(x)dx.

=
∫ max

min

A(x)D(Ms, Mm)
x

(39)

{lsp(x, Ms)σEf + lm{1 − p(x, Ms)σ}Ef}f(x)dx.

We assume that male can select mating activity as either sneaker or terri-
torial male. While female can select reproductive activity as either female or
territorial male. It corresponds to the sex-change observed in labroid fishes
that females make mating as territorial male. Females can not make mating
activity as sneaker. That is, sneaker is composed of born males, and territorial
males can be composed of born males and sex-changed males from females.

We assume the following assumption:

Assumption

Female and sneaker change into territorial male at the minimum mating group
size for which each fitness equals to the fitness of territorial.
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Probability Function of Sneaking Success

In this paper, we consider the following sneaking success probability function
p, which satisfies (26) and (27):

p(x, Ms) = α(1 − e−βx)(1 − e−δMs) for x ∈ [min, max], (40)

where α(≤ 1), β and δ are positive constants, and as those parameters gets
larger, the easiness of the sneaking success gets larger.

Function of Successful Matings

We consider the following function A(x) for the successful matings for a
territorial male with mating group size x (Fig. 9):

A(x) = c(1 − e−ax) for x ≥ 0, (41)

where c and a are positive constants to satisfy ca ≤ 1. c indicates that the
maximum number of mating made in a mating season. As a gets larger, the
easiness of mating with females gets larger.

3.2 Analysis

In this section, we analyze the model (3.1), (35) and (39). (3.1), (35) and (39)
are rewritten as follows:

Wm(x) = c(1 − e−ax)D(Ms, Mm){1 − ασ(1 − e−δMs)(1 − e−βx)}Ef lm (42)
for x ∈ [min, max]

Ws = Mm
D(Ms, Mm)(1 − eδMs)

Ms

Bcασ

e−Bmin − e−Bmax
Ws,1Ef ls (43)

Wf =
B

e−Bmin − e−Bmax

∫ max

min

e−Bx WF (x)
x

dx (44)

where

Ws,1 =
∫ max

min

e−Bx(1 − e−ax)(1 − e−β)dx

WF (x) = a(1 − e−ax)D(Ms, Mm)

{1 − ασ(1 − e−δMs)(1 − e−βx)(1 − ls
lm

)}Ef .

Existence of Equilibrium State
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In this section, we consider how relation Wm(x), Ws and Wf have when the
frequency of sneakers can be at the equilibrium state. Since we assume that
female and sneaker change into territorial male at the minimum mating group
size for which each fitness equals to the fitness of territorial male. Therefore,
Wm(x), Ws and Wf satisfy that Wm(min) = Ws or Wm(min) = Wf . Wm(x)
is not necessary monotonically increase in terms of x There is the case that
Wm(x) has the maximum and the minimum in terms of x (see Appendix F).
When x = 0, Wm(x) = 0 and dWm(x)/dx > 0, so for the mating group size
at which female and sneaker change into the territorial male the derivation of
Wm(x) is positive. At first, we consider the case when Wm(x) monotonically
increases in terms of x in [min, max].

At first, we consider when Wf ≥ Ws. When Ws = Wm(min) (see Fig.
10(a)), even if males that make mating as territorial male with smaller mating
group size than min appear, they can not obtain higher fitness than males
making mating as sneaker. So the frequency of such males in the population
can not increase. On the contrary, even if males that make mating as sneaker
at the larger mating group size than min appear, their fitness was less than
territorial males with such mating group size. So the frequency of such males
in the population can not increase. Therefore, when Ws = Wm(min), we
consider the mating strategy of male that he makes mating as sneaker in smaller
mating group size than min and in the range of mating group size [min, max] as
territorial male can be the equilibrium state. That is, in this case, we consider
that the frequency of sneakers can be at the equilibrium state.

When Ws = Wm(min), concerning to the fitness of female, there are two
cases, one is when Wm(min) < Wf ≤ Wm(max), the other is when Wf >
Wm(max). When Wm(min) < Wf ≤ Wm(max) (see Fig. 10(a)), even if
females that make mating as territorial male with smaller mating group size
than x1 appear, they could not obtain higher fitness than females. On the
contrary, even if females that make mating as female at the larger mating group
size than x1 appear, they could not obtain higher fitness than females making
mating as territorial male with such mating group size. So when Wm(min) <
Wf ≤ Wm(max), we can consider that the reproductive strategy of female
that she makes mating as female in smaller mating group size than x1 and
does mating as territorial male in larger mating group size than x1 can be the
equilibrium state. Therefore, in this case, we can consider that territorial males
with mating group in the range of size [min, x1] are composed of born males and
in the range of size [x1, max] are of both born males and sex-changed males.

Next, we consider when Wf ≤ Ws. In this case, similarly to the case when
Wf > Ws, we can show that the frequency of sneakers can be at the equilibrium
state only when Wf = Wm(min).

When Wf = Wm(min), concerning to the fitness of sneaker, there are two
cases, one is when Wm(min) < Ws ≤ Wm(max), the other is when Ws >
Wm(max).
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When Wm(min) < Ws ≤ Wm(max)(see Fig. 10(b)), we consider that ter-
ritorial males with mating group in the range of size [min, x2] are composed
of sex-changed males and in the range of size [x2, max] are of both born and
sex-changed males.

When Ws > Wm(max), sneaker can obtain higher fitness than territorial
males with any mating group size. So we consider that territorial male are
composed of only sex-changed males .

Next, we consider the case when Wm(x) does not monotonically in terms of
x in [min, max]. When Wf ≥ Ws, there is the case as shown in Fig. 10. In
this case, male change from sneaker to territorial male at min. In the range of
size [min, x3] and [x4, max], the territorial male can obtain higher fitness than
the sneaker. However, in the range of size [x3, x4], the sneaker can obtain the
higher fitness than the territorial male. In labroid fishes, the sneaker can change
into the territorial male, and its color also changes. It has not been observed
that the terminal phase male changes into the initial phase male, and it is not
likely to be in aspect of physiology. Therefore, we consider that territorial
males also keep territory in the range of size [x3, x4]. In this case, we consider
that the mating strategy of male that he makes mating as sneaker in smaller
mating group size than min and in the range of size [min, max] as territorial
male can be the equilibrium state.

Similarly, when Wf < Ws, we consider that the reproductive strategy of
female that she makes mating as female in smaller mating group size than min
and in the range of size [min, max] as territorial male can be the equilibrium
state.

From the argument in this section, when female and sneaker change into ter-
ritorial male at the minimum mating group size for which each fitness equals to
the fitness of territorial male, the frequency of sneakers can be at the equilibrium
state.

For a given the frequency distribution of mating group size, we can classify
the case that the frequency of sneakers can be at the equilibrium state into
following two cases:

Case A:
{

Wf ≥ Ws

Ws = Wm(min) (45)

Case B:
{

Wf ≤ Ws

Wf = Wm(min). (46)

Parameter Region for the Equilibrium State

Along the argument in previous sections, the frequency of sneakers can be
at the equilibrium state in Case A and Case B.

At first, we consider the Case A.
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Considering the condition that dW/dx(min) > 0 and Case A exists, we
show the parameter region of min and max for which the frequency of sneakers
can be at the equilibrium state in Case A in Fig. 11 and 12. When ασ ≤
1/(1+e−2), Wm(x) monotonically increases in terms of x. So any min satisfies
dW/dx(min) > 0. The parameter region of min and max for Case A is shown
in Fig. 11. There is a boundary value of min, say min1. The frequency of
sneakers can be at the equilibrium state in Case A for any max for min ≤ min1,
and it could not be for any max for min > min1. For min and max of the
region of ThetaI in Fig. 11 , Ms can exist in Ms > 0 (see Table. 13). For min
and max of ΘII in Fig. 11 , a positive value M∗

s,1 exists and Ms could exist in
Ms > M∗

s,1. When ασ > 1/(1 + e−2), we show the parameter region of min
and max for Case A in Fig. 12. In this case, Wm(x) monotonically increases
in terms of x for a and β of the region PhiA in Fig. 12(a). For a and β of ΦA,
when β is small, the parameter region of min and max for Case A has the form
as shown in Fig. 11. For min ∈ [min1, min2], when max is sufficiently large,
Case A can not exist. While, when β is large, it is shown in Fig. 12(b). Case A
can exist for any min and max, while, for min ≥ min4, it can not exist for any
max. For a and β of ΦB in Fig. 12(a), Wm(x) has the maximum and minimum
in terms of x. For a and β of ΦB, the parameter region of min and max for
Case A is shown in Fig. 12(c). For min and max of ΘIII , the positive values
M∗

s,1 and M∗
s,2 (M∗

s,1 < M∗
s,2) exist, and Ms can exist in M∗

s,1 < Ms < M∗
s,2.

From Ws = Wm(min) and Wf > Wm(min), in Case A, Mm and Ms have
the following relation (see Appendix G):

Mm = R(Ms). (47)

47 indicates that Ms is any value in each range shown in Fig. 13, and Mm is
uniquely determined by R(Ms). When ασ(1−e−βmin) ≤ 1/2, R(Ms) monoton-
ically increases in terms of Ms (see Fig. 14(a)), while, when ασ(1 − e−βmin) >
1/2, as shown in Fig. 14(b), it has the minimum in terms of Ms.

Next, we consider Case B. The parameter region of min and max for Case
B is ΘII and ΘIII in Fig. 11 and 11. For min smaller than 1, Case B could
not exist for any max. From Wf = Wm(min) and Ws ≥ Wm(min), in Case B,
a value of Ms, say M∗

s,1, uniquely exist for min and max in ΘII or ΘIII and
Mm and Ms have the following relation:

Ms = M∗
s,1 (48)

Mm ≥ R(M∗
s ).

That is, the population of sneakers is uniquely determined by M∗
s,1, and the

territorial population can be any value larger than R(M∗
s,1).

For min and max of the region ΘII and ΘIII , Case A and Case B coexist.
For min and max of ΘII , we show the relation of between Case A and Case B
in Fig. 15. There are two type of the equilibrium state which depend on the
relation between the fitness of sneaker and female.
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We consider the ratio of sneakers and territorial males and the sex ratio in
the following sections.

Ratio of Sneakers and Territorial Males

In this section, we consider the ratio of sneakers and territorial males, which
is given as following form:

Mra =
Ms

Mm + Ms
. (49)

Mra means that the proportion of territorial males in total population of males.
For Case A, Ms can be any value of the region which is classified into some
cases in Table 13, and Mm is given by R(Ms). Therefore, for Case A, (49) is
given by following form:

Mra =
Ms

R(Ms) + Ms
. (50)

(50) monotonically increases in terms of Ms, and as Ms → +∞, it converges to
a positive value (see Appendix G).

For Case B, a positive value M∗
s uniquely exists, and Mm can be any value

greater or equal to R(M∗
s ). So (49) is given by

Mra =
M∗

s

Mm + M∗
s

. (51)

In each case, we consider the dependence of Mra on the frequency distribution
of mating group size, that is, on B, max and min. The parameter B represents
the extent of the variance of the frequency distribution of mating group size. As
B gets larger, the variance decreases. The parameter max and min respectively
represent the minimum and the maximum mating group size. In the following
analyses, we use the parameters min and max in ΘII when ασ > 1/(1+ e−2).

At first, we consider how Mra depends on the parameters B, max and min
when the population of territorial males Mm is given. We show the dependence
of Mra for Case A and Case B on B, max and min in Fig. 16 by numerical
calculation. Fig. 16(a) show the dependence of Mra on B. As B gets larger,
the extent of variance of the frequency distribution of the mating group size
gets small. In the range of large variance, as the variance gets smaller, Mra

decreases, that is, the population of sneaker decreases. In the range of small
variance, for Case A in which the fitness of female is higher than the sneaker, as
the variance gets smaller, Mra increases, while, for Case B in which the fitness
of female is less than the sneaker, it decreases.

Fig. 16(b) show the dependence of Mra on max. In both Case A and Case
B, as max gets larger, in the range of small max, Mra increases rapidly, while,
in the range of sufficiently large max, it takes a constant value. On the other
word, however large max is, Mra can not beyond a constant value.
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Fig. 16(c) show the dependence of Mra on min. In the range of sufficiently
small min, only Case A exists, as min gets larger, Mra decreases. In the
range of sufficiently large min, as min gets larger, Mra for both Case A and B
increases.

As min gets larger, the frequency of territorial male with larger mating group
increases, and the average probability of sneaking success also does. Therefore,
the sneakers turn to advantages.

It is considered that, in the range of large min, sneakers decrease the com-
petition for a mating in them by decreasing the population of themselves, and
increase their fitness. While, in the range of small min, sneakers intercept
the matings of territorial male by increasing their population and decrease the
fitness of territorial males, and increase their fitness relatively.

Next, we consider how Mra depends on the population of territorial males
when the frequency distribution of mating group size is given, that is, on Mm

when B, max and min are given. We show the dependence of Mra on Mm

in Fig. 17. In Case A, we show that Mra monotonically increases in terms
of Mm. In Case B, M∗

s is determined independent on Mm, so Mra obviously
monotonically decreases in terms of Mm.

Next, we consider how Mra depends on B, max and min when the popu-
lation of sneakers Ms is given. In Case A, we can obtain the similar result to
one as shown in Fig. 16 which show the dependence of Mra on B, max and
min when the population of territorial males Mm is given. As B and min
gets larger, at first, Mra monotonically decreases, and when B becomes large,
it monotonically increases. On the contrary, as max get larger when max is
small, Mra monotonically increases, while, when max is large, it monotonically
decreases.

In Case B, Ms is uniquely determined by M∗
s , and Mm is any value in

Mm ≥ R(M∗
s ). Therefore, in Case B, considering the dependence of Mra on

B, max and min when Ms is given corresponds to considering the dependence
of it on these parameters when Mm is given, and it is shown Fig. 16.

Sex Ratio

In this section, we consider how the sex ratio depends on the frequency
distribution of mating group size. We consider the population of females Mf

as the total population of composing the mating groups. Then Mf is given by

Mf = MmMf0 (52)

where

Mf0 =
∫ max

min

xf(x)dx.

We consider the sex ratio as following form:

Sra =
Mf

Mm + Ms
=

MmMf0

Mm + Ms
. (53)
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In Case A, the sex ratio is as follows:

Sra =
R(Ms) + Ms

R(Ms)Mf0
. (54)

Sra monotonically decreases in terms of Ms. As Ms → 0+., Sra becomes Mf0,
while, as Ms → +∞, it converges to a positive value S∗

ra.
In Case B, the sex ratio is as follows:

Sra =
MmMf0

Mm + M∗
s

. (55)

Mm can be any value greater than or equal to R(M∗
s ). For Case B, Sra

monotonically increases in terms of Mm. As Mm → +∞, Sra converges to
Mf0.

In each case, we consider the dependence of Sra on the frequency distribution
of mating group size, that is, on the parameters B, max and min.

At first, we consider how Sra depends on B, max and min when the pop-
ulation of territorial males Mm is given. We show the dependence of Sra on
B in Fig. 18(a-1) by numerical calculation. In the range of sufficiently small
variance of the frequency distribution of mating group size, for Case A in which
the fitness of female is higher than the sneaker, as the variance gets smaller, the
sex ration decreases, while, for Case B in which the fitness of female is less than
the sneaker, it increases.

Fig. 18(b) shows the dependence of Sra on max. In both Case A and Case
B, the sex ratio monotonically increases as max gets larger. In both Case A and
Case B, as max gets larger, in the range of small max, Mra increases rapidly,
while, in the range of sufficiently large max, it takes a constant value. On the
other word, however large max is, Mra can not beyond a constant value. As
max gets larger, the frequency of territorial males with large mating group size
gets large. So when Mm is given by a constant, the population of females gets
larger as max gets larger. As max gets larger, simultaneously, the population of
sneakers also changes. The population of sneakers has the same property to the
dependence of Mra on max shown in Fig. 17(b). From Fig. Mra-dep-Mm(b),
the population of sneakers has the maximum in terms of max. Therefore, it is
not trivial that the sex ratio monotonically increases as max gets larger.

We show the dependence of the sex ratio on min in Fig. 18(c). In Case A,
Sra monotonically increases as min gets larger, while, in Case B, it decreases.

As min gets larger, the frequency of territorial males with large mating group
size gets large, and the population of females will get large. The dependence of
the population of sneakers in Case B has the same property to the dependence of
Mra on min shown in Fig. 17(c). From Fig. 17(c), the population of sneakers
in Case B monotonically increases in terms of min. In Case B, the increase of
the population of sneakers will be more rapid than females, so it is considered
that the sex ratio does not monotonically increase.
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Next, we consider how the sex ratio depends on the population of territorial
males Mm when the frequency distribution of mating group size is given, that
is, when the parameter B, max and min are given. We show the dependence
of the sex ratio on Mm in Fig. 19. In Case A, the sex ratio monotonically
decreases as Mm gets larger, while, in Case B, it monotonically increases. As
the population of territorial males gets larger, the number of territories gets
larger. So the population of females gets large. Simultaneously, the population
of sneakers also gets changes according to the population of territorial males.
Fig. 19 indicates that there are two type of the dependence of the sex ratio
on the population of the territorial males in the same frequency distribution of
mating group size.

Next, we consider how the sex ratio depends on B, max and min when the
population of sneakers Ms is given. In Case A, we can obtain the similar result
to one as shown Fig. 18 which shows the dependence of the sex ratio on B, max
and min when the population of the territorial males Mm is given.

In Case A, considering the relation between Mf0 and 1, and between Sra

and 1, we can classify the sex ratio into the following three cases:

Case (a): Sra < 1 for ∀Ms > 0 (56)

Case (b): ∃Ms,1 s.t. 0 < Sra < 1 0 < Ms < M∗
s

Sra ≥ 1 Ms ≥ M∗
s

Case (c): Sra > 1 for ∀Ms > 0 (57)

Case (a) indicates that the sex ratio is less than 1 for any value of Ms > 0,
and Case (b) does that a positive value Ms,1 exists and it is less than 1 for
0 < Ms < Ms,1, and greater than or equal to 1 for Ms ≥ Ms,1. Case (c)
indicates that the sex ratio is greater than 1 for any value of Ms > 0.

When ασ < 1/(1 + e−2), we show the parameter region of min and max
for these three cases in Fig. 20(a). The parameter region of Ψa, Ψb and Ψc

respectively corresponds to Case (a), Case (b) and Case (c). When B > 1,
a positive value of min, say min1 = 1 − 1/B, exists, and for min less than
min1, the sex ratio is less than 1 for any max. Fig. 20 indicates that the sex
ratio is greater than 1 when both min and max are large, while, when both are
small, it is less than 1. As min and max gets larger, the frequency of territorial
males with large mating group size gets large. So as min and max gets larger,
the population of females get large. We show that the sex ratio monotonically
increases as min and max get larger in Fig. 18. The result shown in Fig. 20
corresponds to this argument.
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For a and β of ΦA when ασ ≤ 1/(1+ e−2), we show the parameter region of
min and max for the three cases in Fig. 20(b). For ΦB, it is same property.

Next, for Case B, considering the relation between Mf0 and 1, and between
R(M∗

s )Mf0/{R(M∗
s )+M∗

s } and 1 , we can classify the sex ratio into the following
three cases:

Case (a): Sra < 1 for ∀Mm ≥ R(M∗
s ) (58)

Case (b): ∃Mm,1 > R(M∗
s ) s.t. 0 < Sra < 1 M∗

m > Mm > R(M∗
s )

Sra ≥ 1 Mm ≥ M∗
m

Case (c): Sra > 1 for ∀Mm > R(M∗
s ) (59)

Case (a) indicates that the sex ratio is less than 1 for any value of Mm > R(M∗
s ),

and Case (b) does that a positive value Mm,1 > R(M∗
s ) exists and it is less than 1

for R(M∗
s ) < Mm < Mm,1, and greater than or equal to 1 for Mm ≥ Mm,1. Case

(c) indicates that the sex ratio is greater than 1 for any value of Mm > R(M∗
s ).

When ασ < 1/(1 + e−2), we show the parameter region of min and max
for these three cases in Fig. 21(a). The parameter region of Ψa, Ψb and Ψc

respectively corresponds to Case (a), Case (b) and Case (c). In this case, the
sex ratio is always greater than 1.

For a and β of ΦA when ασ ≤ 1/(1+ e−2), we show the parameter region of
min and max for the three cases in Fig. 21(b). When min is sufficiently small
or large, the sex ratio is greater than 1. While, for the intermediate value of
min, the sex ratio is less than 1. For ΦB, it is the same property.

3.3 Discussion

We analyzed a mathematical model for the coexistence of sneaking strategy and
the mating group strategy. We showed that there are two types of the equilib-
rium states. For these two cases, we considered how the frequency distribution
of mating group size depends on the ratio of sneakers and territorial males and
the sex ratio.

For example, we could obtain the result as shown in Fig. 16(a) and Fig.
18(a) for the dependence of the ratio of sneakers and the sex ratio on the variance
of the size distribution of mating groups.

As the variance gets smaller, the frequency of territorial male with large
mating group size decreases, and the sneakers turn to disadvantage. Our results
shown in Fig. 16 and Fig. 18, show that the frequency of sneakers gets large
even if it is disadvantage for them. It is considered that, in the range of large
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variance, sneakers decrease the competition for a mating in them by decreasing
the population of themselves, and increase their fitness. While, in the range of
small variance, sneakers intercept the matings of territorial male by increasing
their population and decrease the fitness of territorial males, and increase their
fitness relatively. Indeed, in labroid fish, as the frequency of the sneakers gets
larger, the successful matings of territorial male becomes small because they
must the invasion of sneakers. That is, the sneaker make the advantage for
theirselves by interfering the territorial male. In our model, it is reflected in
that the probability of sneaking success gets large as the frequency of sneakers
gets larger. However, in the point that the sneaker make the disadvantage for
territorial males, we can say that our results corresponds to the phenomenon
observed in labroid fishes.

4 Conclusion

In this paper, at first, we considered how the size distribution of mating groups
is related to the existence of sneakers. We constructed and analyzed a math-
ematical model for the invasion of sneaking strategy against the mating group
strategy, and discuss how the invasion success depends on the size distribution of
mating groups. We obtained the result that as the variance of the distribution
gets smaller, the existence of sneaker becomes difficult.

When the population of the sneaker is established, how related is the size
distribution of mating groups to the frequency of sneakers in the population? In
Chapter 3, we constructed and analyzed a mathematical model for the coexis-
tence of the mating group strategy and the sneaking one, and discuss the depen-
dence of the frequency of sneakers on the size distribution of mating groups.

Even if it is disadvantage for the sneaker, the ratio of sneakers can get
large. For example, we analyzed how the variance of the distribution depends
on the ratio of sneakers and the sex ratio. In the range of large variance of
the distribution, sneakers decrease the competition for a mating in them by
decreasing the population of themselves, and increase their fitness. While, in
the range of small variance, sneakers intercept the matings of territorial male
by increasing their population and decrease the fitness of territorial males, and
increase their fitness relatively. That is, the sneaker make the advantage for
theirselves by interfering the territorial male.

Thus we analyzed the ratio of sneakers and the sex ratio derived from our
model and showed that it would be also significantly affected by the size distri-
bution of mating groups.



25

References

Charnov, E. L. (1979). Natural selection and sex change in pandalid shrimp:
test of a life history theory. Amer. Natur 113, 715–734.

Constantz, G. D. (1975). Behavioral ecology of mating in the Gils topminnow,
Poeciliopsis occidentails (Cyprinodontiformes: Poeciliidae). Ecology 56,
966–973.

Gadgil, M. (1972). Male dimorphism as a consequence of sexual selection.
Amer. Natur 105, 574–576.

Ghiselin, M. T. (1969). The evolution of hermaphroditism among animals.
Quart. Ben. Biol 44, 189–208.

Hamilton, W. D. (1979). Wingless and fighting males in fig wasps and other
insects. In M. S. Blum and N. S. Blum (Eds.), Sexual Selection and Re-
productive Competition, pp. 167–220. Aldine Press, Chicago.

Hirata, H. and Seno, H. (1996). How does the size distribution of male terri-
tories depend on the spatial distribution of females.

Howard, R. D. (1978). The evolution of mating strategies in bullfrogs, Rana
catesbiana. Evolution 32, 850–871.

Johannes, R. E. (1978). Reproductive strategies of coastal marine fishes in
the tropics. Env. Biol. Fish 3, 65–84.

Jones, G. P. (1981). Spawning-site choice by female Pseudolabrus celidotus
(Pisces: Labridae) and its influence on the mating system. Behav. Ecol.
Sociobiol 8, 129–142.

Mayr, E. (1972). Sexual selection and natural selection. In B. Campbell (Ed.),
Sexual selection and the Descent of Man, 1871-1971, pp. 87–104. Aldine
Press, Chicago.

Moyer, J. T. and Yogo, Y. (1982). The lek-like mating system of Halichoeres
melanochir (Pisces: Labridae) at Miyakejima, Japan. Z. Tierpsychol 60,
209–226.

Nakazono, A. (1979). Studies on the sex reversal and spawning behavior of
five species of japanese labrid fishes. Report of fishery research laboratory,
Kyushu Univ 4, 1–69.

Randall, J. E. and Randall, H. A. (1963). The spawning and early devel-
opment of the Atlantic parrot fish, Sparisoma rubripinne, with notes on
other scarid and labrid fishes. Zoologica 48, 49–60.

Reinboth, R. (1957). Sur la sexual du Teleosteen Coris julis (L.). C. r. hebd.
Seanc. Acad. Sci.,Paris 245, 1662–1665.

Reinboth, R. (1961). Naturliche geschlechtsuwmandlung bei adulten
teleosteern. Zool. Anz. (Suppl.) (24), 259–262.



26

Reinboth, R. (1962a). Morphologische und funktionelle Zweigeschlechtlichkait
bei marinen Teleostiern (Serranidae, Sparidae, Centracanthidae, Labri-
dae). Zool. Jb. (Physiol.) 69(405-480).

Reinboth, R. (1962b). The effect of testosterone on female Coris julis (L.), a
wrasse with spontaneous sex-inversion. Gen. comp. Endocr. 2 39, abstr.

Reinboth, R. (1970). Intersexual in fishes. Mem. Soc. Endocrinology 18, 515–
543.

Robertson, D. R. (1981). The social and mating systems of two labrid
fishes, Halichoeres maculipinna and H. garnoti, off the Caribbean coast of
Panama. Mar. Bio 64, 327–340.

Robertson, D. R. and Hoffman, S. G. (1977). The roles of female mate choice
and predation in the mating systems of some tropical labroid fishes. Z.
Tierpsychol 45, 298–320.

Ronbertson, D. R. and Warner, R. R. (1978). Sexual patterns in the labroid
fishes of the western Caribbean: II. The parrotfishes (Scaridae). Smith-
sonaisn Contrib. Zool 255, 1–26.

Shibuno, T., G. K. and Kakuda, S. (1993). Female spawning migration of
the protogynous wrasse, Halichoeres marginatus. J. J. Ichthology 39(4),
357–362.

Smith, C. L. (1975). The evolution of hermaphroditism in fishes. In R. Rein-
both (Ed.), Intersexuality in the Animal Kingdom, pp. 295–310. Springer-
Verlag, Berlin.

Threshoer, R. E. (1984). Reproduction in reef fishes. T.F.H. Publ., Neptune
City, New Jersey., 399.

Trivers, R. L. (1972). Parental investment and sexual selection. In B. Camp-
bell. (Ed.), Sexual Selection and the Descent of Man, 1871-1971, pp. 136–
179. Aldine Press, Chicago.

Warner, R. R., R. D. R. and Leigh, E. G. J. (1975). Sex change and sexual
selection. Science 190, 633–638.

Warner,
R. R. (1975a). The adaptive significance of sequential hermaphroditism
in animals. Amer. Nat 109, 61–82.

Warner, R. R. (1980). The coevolution of behavioral and life history charac-
teristics. In G. W. Barlow and J. Silverberg (Eds.), Sociobiology: Beyond
Nature-Nurture?, pp. 151–188. Westvies Press, Boulder.

Warner, R. R. (1984). Mating behavior and hermaphroditism in coral reef
fishes. Amer. Scientist 72, 128–136.

Warner, R. R. and Hoffman, S. G. (1980a). Population density and the eco-
nomics of territorial defense in a coral reef fish. Ecology 61, 772–780.



27

Warner, R. R. and Hoffman, S. G. (1980b). Local population size as a de-
terminant of a mating system and sexual composition in two tropical reef
fishes (Thalassoma spp.). Evolution 34, 508–518.

Warner, R. R. and Ronbertson, D. R. (1978). Sexual patterns in the labroid
fishes of the western Caribbean, I: The wrasse (Labridae). Smithsonian
Contrib. Zool 254, 1–27.



28

A Modelling for the Invasion of Sneaking Strat-

egy

In this appendix, we show the way to derive Ws given by (9) when a sufficiently
small number of sneakers appear in the population in which all males take the
mating group strategy. The probability that a territorial male is the male with
the mating group in the range of size [x, x + dx] is given by f(x)dx. The total
population of territorial male is given now by Mm, so that the total expected
number of territorial males with the mating group in the range of size [x, x+dx]
is given by

Mmf(x)dx.

Therefore, the total expected successful matings for the territorial male with
the mating group in the range of size [x, x + dx] is given by

A(x)Mmf(x)dx.

Therefore, the expected successful matings over all the territorial males is given
by ∫ max

min

A(x)Mmf(x)dx. (60)

The probability that a mating is encountered by sneakers is given by a constant
α. Therefore, the probability that a sneaker is successful in the sneaking against
a mating in the mating group size x is given by

αp(x).

If the sneaking is successful, the sneaker can fertilize a portion σ of the average
number Ef of eggs per mating. So the expected number of eggs fertilized by a
sneaker per mating is given by

αp(x)σEf .

The probability that the successful mating in the mating group in the range of
size [x, x + dx] is encountered by a sneaker is given by

α
A(x)Mmf(x)dx∫ max

min A(x)Mmf(y)dy
. (61)

Hence, the expected number of eggs that a sneaker can deprive of the encoun-
tered mating in the mating group in the range of size [x, x + dx] is given by

αp(x)σEf
A(x)Mmf(x)dx∫ max

min
A(x)Mmf(y)dy

.
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So the expected number of eggs sneaked by a sneaking is∫ max

min

αp(z)σEf
A(z)Mmf(z)∫ max

min A(y)Mmf(y)dy
dz. (62)

Since the expected total number of successful matings in a mating season is
given by (60). The expected number of eggs deprived by a sneaker in a mating
season is given by

{
∫ max

min

A(x)Mmf(x)dx}{
∫ max

min

αp(z)σEf
A(z)Mmf(z)∫ max

min
A(x)Mmf(x)dx

dz}

=
∫ max

min

αp(z)σEfA(z)Mmf(z)dx.

Considering that survival rate ls of the eggs fertilized by the sneaker till the
next mating season, we can obtain the expected fitness Ws for the sneaker as
follows:

Ws = ls

∫ max

min

αp(x)σEf A(x)Mmf(x)dx.

B The monotonicity of fitness of sneaker

We show that Ws(min, max) monotonically increases in terms of max (max ≥
min). The derivative of Ws(min, max) in terms of max is as follows:

∂Ws(min, max)
∂max

= F1(min, max)F2(min, max) (63)

where

F1(min, max) = g(max) − Ws(min, max)

F2(min, max) =
Be−Bmax

e−Bmin − e−Bmax

g(max) = αEf lsσmax(1 − e−βmax) > 0. (64)

As max → min, (63) becomes

αEf lsσ(1 − eβmin + βe−βmin)
2

> 0. (65)

For max > min, F2(min, max) is a positive function, so the sign of F2(min, max)
determines the sign of (63). g(max) monotonically increases in terms of max.
As max → min, dg(max)/dmax becomes

αEf lsσ(1 − e−βmin + βe−βmin)



30

= 2 lim
max→min

∂Ws(min, max)
∂max

> 0,

and we can show that simultaneously,

lim
max→min

Ws(min, max) = lim
max→min

g(max) > 0.

Therefore, in neighborhood of min, Ws is smaller than g(max). If Ws decreases
in terms of max, Ws must beyond g(max). However, on the function g(max),
the derivative of Ws in terms of max equals to 0, so Ws can not beyond g(max).
Therefore, Ws < g(max), that is, Ws monotonically increases in terms of max.

C Boundary of Mating Group Size for Invasion

Success of Sneaking Strategy

We show the condition for the existence of min and max which satisfy Wm(min) ≤
Ws(min, max). Ws(min, max) monotonically increases in terms of max. So if
Wm(min) and Ws(min, max) satisfy

Wm(min) ≤ lim
max→min

Ws(min, max) for a fixedmin, (66)

then Wm(min) ≤ Ws(min, max) for any max. (66) is rewritten in the following
form:

e−βmin ≤ 1 − E,

where

E =
lm

ασlsMm
.

Thus, when E < 1 and min ≥ log(1 − E)−1/β , Wm(min) ≤ Ws(min, max) for
any max.

On the other hand, when E > 1,

Wm(min) > lim
max→min

Ws(min, max).

In this case, since Ws(min, max) monotonically increases in terms of max, if
min for which Wm(min) and Ws(min, max) satisfy

Wm(min) < lim
max→+∞Ws(min, max) (67)

exists, then the positive root max∗ with Wm(min) = Ws(min, max) for such
min uniquely exists, and Wm(min) ≤ Ws(min, max) for ∀max ≥ max∗. Oth-
erwise, for such min as to satisfy the following:

Wm(min) ≥ lim
max→+∞Ws(min, max),
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Wm(min) > Ws(min, max) for any max. As max → +∞, Ws(min, max)
converges to

BασEf ls{ 1
B

(min +
1
B

) − 1
B + β

e−βmin(min +
1

B + β
)}.

So, (67) can be rewritten in the following form:

H(min, B, β) > 0,

where

H(min, B, β) = (1 − E)min − B

B + β
mine−βmin − B

(B + β)2
e−βmin +

1
B

.

When E > 1, the derivative of H(min, B, β) in terms of min is

∂H(min, B, β)
∂min

= 1 − E − B

B + β
e−βmin(1 + βmin +

β

B + β
),

that is a negative function. Therefore, H(min, B, β) monotonically decreases
in terms of min. When min = 0, H(min, B, β) is

(2B + β)β
B(B + β)2

> 0.

As min → +∞, H(min, B, β) becomes −∞. Therefore, the positive root
min∗ for H(min, B, β) = 0 uniquely exists, and H(min, B, β) > 0 for min ∈
[0, min∗).

D Dependence of Boundary Value for Invasion
Success of Sneaking Strategy on Parameters

In this appendix, we show the dependence of min∗ on B and β when E > 1,
where min∗ is the positive root for the following equation(see Appendix C):

(1 − E)min − B

B + β
mine−βmin − B

(B + β)2
e−βmin +

1
B

= 0. (68)

At first, we show the dependence of min∗ on B. (68) is rewritten in the
following form:

G(min, B, β) = e−βmin,

where

G(min, B, β) =
(B + β){min(1 − E) + 1/B}

B{min + 1/(B + β)} .
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The derivative of G(min, B, β) in terms of min can be obtained as follows:

∂G(min, B, β)
∂min

= −(
B + β

B2
+

E − 1
B

)
1

{min + 1/(B + β)}2
< 0.

Therefore, G(min, B, β) monotonically decreases in terms of min (see Fig.
24(a)). The derivative of G(min, B, β) in terms of B becomes:

∂G(min, B, β)
∂B

=
B(B + β)

B2{B(B + β)min + B}2
[−β{Bmin(1 − E) + 1}{(B + β)min + 1}

−B2min(E−1)−(B+β)2min−β] . From
Fig. 24(a), since min∗ uniquely exists in [0, 1/{B(E−1)}]. ∂G/∂B < 0. That
is, G(min, B, β) monotonically decreases in terms of B. From Fig. 24(b), min∗

monotonically decreases in terms of B. As seen from Fig. 24(a), B → +∞,
min∗ converges to 0. We show that min∗ diverges to +∞ as B → 0+. min∗

which is the positive root of min for the below equation is min#less than min∗,
because G(min, B, β) monotonically decreases in terms of min and B (see Fig.
24(b)):

G(min, B, β) = 1 (≥ e−βmin).

We can obtain min# as follows:

min# =
β(2B + β)

B(B + β){(B + β)(E − 1) + B} .

As B → 0+, min# diverges to +∞. Since min# ≤ min∗, as B → 0+, min∗

diverges to +∞, too
Next, we show the dependence of min∗ on β. The derivative of G(min, B, β)

in terms of β is as follows:

∂G(min, B, β)
∂β

=
(B + β)[{Bmin(1 − E) + 1}{(B + β) + 1} + Bmin + 1]

{B(B + β)min + B}2
.

Since the region of min that we consider is [0, 1/{B(E−1)}], ∂G/∂β > 0. That
is, G(min, B, β) monotonically increases in terms of β, while e−βmin monoton-
ically decreases in terms of β. Therefore, as shown in Fig. 24(c), min∗

monotonically decreases in terms of β. As β → 0+, min∗ converges to 0, and
as β → +∞, it does to 1/{B(E − 1)}.
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E Modelling for Coexist of Sneaking and Mat-

ing Group Strategies

In this appendix, we show the way to derive Wm(x), Ws and Wf when the
sneaker population is established. At first, we derive Wm(x). The maximum
expected successful matings for a territorial male with mating group size x is
given by A(x). When the total population of territorial males and sneakers
are Mm and Ms, we consider the successful matings of a territorial male with
mating group size x:

A(x)D(Ms, Mm). (69)

The probability that a mating in the mating group with size x is successfully
sneaked is given by p(x, Ms). When the sneaking is successful, the sneaker can
fertilize a portion σ of the average number of eggs per mating. So the expected
number of eggs deprived by the whole sneakers per mating in the mating group
with size x is

p(x, Ms)σEf . (70)

Therefore, a mating season, the expected number of eggs that the whole sneakers
deprive a territorial male with mating group size x is given by

A(x)D(Ms, Mm)p(x, Ms)σEf . (71)

So the expected number of eggs that a territorial male with mating group size
x can fertilize in a mating season is

A(x)D(Ms, Mm){1 − p(x, Ms)σ}Ef . (72)

By considering the survival rate of the eggs fertilized by territorial male till the
next mating season, we can define Wm(x) as follows:

lmA(x)D(Ms, Mm){1 − p(x, Ms)σ}Ef . (73)

Next, we consider Ws. The expected number of eggs of which the whole
sneakers can deprive a territorial male with mating group size x in a mating
season is given by (71). The probability that a territorial male is in the range
of size [x, x + dx] is given by f(x)dx. So the expected number of territorial
males in the range of size [x, x + dx] is given by

Mmf(x)dx. (74)

From (71) and (74) the expected number of eggs of which the whole sneakers
can deprive the whole territorial males in the range of size [x, x+dx] in a mating
season is given by

A(x)D(Ms, Mm)p(x, Ms)σEfMmf(x)dx. (75)
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Therefore, in the range of size [min, max], it becomes
∫ max

min

A(x)D(Ms, Mm)p(x, Ms)σEfMmf(x)dx. (76)

By considering the survival rate ls of eggs fertilized by sneakers till the next
mating season and converting it into per sneaker, we can obtain Ws as follows:

Ws = ls
1

Ms

∫ max

min

A(x)D(Ms, Mm)p(x, Ms)σEfMmf(x)dx.

Next, we consider Wf . The expected successful matings of a territorial male
with mating group size x is given by (69), that is, it represents the number of
females that can make mating in the mating group with x females. a females
was in the mating group with size x, The probability that a female in the mating
group with size x can successfully mate is given by

A(x)D(Ms, Mm)
x

. (77)

If a female can mate with a territorial male with mating group size x, the
expected number of eggs fertilized by the sneakers per mating is given by (70),
and that fertilized by a territorial male is given by

{1 − p(x, Ms)σ}Ef . (78)

Considering the survival rates lm and ls of eggs fertilized by territorial male and
sneaker, when a female can mate in the mating group with size x, the expected
number of survival eggs spawned by her is given by

lsp(x, Ms)σEf + lm{1 − p(x, Ms)σ}Ef . (79)

From (77) and (79), we can define the expected number Wf (x) of survival eggs
of a female when she is in the mating group with size x as follows:

Wf (x) =
A(x)D(Ms, Mm)

x
{lsp(x, Ms)σEf + lm{1 − p(x, Ms)σ}Ef}. (80)

The probability that a female is in the mating group in the range of size [x,
x + dx] is given by f(x)dx. Therefore, the expected number of survival eggs
of a female when she is in the mating group in the range of size [x, x + dx] is
given by

Wf (x)f(x)dx. (81)

So, in the range of size [min, max], it becomes

Wf =
∫ max

min

Wf (x)f(x)dx. (82)
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F Monotonicity of Fitness of Territorial Male

The derivation of Wm(x) in terms of xis as follows:

dWm(x)
dx

= cD(Ms, Mm)Ef lm[a − ασ(1 − e−δ){a(1 − e−β) + (1 − e−ax)βe−βx}]. (83)

When the root x for dWm(x)/dx = 0 exists, it satisfies the following equation:

Se(x) = Te(x) (84)

where

Se(Ms) =
a

ασ(1 − e−δMs)
(85)

Te(x) = a(1 − e−βx) + (1 − e−ax)βe−βx (86)

The right side of (84) monotonically decreases in terms of Ms, and as Ms → +∞,
it converges to a/(ασ). Since α and σ are less than 1, a/(ασ) < a. That is,
the minimum of the right hand is a. The derivation of Te(x) in terms of x is
as follows:

dTe(x)
dx

= βe−βx{a − β + (a + β)e−ax}. (87)

When a ≥ β, dTe(x)/dx > 0 for ∀x > 0. When x = 0, Te(x) = 0, and as
x → +∞, Te(x) converges to a. Therefore, when a ≥ β, Se(Ms) > Te(x). In
this case, dWm(x)/dx > 0 for x > 0.

When a < β, there is the root x∗ for dTe(x)/dx = 0,

x∗ = −1
a

log(
β − a

β + a
). (88)

dTe(x)
dx

≥ 0 for 0 < x ≤ x∗ (89)

dTe(x)
dx

< 0 for x > x∗. (90)

That is, Te(x) has the maximum for x∗, and it is given by

Te(x∗) = a − (
β − a

β + a
)

β
a {a − β(1 − β − a

β + a
}. (91)

Te(x∗) is greater than a. Considering the relation between T ∗
e and a/(ασ),

when T ∗
e ≤ a/(ασ), Se(Ms) > Te(x). Therefore, dWm(x)/dx > 0. When

T ∗
e > a/(ασ), there is a positive value M∗

s , which is given by

M∗
s = −1

δ
log(1 − a

ασT ∗
e

). (92)



36

When 0 < Ms ≤ M∗
s , dWm(x)/dx > 0. When Ms > M∗

s , the positive roots,
which are x∗

1 and x∗
2 (x∗

1 ≤ x∗
2), exist, and

dWm(x)/dx > 0 for 0 < x < x∗
1 (93)

dWm(x)/dx ≤ 0 for x∗
1 < x < x∗

2 (94)

dWm(x)/dx > 0 for x > x∗
2 (95)

G Equilibrium State

From Wm(min) = Ws, we can obtain R(Ms) as follows:

R(Ms) = R1(min, max)R2(min, Ms).

R1(min, max) =
(1 − e−amin)Ef lm

Ws,1Ws,2

where

Ws,1 =
BασEf ls

e−Bmin − e−Bmax

Ws,2 =
∫ max

min

e−Bx(1 − e−ax)(1 − e−βx)dx.

R2(min, Ms) =
Ms{1 − ασ(1 − e−δMs)(1 − e−βmin)}

1 − e−δMs
.

Mra is given as follows:

Mra =
Ms

R1(min, max)R2(min, max) + Ms
.

At first, we show that Mra monotonically in terms of Ms. The derivation
of Mra is as follows:

∂Mra

∂Ms
=

R1δe
−deltaMsMs

(R1R2 + Ms)2(1 − e−δMs)
.

Since R1 > 0, it is positive. So Mra monotonically increases in terms of Ms.
As Ms → +∞, Mra converges to

R1{1 − ασ(1 − e−βmin)}
R1{1 − ασ(1 − e−βmin)} + 1

. (96)
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Figure Caption

Fig. 1. Proportion of terminal phase populations; (b) Size of terminal
phase population of T. bifasciatum.

Fig. 2. Proportion of initial phase male population of T. bifasciatum.

Fig. 3. When Wm(x) and Ws have the relation shown in this figure, the
invasion success of sneaking strategy against the mating group strategy.

Fig. 4. Frequency distribution f(x) for mating group size x. For larger
B, the extent of variance of f(x) becomes smaller.

Fig. 5. The probability functioon p(x) of sneaking success for mating group
size x. For larger β, the extent of easiness of p(x) becomes larger.

Fig. 6. The invasion success of the sneaking strategy against the mating
group strategy when E < 1. The dependence of the invasion success is classified
into the two cases I and II in the parameter region of B and β: (a) E = 0.6.
The invasion success depends on parameter (min, wh = max−min): E = 0.6.
(a-1) B = 2.5, β = 0.5; (a-2) B = 3.5, β = 0.5. (b) shows the dependence of
the boundary curve of the invasion success on B and β.

Fig. 7. The dependence of the invasion success of the sneaking strategy on
min and max. (a) E = 0.6, B = 3.0, β = 0.5.

Fig. 8. The invasion success of the sneaking strategy against the mating
group strategy when E > 1. The invasion success depends on parameter (min,
wh): (a) E = 2.4., B = 1.0, β = 0.5. (b) shows the dependence of the boundary
curve for the invasion success on B and β.

Fig. 9. The successful matings A(x) of the territorial male with the mating
group size. For larger a, the successful matings becomes larger.

Fig. 10. The case that the frequency of sneakers can be at the evollutionally
stably state.

Fig. 11. Parameter region of min and max for the existence of equilibrium
state Case A when ασ ≤ 1/(1 + e−2). α = 1.0, σ = 0.5, β = 0.5, a = 0.05,
c = 10.0, δ = 0.1, Ef = 10.0, lm = 0.6, ls = 0.5.

Fig. 12. Parameter region of min and max for the existence of equilibrium
state Case A when ασ < 1/(1 + e−2). α = 1.0, σ = 0.9, a = 0.05, B = 1.5,
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c = 10.0, δ = 0.1, Ef = 10.0, lm = 0.6, ls = 0.5. (a) β = 0.517, (b) β = 0.53.

Fig. 14. (a): ασ < 1/(1 + e−2). R(Ms) monotonically increases in terms
of Ms. (b): ασ ≥ 1/(1 + e−2). R(Ms) has the minimum in terms of Ms.

Fig. 15. The relation Mm and Ms in Case A and Case B.

Fig. 16. The dependence of Mra on the parameters when Mm is given.
α = 1.0, σ = 0.5, β = 0.5, a = 0.05, c = 10.0, δ = 0.1, Ef = 10.0, lm = 0.6,
ls = 0.5, Mm = 100.0. (a) min = 1.2, max = 15.0; (b) B = 1.5, min = 1.2; (c)
B = 1.5, max = 15.0.

Fig. 17. The dependence of Mra on Mm when parameters are given.
B = 1.5, α = 1.0, σ = 0.5, β = 0.5, a = 0.05, c = 10.0, δ = 0.1, Ef = 10.0,
lm = 0.6, ls = 0.5, min = 1.2, max = 15.0.

Fig. 18. The dependence of the sex ratio on B, min and max when Mm

is given. α = 1.0, σ = 0.5, β = 0.5, a = 0.05, c = 10.0, δ = 0.1, Ef = 10.0,
lm = 0.6, ls = 0.5, Mm = 100.0. (a) min = 1.2, max = 15.0; (b) B = 1.5,
min = 1.2; (c) B = 1.5, max = 15.0.

Fig. 19. The dependence of thesexratio on Mm when parameters B, min
and max are given. B = 1.5, α = 1.0, σ = 0.5, β = 0.5, a = 0.05, c = 10.0,
δ = 0.1, Ef = 10.0, lm = 0.6, ls = 0.5, min = 1.2, max = 15.0.

Fig. 20. The region of min and max for the each case of sex ratio in Case
A. B = 1.5, α = 1.0, σ = 0.5, a = 0.05, c = 10.0, δ = 0.1, Ef = 10.0, lm = 0.6,
ls = 0.5. (a) β = 0.5; (b) β = 0.53.

Fig. 21. The region of min and max for the sex ratio in Case B. B = 1.5,
α = 1.0, σ = 0.5, a = 0.05, c = 10.0, δ = 0.1, Ef = 10.0, lm = 0.6, ls = 0.5. (a)
β = 0.5; (b) β = 0.53.

Fig. 22. The dependence of the function G(min, B, β) on B and β.

Table. 13. Region which Ms can be at the equilibrium state.
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