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Introduction

Numerous studies have provided the evidence of the superinfection/coinfection with multiple strains in

various infectious diseases, such asmalaria, HBV, HCV, SARS-CoV-2, dengue, particularly common inHIV.

Although the characterization of multiple genotypes strains could contribute to identifying the disease

infection, it may encounter a difficulty in the detection of novel or mutant strains. On the other hand,

the superinfection of a detectable strain could enhance the possibility for infectives to be diagnosed and

quarantined, which in turn helps to suppress the disease spread. In this work, we consider the epidemic

dynamics of an infectious disease with n strains, focusing on the detectability depending on the strain.

Assumptions

More dominant strain is more detectable.

The quarantine efficiency is determined by the

most dominant strain, that is, by the most

detectable strain in the infective.

The recovered individual gets the immunity

lasting in the epidemic season under

consideration.

The demographic change is negligible in the

considered epidemic season.
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Figure 1. The state transition in the epidemic dynamics of our model. S,

Ii, Qi, and R are population densities of susceptibles, infectives who hold

strain i as the strain of the highest dominance, corresponding isolated

and recovered individuals respectively, where 1 < i < j.

Modeling

dS

dt
= µN −

n∑
i=1

βiIiS − µS;

dI1
dt

= β1I1S +
n∑

j=2
ε1jβ1I1Ij − σ1I1 − ρ1I1 − µI1;

dIi

dt
= βiIiS +

n∑
j=i+1

εijβiIiIj −
i−1∑
j=1

εjiβjIjIi − σiIi − ρiIi − µIi (1 < i < n);

dIn

dt
= βnInS −

n−1∑
j=1

εjnβjIjIn − σnIn − ρnIn − µIn;

dQi

dt
= σiIi − αiQi − µQi;

dR

dt
=

n∑
i=1

ρiIi +
n∑

i=1
αiQi − µR,

with N = S +
n∑

i=1
Ii +

n∑
i=1

Qi + R.

βiIi: the infection force of strain i for the susceptible;

εijβiIi: the infection force of strain i for the infective with strain j of the lower dominance (0 ≤ εij ≤ 1);
σi: the quarantine rate for the infective who holds strain i as the most dominant strain, where σi > σj for i < j;

ρi: the recovery rate for the infective with strain i out of the isolation;

αi: the recovery rate for the infective with strain i under the isolation;

µ: the natural death rate.

The basic reproduction number（基本再生産数）:

R0 = max{R01, R02, . . . , R0n}, R0i := βiN

σi + ρi + µ
.

Non-dimensionalization

τ := µt, u := S

N
, vi := Ii

N
, qi := Qi

N
, w := R

N
, γi := σi

µ
, ai := αi

µ
, ηi := ρi

µ
.

du

dτ
= 1 −

n∑
i=1

(1 + γi + ηi)R0iviu − u;

dv1
dτ

= (1 + γ1 + η1)R01v1u +
n∑

j=2
ε1j(1 + γ1 + η1)R01v1vj − (1 + γ1 + η1)v1;

dvi

dτ
= (1 + γi + ηi)R0iviu +

n∑
j=i+1

εij(1 + γi + ηi)R0ivivj

−
i−1∑
j=1

εji(1 + γj + ηj)R0jvjvi − (1 + γi + ηi)vi (1 < i < n);

dvn

dτ
= (1 + γn + ηn)R0nvnu −

n−1∑
j=1

εjn(1 + γj + ηj)R0jvjvn − (1 + γn + ηn)vn;

dqi

dτ
= γivi − aiqi − qi;

dw

dτ
=

n∑
i=1

ηivi +
n∑

i=1
aiqi − w,

with u +
n∑

i=1
vi +

n∑
i=1

qi + w = 1.

Modelwithout superinfection (εij = 0)

Theorem 1

For the model without superinfection (εij = 0),

(i) if and only if R0 ≤ 1, the disease-free equilibrium E0 = (1, 0, . . . , 0) is globally asymptotically stable;

(ii) we have the unique locally asymptotically stable endemic equilibrium with a single strain i such that

R0i > 1 and R0i > R0j for any j 6= i, given by

u∗ = 1
R0i

; v∗
i = 1

1 + γi + ηi

(
1 − 1

R0i

)
; v∗

j = 0; q∗
i =

γiv
∗
i

ai + 1
, q∗

j = 0.

Two strain model (n = 2)

du

dτ
= 1 − (1 + γ1 + η1)R01v1u − (1 + γ2 + η2)R02v2u − u;

dv1
dτ

= (1 + γ1 + η1)R01v1u + ε12(1 + γ1 + η1)R01v1v2 − (1 + γ1 + η1)v1;
dv2
dτ

= (1 + γ2 + η2)R02v2u − ε12(1 + γ1 + η1)R01v1v2 − (1 + γ2 + η2)v2;
dq1
dτ

= γ1v1 − a1q1 − q1;

dq2
dτ

= γ2v2 − a2q2 − q2;

dw

dτ
= η1v1 + η2v2 + a1q1 + a2q2 − w,

with u + v1 + v2 + q1 + q2 + w = 1.
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Figure 2. Temporal variations for the two strain model. Numerically drawn with (a) R02 = 1.2; (b) R02 = 2.0; (c) R02 = 4.0, and R01 = 1.5;
1 + γ1 + η1 = 2.0; 1 + γ2 + η2 = 1.7; ε12 = 0.8; a1 = 2.0; a2 = 3.0; (u(0), v1(0), v2(0), q1(0), q2(0), w(0)) = (0.9, 0.05, 0.05, 0, 0, 0).

Theorem 2

For the two strain model, the disease-free equilibrium E0 = (1, 0, 0, 0, 0, 0) is globally asymptotically stable if

and only if R01 ≤ 1 and R02 ≤ 1.
Theorem 3

For the two strain model,

(i) when R01 > 1, the endemic equilibrium E1 = (u∗, v∗
1 , 0, q∗

1 , 0, w∗) is locally asymptotically stable if

1
R02

>
(1/R01)2

1/R01 + (1 − 1/R01)ε12/(1 + γ2 + η2)
;

(ii) when R02 > 1, the endemic equilibrium E2 = (u∗, 0, v∗
2 , 0, q∗

2 , w∗) is locally asymptotically stable if

1
R02

<
1/R01 − ε12/(1 + γ2 + η2)

1 − ε12/(1 + γ2 + η2)
;

(iii) if

1/R01 − ε12/(1 + γ2 + η2)
1 − ε12/(1 + γ2 + η2)

<
1

R02
<

(1/R01)2

1/R01 + (1 − 1/R01)ε12/(1 + γ2 + η2)
,

the endemic equilibrium E1,2 = (u∗, v∗
1 , v∗

2 , q∗
1 , q∗

2 , w∗) with

u∗ = 1
R02(1+γ2+η2)

ε12
( 1
R01

− 1
R02

) + 1
; v∗

1 = 1
ε12

1 + γ2 + η2
1 + γ1 + η1

R02
R01

(
u∗ − 1

R02

)
; v∗

2 = 1
ε12

(
1

R01
− u∗

)
; q∗

1 = γ1v
∗
1

a1 + 1
; q∗

2 = γ2v
∗
2

a2 + 1
,

and w∗ = 1 − u∗ − v∗
1 − v∗

2 − q∗
1 − q∗

2 , is locally asymptotically stable, while E1 and E2 are unstable.
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Figure 3. (1/R01, 1/R02)-dependence of the existence and stability of

equilibria for the two strain model. Numerically drawn for (a)

ε12/(1 + γ2 + η2) = 0.5; (b) ε12 = 0.
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Figure 4. (ε12/(1 + γ2 + η2), 1/R02)-dependence of the existence and

stability of equilibria for the two strain model. Numerically drawn with (a)

1 + γ2 + η2 = 1.2; (b) 1 + γ2 + η2 = 1.8, and R01 = 1.5.
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Figure 5. 1/R02-dependence of the endemic size z∗ = v∗
1 + v∗

2 + q∗
1 + q∗

2
for the two strain model. Numerically drawn with (a) 1 + γ1 + η1 = 2.0;
1 + γ2 + η2 = 1.7; (b) 1 + γ1 + η1 = 1.4; 1 + γ2 + η2 = 3.8, and ε12 = 0.8;
a1 = 2.0; a2 = 3.0;
(u(0), v1(0), v2(0), q1(0), q2(0), w(0)) = (0.9, 0.05, 0.05, 0, 0, 0).
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Figure 6. 1/R02-dependence of the endemic size z∗ = v∗
1 + v∗

2 + q∗
1 + q∗

2
for the two strain model. Numerically drawn with (a) 1 + γ1 + η1 = 2.0;
1 + γ2 + η2 = 1.7; (b) 1 + γ1 + η1 = 1.3; 1 + γ2 + η2 = 2.1, and R01 = 1.7;
a1 = 2.0; a2 = 3.0;
(u(0), v1(0), v2(0), q1(0), q2(0), w(0)) = (0.9, 0.05, 0.05, 0, 0, 0).

Concluding remarks

Without superinfection, the disease goes extinct if R0 ≤ 1. Otherwise, only the strain i of the
highest transmissibility (i.e., the largest R0i ) eventually persists in the community, and any other

strain goes extinct.

When there are two strains (n = 2) with superinfection, if one of them has a sufficiently high

transmissibility, it persists and the other goes extinct in the community.

If two strains coexist, the coexistence may reduce the endemic size.
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