Relation of the detectability in strains
to the endemicity of an infectious disease: A mathematical model
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Introduction Two strain model (n = 2)

Numerous studies have provided the evidence of the superinfection/coinfection with multiple strains in

various infectious diseases, such as malaria, HBV, HCV, SARS-CoV-2, dengue, particularly common in HIV. du L= (14 + )R gt )R e
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Figure 2. Temporal variations for the two strain model. Numerically drawn with (a) Zps = 1.2; (b) %2 = 2.0; (¢) Zpo = 4.0, and £y, = 1.5;
@ _ N — z”: B,I.S — uS: Ly 4m =20 147 +1m =17 e = 0.8 a1 = 2.0; as = 3.0; ((0), v1(0), v2(0), ¢1(0), g=2(0), w(0)) = (0.9, 0.05,0.05,0, 0, 0).
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B;1;:  the infection force of strain ¢ for the susceptible; (i) if
ei;0:1;:  the infection force of strain ¢ for the infective with strain j of the lower dominance (0 < g;; < 1); 5
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Theorem 1

For the model without superinfection (51-]' = 0), Conc[uding remarks

(i) if and only if %y < 1, the disease-free equilibrium Ey = (1,0, ...,0) is globally asymptotically stable;

(i) we have the unique locally asymptotically stable endemic equilibrium with a single strain i such that
Ko > 1 and Ky; > Ky, for any j # i, given by

= Without superinfection, the disease goes extinct if Zy < 1. Otherwise, only the strain i of the
highest transmissibility (i.e., the largest Z; ) eventually persists in the community, and any other
strain goes extinct.
§ 1, 1 . L\ . . s, = \WWhen there are two strains (n = 2) with superinfection, if one of them has a sufficiently high
— %, Vi T oyt - % U5 = 0;g; = a; + 1 15 = 0. transmissibility, it persists and the other goes extinct in the community.
= [f two strains coexist, the coexistence may reduce the endemic size.
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