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We construct and analyze a mathematically reasonable and simplest
discrete time one dimensional population dynamics model based on
Mark Granovetter’s idea for the spread of a matter (rumor, innova-
tion, etc.) in a population. Individual threshold values with respect
to the decision making on the acceptance of a spreading matter
are distributed throughout the population. We give the mathemat-
ical results on how the equilibrium acceptor frequency depends on
the nature of threshold distribution in the population.

Granovetter’s threshold model

The essential idea for the dichotomous decision-making by an in-
dividual on a spreading matter in the population, that is, about
whether he/she accepts it or not:

• The individual has a criterion only by which the decision is
made.

• Each individual’s criterion for the decision-making may
different from some others’.

• The criterion is more likely to be satisfied as the accepter
frequency gets larger in the community.
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Assumptions

ACCEPTOR NON-ACCEPTOR

SOCIAL RESPONSE

decision making

1 The criterion of decision-making by each individual is given
by the threshold for the strength of social effect.

2 The strength of social effect is proportional to the accepter
frequency in the community.

3 The decision to accept the spreading matter may be done
only when the strength of social effect is beyond
the threshold.

4 The threshold of one individual may different from that of
the other. (threshold ∈ individuality)

5 Every decision-making is independent of the past
disregard/denial about the spreading matter.

6 The accepter never discards the accepted matter.

Decision-making rule to accept the spreading
matter

{ ξ ≤ αP =⇒ The matter may be accepted.

ξ > αP =⇒ The matter is not accepted with
the denial/disregard.

ξ : the threshold value of the individual.

P : the acceptor frequency in the community.

αP : the strength of social consciousness according to
the spreading matter, now assumed to be proportional to
the acceptor frequency.

Threshold distribution

F (x) = Prob(ξ ≤ x) =

∫ x

−∞
f (ξ) dξ

with

f (ξ) =


0 for ξ ∈ (−∞, ξinf];

f+(ξ) for ξ ∈ (ξinf, ξsup) ⊂ (0, α);

0 for ξ ∈ [ξsup, ∞),∫ ξsup

ξinf

f+(ξ) dξ = 1.

Initial acceptor frequency

P0 =

∫ ∞

−∞
φ0f (ξ) dξ = φ0

∫ α

0

f (ξ) dξ = φ0

as randomly chosen initial acceptors with 0 < φ0 ≤ 1.

Recurrence relation for the temporal sequence of acceptor frequency

Pt+1 = {1− γB(Pt)}Pt + γB(Pt)
{
F (αPt) +

∫∫∫ α

αPt

φ0(ξ)f(ξ)dξ
}

=
[
1 + γb

{
φ0 − Pt + (1−φ0)F (αPt)

}]
Pt =

{ [
1 + γbG (P ;φ0)

]
Pt for Pt ∈ [φ0, θsup);[

1 + γb
(
1− Pt

)]
Pt for Pt ∈ [θsup,1],

with G (P ;φ0) := φ0 − P + (1−φ0)

∫∫∫ αP

ξinf

f+(ξ)dξ.

Pt : Acceptor frequency at time t.

αPt : Strength of social effect at time t.

B(P ) = bP : Probability to get the chance for the decision-making under the accepter frequency P . (0 < b ≤ 1)

γ : Probability to make the decision to accept the spreading matter per chance.

Theorem

The sequence {Pt} monotonically increases and converges to
a value P ∗ ∈ [P0, 1] for any P0 ∈ (0, 1) as t → ∞.

Lemma

If P0 = φ0 ≤ θinf := ξinf/α, the acceptor frequency remains the ini-
tial frequency P0 with no increase at any time step. Otherwise, it
temporally increases.

Lemma

If P0 = φ0 ≥ θsup := ξsup/α, the acceptor frequency monotonically
increases toward 1.

Lemma

If the equation G (P ;φ0) = 0 in terms of P has no root in
(φ0, θsup) ⊂ (θinf, θsup), then Pt → 1 as t → ∞ for P0 = φ0 ∈
(θinf, θsup).

Uniform or monotonically decreasing threshold
distribution

For the uniform or monotonically decreasing threshold distribu-
tion, the acceptor frequency Pt monotonically approaches 1 as time
passes for the initial acceptor frequency such that P0 = φ0 > θinf,
while it remains the initial frequency, Pt ≡ φ0, for φ0 ≤ θinf.

} no spread

complete spread

Unimodal threshold distribution

The behavioral characteristics of the acceptor frequency is qualita-
tively same as for the monotonically increasing distribution.

Monotonically increasing threshold distribution

For the monotonically increasing threshold distribution, the accep-
tor frequency Pt has the following behavior as time passes, depend-
ing on the nature of threshold distribution and the initial acceptor
frequency φ0: If

αf inf
+ := lim

ξ→ξinf+0
αf+(ξ) <

1

1− θinf
, (⋆)

then 
Pt ≡ P0 = φ0 for φ0 ∈ [ 0, θinf];

Pt → P ∗ for φ0 ∈ (θinf, φ
c
0] ⊂ (θinf, θsup);

Pt → 1 for φ0 ∈ (φc
0, 1 ],

where P ∗ is uniquely determined as the smallest root P =
P ∗ ∈ (φ0, θsup) of the equation G (P ;φ0) = 0 and φc

0 = 1 −
1/{αf+(αPc)} with the unique root P = Pc ∈ (θinf, θsup) of
the equation

Q(P ) := 1− (1− P )αf+(αP )−
∫ αP

ξinf

f+(ξ) dξ = 0.

Unless the condition (⋆) is satisfied, then{
Pt ≡ P0 = φ0 for φ0 ∈ [ 0, θinf];
Pt → 1 for φ0 ∈ (θinf, 1 ].

}
}

partial spread

no spread

complete spread

} } }
(a) (b) (c)

(a) ρ = 0.0 (Pc = 0.456; φc
0 = 0.308); (b) ρ = 0.2 (Pc = 0.400; φc

0 = 0.232);

(c) ρ = 0.7, and commonly θinf = 0.16; θsup = 0.8; ρc = 0.615.

• There exists a critical value for the initial acceptor frequency,
beyond which the spread of a matter becomes highly
successful.

• Successful spread of a matter is more likely to occur for
a community such that the members have
the decision-making threshold relatively biased to the smaller
value.

• This model could provide a basic mathematical structure for
modified models about a variety of theoretical problems on
a spreading matter in a community.
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