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Introduction
When a transmissible disease invades, the community may
respond to the disease in such a way as wearing masks
to reduce the infection risk or by getting the vaccine to
prevent the serious symptoms and the disease transmis-
sion. In contrast, the community may be insensitive to
the disease. We consider a mathematical model based on
the Susceptible-Infective-Susceptible (SIS) model, taking
account of the effect of social response on the epidemic dy-
namics of a transmissible disease. Our results show the
possible contribution of the social sensitivity and insensi-
tivity to the occurrence of an oscillatory variation in the
epidemic dynamics, which could be observed as recurring
outbreaks.

Assumptions

The spreading disease is non-fatal, and the disease-induced death can be negligible (for example, the common cold).
The recovered individual cannot get the long-lasting effective immunity and becomes susceptible again in a
sufficiently short period after the recovery.
The demographic change about the community is negligible in the time scale of considered epidemic dynamics.
The stronger social response makes the infection rate smaller, for example, with a decrease of individual contact rate.
The social response follows a natural decay, while the fact of disease spread in the community tends to arouse the
response.
The disease spread may not cause the social response unless the number of infectives becomes enough to concern the
people about it. Such a situation defines the social insensitivity. It may depend on the educational or cultural
backgrounds of the community members.
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Figure 1. The epidemic state transition and the social response about our model.

S(t): the susceptible population density in the community at time t;
I(t): the infective population densitiey in the community at time t;

M(t): the strength of the social response at time t;
β(M): the disease transmission coefficient with β(0) = β0 > 0 and β′(M) = dβ(M)/dM > 0;

q: the recovery rate;
Γ(I): the social sensitivity function with Γ(I) ≥ 0.

dS

dt
= −β(M)IS + qI ;

dI

dt
= β(M)IS − qI ;

dM

dt
= Γ(I) − µM,

Γ(I) :=
{ 0 for I ≤ Ic;

γ(I − Ic) for I > Ic.

µ: the decay rate of the social response;
γ: the social sensitivity coefficient;
Ic: the threshold infective density to raise the social response;
N : the total population size N = S(t) + I(t).

Non-dimensionalization

u := S

N
; v := I

N
; τ := qt; η := γN

q
; θc := Ic

N
; δ := µ

q
;

R0 := β0N

q
(basic reproduction number).

dv

dτ
= β(M)

β0
R0v(1 − v) − v;

dM

dτ
= G(v) − δM,

G(v) :=


0 for v ≤ θc;

η(v − θc) for v > θc

with the initial condition that v(0) > 0 and M(0) = 0.

Modelwith no social response (M ≡ 0)

dv

dτ
= R0v(1 − v) − v,

v(τ ) =


v0(1 − 1/R0)

v0 + {(1 − 1/R0) − v0}e−τ/(R0−1) for R0 6= 1;
1

τ + 1/v0
for R0 = 1.

Modelwithout social insensitivity (θc = 0)

dv

dτ
= β(M)

β0
R0v(1 − v) − v;

dM

dτ
= ηv − δM.

Theorem 1. For the model without social insensitivity,
(i) if and only if R0 ≤ 1, the unique equilibrium E0(0, 0) is

globally asymptotically stable;
(ii) if and only if R0 > 1, there are two equilibria E0(0, 0) and

E+(v∗, M∗), where E0 is unstable and E+ is globally
asymptotically stable with v∗ and M∗ uniquely determined by

v∗ = 1 − 1
R0

β0
β(M∗)

; M∗ = η

δ
v∗.

where 0 < v∗ < 1 − 1/R0.

Modelwith social insensitivity (θc > 0)
Theorem 2. For the model with social insensitivity,
(i) if and only if R0 ≤ 1, the unique equilibrium E0 is globally

asymptotically stable;
(ii) if and only if 1 < R0 ≤ (1 − θc)−1, there are two equilibria

E0 and E+0, where E0 is unstable and E+0(1 − 1/R0, 0) is
globally asymptotically stable;

(iii) if and only if R0 > (1 − θc)−1, there are two equilibria E0
and E++(v∗, M∗), where E0 is unstable and E++ is globally
asymptotically stable with v∗ and M∗ uniquely determined by

v∗ = 1 − 1
R0

β0
β(M∗)

; M∗ = η

δ
(v∗ − θc),

where θc < v∗ < 1 − 1/R0.
Corollary 1. The system approaches
(i) the equilibrium E0 in a monotonic manner when R0 ≤ 1;

(ii) the equilibrium E+0 in a monotonic manner when
1 < R0 ≤ (1 − θc)−1;

(iii) the equilibrium E++ in the following manner when
R0 > (1 − θc)−1:{

a monotonic manner if ∆ ≥ 0;
an oscillatory manner if ∆ < 0,

where

∆ :=
{β(M∗)

β0
R0v

∗ + δ
}2

+ 4ηv∗β′(M∗)
β(M∗)

.

A specific model

β(M) = β0

1 + aM
(a) (b) (c)

Figure 2. Solid line and curves are for stable equilibria Es
0, Es

+0 and Es
++ in (a) and

(b), for Es
++ when θc < 1 − 1/R0 and Es

+0 when θc > 1 − 1/R0 in (c). Dashed lines
in (a) and (b) are for the unstable equilibrium Eu

0 . Numerically drawn with (a,b)
θc = 0.6; (c) R0 = 2.5, and commonly a = 5.0; δ = 10.0; η = 5.0.
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Figure 3. Parameter dependence of the endemic size v∗ at the endemic equilibrium
which is E++ if θc ≤ 1 − 1/R0, and E+0 if θc > 1 − 1/R0 respectively. Numerically
drawn with (a) δ = 2.0; (b) aη = 5.0; (c) θc = 0.3, and commonly R0 = 3.0.

Occurrence of a damped oscillation

Theorem 3. When R0 > (1 − θc)−1, the system approaches E++
with a damped oscillation if and only if θc

− < θc < θc
+, where

θc
± := (δ + aη)x± − (R0 − 1)δ

aη(1 + x±)
with

x± :=
(

δ + 2aη

R0

)
±

√(
δ + 2aη

R0

)2
− δ2.

If θc ≤ θc
− or θc ≥ θc

+, the system approaches an equilibrium in a
monotonic manner.
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Figure 4. a = 5.0; R0 = 4.0; η = 5.0; θc = 0.3; (a) δ = 10.0; (b) δ = 0.1. The initial
condition is commonly given as (v(0), M(0)) = (0.001, 0.0).
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Figure 5. (R0, θc)-dependence of the occurrence of a damped oscillation around the
endemic equilibrium E++. Numerically drawn with (a) δ = 1.5; (b) δ = 0, and
commonly aη = 0.5.
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Figure 6. (δ, aη)-dependence of the occurrence of a damped oscillation. (a)
1 < R0 ≤ 2; (b) 2 < R0 ≤ 4; (c) R0 > 4. Boundary curves between Ω− and Ω0,
between Ω0 and Ω+, between Ω+ and blank region, between blank region and Ω−
correspond to θc

− = 0, θc
+ = 1 − 1/R0, θc

+ = 0 and θc
− = 1 − 1/R0, respectively.

Conclusion
Analysis on our model show that recurring outbreaks occur only when the system approaches an endemic equilibrium
at which the social response is maintained. In another endemic case where the social response disappears, the system
approaches it in a monotonic manner, that is, the temporal variation of infective population size is monotonic around the
endemic equilibrium. For the disease with sufficiently low or sufficiently high transmissibility, the recurring outbreaks
of epidemic dynamics is little likely to occur. For the disease with a certain range of transmissibility, the recurring
outbreaks are much likely to occur if the community is sufficiently sensitive to the disease spread, or if the social
response is sufficiently efficient to reduce the risk of infection. In contrast, the recurring outbreaks may not occur if the
community is too insensitive to the disease spread.
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