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1 Introduction

The internal structure of a city is the outcome of the interplay between forces toward agglom-

eration and dispersion. The very high density of activities and population in cities induces

various congestion effects, or dispersion forces, arising from higher land rents and longer

commutes. At the same time, despite the disincentives, there are agglomeration forces that

drive businesses or people to form clusters. In particular, agglomeration economies for busi-

nesses may arise due to nonmarket interactions, or knowledge spillovers, that enhance a firm’s

productivity when its employees can communicate closely with other workers in a city.1

In this paper, we address the emergence of polycentric city structures that arise from trade-

offs between agglomeration economies and congestion effects. Toward this aim, we build on

the seminal framework of Fujita and Ogawa (1982) (FO) to facilitate formal analyses. The FO

framework incorporates two canonical agent types: firms and households. Firms are subject to

agglomeration economies in the form of positive technological externalities, whereas house-

holds have to commute to their workplaces. Both agents compete for land. In this framework,

firms benefit from proximity to other firms. If they agglomerate to form business districts,

however, they must pay higher rents and also compensate their workers for longer commutes

with higher wages. A spatial distribution of firms and households in equilibrium is deter-

mined by balancing these opposing forces. In urban economics, the framework is known as

a canonical model that can describe the formation of polycentric urban spatial structures in

equilibrium.2

Typical for models with positive externalities, a multiplicity of equilibria is inherent in

the FO framework. Equilibrium refinement is crucial for drawing robust implications, since

some equilibria may be unattainable under any dynamics. Toward this goal, we employ the

theory of potential games (Monderer and Shapley, 1996; Sandholm, 2001). We show that the FO

model is an instance of large-population (non-atomic) potential games; the model is reduced

to a maximization problem of a scalar-valued function (a potential function) that encapsulates
its incentive structure. In particular, the potential function is shown to capture the trade-off
between the agglomeration and dispersion forces in the model.

In potential games, sensible approaches are available for the characterization and refine-

ment of equilibria. First, the set of Nash equilibria of a potential game coincides with that of

Karush–Kuhn–Tucker (KKT) points of the maximization of the associated potential function.

Second, the local maximizers of the potential function is known to be locally stable under var-
ious standard dynamics, including the best response dynamic (Gilboa and Matsui, 1991), the

Brown–von Neumann–Nash dynamic (Brown and von Neumann, 1950; Nash, 1951), the Smith
dynamic (Smith, 1984), and Riemannian game dynamics (Mertikopoulos and Sandholm, 2018).3

See Sandholm (2001) as well as Sandholm (2010), Section 8.2. Third, the set of the global po-

tential maximizers are known to be globally stable under various premises. Building on Blume

(1993, 1997), Sandholm (2010) (Chapter 12) showed that the set of global potential maximiz-

1Agglomeration economies can be categorized into sharing, matching, and learning (?)Duranton-Puga-HB2004.
2See surveys by, e.g., Anas et al. (1998) or Duranton and Puga (2015).
3As shown in their paper, Riemannian game dynamics encompass the replicator dynamic (Taylor and Jonker,

1978) and the projection dynamic (Dupuis and Nagurney, 1993) as their special cases.
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ers in a non-atomic potential game is stochastically stable.4 Also, Oyama (2009a,b) considered

equilibrium selection in a dynamic setting where the static payoff is given by a “new economic

geography” model; it is shown that a perfect foresight dynamic selects the global potential

maximizer if the instantaneous payoff admits a potential function. Thus, the properties of

local and global potential maximizer(s) are expected to reveal the essence of a potential game.

Given this background, we employ local and global maximizations of the potential func-

tion as equilibrium refinement criteria. To concretely illustrate the utility of the potential

game approach in the context of the FO framework, we study the properties of spatial equi-

libria in two stylized geographies, namely, a two-location city and a circular city. We find

that the formation of business centers can be a global potential maximizer but only when the

commuting costs of households are sufficiently low. It is also shown that the number of busi-

ness centers monotonically decreases, while their size increases, when either the commuting

costs of households goes lower monotonically or the level of agglomeration externalities be-

tween firms diminishes monotonically. These results are consistent with intuition and with

conjectural predictions in the prior literature.

This paper is organized as follows. Section 2 relates this study to the literature. Section 3

introduces a model of urban spatial configurations and shows that a potential maximization

problem characterizes equilibria of the model. Section 4 shows that the model can be decom-

posed and then reduced to an equivalent potential game in which only firms are the agents.

Sections 5 and 6 are example sections that study Fujita and Ogawa (1982)’s specification using

the potential game method. Section 5 studies the simplest geography in which a city is divided

into two cells. Section 6 considers the circular geography to demonstrate that the formation of

multiple business centers can be a global potential maximizer. Section 7 concludes the paper.

2 Related literature

As highlighted in Section 1, this paper adopts a seminal framework proposed by Masahisa Fu-

jita and Hideaki Ogawa in two papers, Ogawa and Fujita (1980) and Fujita and Ogawa (1982).

They initiated the study of urban spatial equilibrium models with multiple types of agents

and economics of agglomeration.5 This framework has since been extended in many direc-

tions, including two-dimensional space (Ogawa and Fujita, 1989), a monopolistic competition

framework (Fujita, 1988), multi-unit firms (Ota and Fujita, 1993), and general equilibrium

frameworks (Lucas, 2001; Lucas and Rossi-Hansberg, 2002; Berliant et al., 2002; Mossay et al.,

2017; Malykhin and Ushchev, 2018). Most notably, the latest generation of quantitative spatial

economic models (e.g., Ahlfeldt et al., 2015; Owens et al., 2019), implicitly or explicitly inher-

its many elements from these theories (see the survey by Redding and Rossi-Hansberg, 2017).

Due to the lack of effective analytical methods, however, no previous study has addressed sta-

bility of equilibria in the FO framework when there are multiple equilibria. This paper is the

first to theoretically investgate this issue.

4For surveys of stochastic stability concepts in game theory, see Sandholm (2010) (Chapters 11 and 12) as well
as Wallace and Young (2015).

5Study of socially optimal urban spatial structure under similar assumptions was explored by other researchers,
such as Imai (1982).
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Section 6 employs circular geography. Circular geography is one of the canonical setups

for theoretical investigations, since the setup abstracts away various effects of geographical

asymmetries.6 Related to this paper, Mossay and Picard (2011) and Blanchet et al. (2016)

considered a spatial equilibrium model with a single type of mobile agents (Beckmann (1976)’s

model) over a circle. This paper, in contrast, has two types of mobile agents. Mossay and Picard

(2011) showed that the formation of equidistant, disjointed cities over the circumference is the

only possible equilibrium outcome. Furthermore, the equilibria are Pareto-ranked according

to the number of cities. In particular, the formation of a single city is the social optimum in

their framework. In our context, the multiple-city equilibrium can be interpreted as the for-

mation of multiple business centers in a city. In our setup, however, such symmetric spatial

configurations cannot be Pareto-ranked according to the number of business centers (see Sec-

tions 6.2 and 6.3). Pareto ranking depends on parameters. The contrast is natural since our

model considers two types of mobile agents.

To avoid technical complications, we consider a discrete-space model, where a city is di-

vided into a finite number of cells. A standard approach in the urban economics, however,

is to suppose a continuous space. Fujita and Ogawa (1982) considered a continuous real line

as the underlying geography. Such models are related to non-atomic games with continuous

strategy sets and a continuum of agents. A general theory of potential games for such class of

games, along with associated dynamics, was recently proposed by Cheung and Lahkar (2018).

Blanchet et al. (2016) characterized the spatial equilibria of a general class of continuous-

space urban models with a single type of agent as a variational problem. Bragard and Mossay

(2016) studied a relocation dynamics in the continuous-space framework of Mossay and Pi-

card (2011). Akamatsu et al. (2017) formulated a discrete-space version of Beckmann (1976)’s

model as a potential game and elucidated its properties. Unification of this line of researches

can lead to a fruitful field of applications of the potential game method.

3 A model for urban spatial structure

Building on the FO framework, this section formulates a discrete-space urban model. The

model generalizes the original FO model in that a location’s production level (introduced im-

mediately below) can take arbitral form as long as it satisfies certain assumptions.

Consider a city comprised of a set of discrete cells I ≡ {1, 2, . . . , I} (I ≥ 2). Each cell i ∈ I
is endowed with ai > 0 units of a fixed supply of land. For normalization, we let ∑i∈I ai = 1.
There are two continuums of agents: firms and households. Since the model focuses mainly

on the spatial distribution of firms, households’ incentives are simplified (see Section 3.2).

3.1 Firms

There is a continuum of business firms. The set of strategies for firms is I . Each firm chooses

a cell i ∈ I to locate in. The total mass of firms is a fixed constant M. Let mi ≥ 0 be the

6For instance, Papageorgiou and Smith (1983); Krugman (1993); Mossay and Picard (2011); Akamatsu et al.
(2012); Ikeda et al. (2012); Blanchet et al. (2016); Osawa et al. (2017); Ikeda et al. (2019).
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mass of firms in i ∈ I , and let m ≡ (mi)i∈I denote the spatial distribution, i.e., the strategy

distribution of firms.

Every firm produces a single unit of goods exported to the outside world with a fixed price

(which is normalized to unity) prevailing there. Each firm requires one unit of land and ϕ > 0
units of labor to operate. The profit of a firm choosing cell i is given by

πi = Ai(m)− ϕwi − ri, (3.1)

where Ai : RI
+ → R+ is the level of production in cell i, R+ = {x ∈ R | x ≥ 0} is the

set of nonnegative real numbers, wi ≥ 0 and ri ≥ 0 are, respectively, wages and land rents

prevailing in cell i, which are endogenously determined in the perfectly competitive labor and

land markets. We let w ≡ (wi)i∈I and r ≡ (ri)i∈I .

The set of all possible spatial configurations of firms is given by the following:

M ≡
{
m ∈ RI

+

∣∣∣∣∣ ∑
i∈I

mi = M, 0 ≤ mi ≤ ai ∀i ∈ I
}

, (3.2)

because each firm uses a single unit of land in production.

External economies in production, or technological externalities, arise from nonmarket

interactions. Firms are supposed to produce more goods when they are close to other firms.

We impose the following assumption on A(m) = (Ai(m))i∈I .

Assumption 1. The function A : RI
+ → RI

+ is C1 and

(i) ∇A(m) =
[

∂Ai(m)
∂mj

]
is positive definite with respect to TM ≡

{
ϵ = (ϵi) ∈ RI | ∑i∈I ϵi = 0

}
for all m ∈ M. That is, ϵ⊤∇A(m)ϵ > 0 for all nonzero ϵ ∈ TM for all m ∈ M.

(ii) ∇A(m) is symmetric for all m ∈ RI
+.

Assumption 1 (i) is a condition under which the production level A(m) features positive

externalities. Consider a deviation in the spatial distribution of firms such thatm′ = m+ ϵ ∈
M with an infinitesimal ϵ ∈ TM. Then, Assumption 1 (i) implies that

∑
ϵi≥0

|ϵi|
(

Ai(m
′)− Ai(m)

)
− ∑

ϵi<0
|ϵi|

(
Ai(m

′)− Ai(m)
)
= ϵ⊤∇A(m)ϵ > 0. (3.3)

The first (second) term on the left hand side represents the aggregate gain in the level of

externalities in the cells with more (less) firms induced by the deviation. Thus, Assumption 1

(i) implies that the former always dominates the latter, meaning a self-reinforcing externality.
Suppose that a hypothetical firm leaves a cell and joins another. Then, improvements in the

level of positive externalities in the cell to which the firm switches dominate those found in

one left.

Assumption 1 (ii) is externality symmetry (Sandholm, 2001), under which the marginal ef-

fect of adding a firm to cell i on Aj(m) is the same as the marginal effect of adding a firm to

cell j on Ai(m). As we will see, Assumption 1 (ii) is a necessary and sufficient condition for

A(m) to be integrable.
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Example 1. Positive externalities within each cell is expressed by Ai(m) = mα
i with α > 0. ♢

Example 2. Fujita and Ogawa (1982) assumed that Ai(m) = ∑j∈I exp
(
−τℓij

)
mj where τ > 0

and ℓij ≥ 0 is the distance between cells i and j with ℓij = ℓji. ♢

3.2 Households

Households are another continuum of actors. The set of strategies for households is I × I .
Each household chooses in which cell i ∈ I to reside and to which cell j ∈ I to commute. The

mass of households that commute from cell i to cell j is denoted by nij ≥ 0. The commuting

pattern as a whole (i.e., the strategy distribution of households) is denoted by n ≡ (nij)ij∈I×I .

There also is an outside option. Households can freely migrate from or toward the outside

world, where their reservation utility is normalized to be 0. The equilibrium mass of house-

holds in the city is therefore endogenously determined.7

Each household is endowed with a single unit of labor, supplied to firms, and compensated

by a wage. Each household consumes one unit of land inelastically for residential purposes.

The indirect utility of a household that chooses cell i for its residential location and cell j as its
job location is supposed to be

vij = wj − tij − ri, (3.4)

where the constant tij ≥ 0 is the commuting cost from i to j in the monetary unit.

3.3 Spatial equilibrium

In equilibrium, every firm should maximize its own profit by choosing its location. Every

household should maximize its own utility. These conditions are expressed as follows:

(utility maximization) 0 ≤ nij ⊥ v∗ − vij ≥ 0 ∀ij ∈ I × I , (3.5)

(profit maximization) 0 ≤ mi ⊥ π∗ − πi ≥ 0 ∀i ∈ I , (3.6)

where the notation 0 ≤ q ⊥ p ≥ 0 represents the complementarity condition q ≥ 0, p ≥ 0, and
qp = 0. The scalars v∗ = 0 and π∗ ≥ 0 are, respectively, the reservation utility of households

and an equilibrium profit level of firms.

Land and labor markets are perfectly competitive and markets clear when the following

conditions are met, thereby w and r are endogenously determined:

(land market clearing) 0 ≤ ai − mi − ∑
j∈I

nij ⊥ ri ≥ 0 ∀i ∈ I , (3.7)

(labor market clearing) 0 ≤ ∑
i∈I

nij − ϕmj ⊥ wj ≥ 0 ∀j ∈ I . (3.8)

Following conventions in urban economic theory, we assume that land is owned by absentee

landlords who spend their rental revenues outside the city. We normalize the opportunity cost

of land to 0, so that mini∈I ri = 0.
7In urban economics, this type of models is called open-city models. See Fujita (1989).
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Lastly, since the total mass of firms in the city is fixed, we require

(conservation) ∑
i∈I

mi = M. (3.9)

To summarize, an equilibrium in the model is defined as follows:

Definition 1. A spatial equilibrium is a pair of strategy distributions of households and firms

(n,m) with its associated market prices and equilibrium profits level of firms (r,w, π∗) that

satisfy the conditions (3.5), (3.6), (3.7), (3.8), and (3.9).

Remark 1. Let N be the equilibrium mass of households. Then, N = ϕM because every

household in the city should supply its labor to some firm, and every firm requires ϕ units of

labor to operate. Note also that, from (3.7), M+ N = (1+ϕ)M ≤ ∑i∈I ai = 1, or M ≤ 1
1+ϕ < 1,

must hold true for a spatial equilibrium to exsit. The restriction on M ensures that the total

land endowments meet the total land demand in equilibrium. ♢

3.4 Potential maximization formulation

Spatial equilibria are characterized by a maximization problem of a scalar-valued function

over the set of all feasible strategy distributions (m,n) of firms and households. In this sense,

the model can be interpreted as a non-atomic potential game.8

Let h : RI2

+ → R denote total commuting costs of households:

h(n) = ∑
i∈I

∑
j∈I

tijnij. (3.10)

Also, note that Assumption 1 (ii) is necessary and sufficient for the existence of a function

f : RI
+ → R such that ∇ f (m) =

[
∂ f (m)

∂mi

]
= A(m) for all m ∈ RI

+. In the integral form,

f (m) =
∮

A(ω) · dω, (3.11)

where the path integral is taken over any piecewise smooth path from 0 to m.

In addition, we note that any pair of strategy distributions (m,n) should satisfy

(land supply) mi + ∑
j∈I

nij ≤ ai ∀i ∈ I , (3.12)

(labor supply) ∑
i∈I

nij ≥ ϕmj ∀j ∈ I , (3.13)

as well as the conservation condition (3.9). We have the following result.9

Proposition 1. Suppose Assumption 1 (ii). Then, any spatial equilibrium of the model is a KKT
point of the following optimization problem:

max
(m,n)≥0

f (m)− h(n) s.t. (3.12), (3.13), and (3.9) (P0)

8See Appendix B for a discussion.
9All proofs are relegated to Appendix A.
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where r,w, and π∗ are determined as the Lagrange multipliers for the land supply constraint (3.12),
the labor supply constraint (3.13), and the conservation constraint (3.9), respectively.

The objective function of (P0) encapsulates the structure of the model. The first term f (m)

is a measure of firms’ benefit from agglomeration. The second term h(n) is the total commut-

ing cost that is spent in the city by the commuting pattern n. Thus, (P0) is a problem that

pertains to maximizing the benefit of firms’ agglomeration while also reducing the commut-

ing costs of households. The former corresponds to the agglomeration force, whereas the latter

corresponds to the dispersion force (see Section 4.4).

4 Reduction to firms’ game

To simplify the analysis of the properties of spatial equilibria, we decompose the model into a

two-stage game by postulating that the adjustment of households’ decision is faster than that

of firms. In other words, we interpret the model as a Stackelberg leader–follower game, where

firms lead and households follow, assuming that households play only passive and static roles

in the game.10 Since an individual firm or household is infinitesimally small, such decompo-

sition does not affect the properties of equilibria (see Remark 2).11

In the lower-stage game, the strategy distribution (spatial distribution) of firms m ∈ M is

fixed, and only households choose their strategies ij ∈ I × I (residential location and work-

place). In the upper-stage game, firms choose locations i ∈ I to maximize their profit in

response to the households’ aggregate behavior, as well as market prices, in the lower stage.

4.1 Lower-stage game

Let N (m) denote the closed and convex set of all feasible commuting patterns, or strategy

distributions of households, under a fixed m ∈ M:

N (m) ≡
{
n ∈ RI2

+

∣∣∣ s.t. (3.12) and (3.13)
}

. (4.1)

Then, equilibria in the lower-stage game are defined as follows.

Definition 2. Fix m ∈ M. An equilibrium in the lower-stage game is a commuting pattern

n ∈ N (m) and its associated market prices (r,w) that satisfy conditions (3.5), (3.7), and (3.8).

We denote an equilibrium value of r in the lower-stage game by ř = (ři). Note that ř do

not necessarily coincide with the equilibrium land rent in the upper-stage game because firms’

strategies (locations) are fixed in the lower stage. Since firms have no incentive to raise wage

w in the upper stage, wage should coincide with the upper-stage value.

Solving a lower-stage game becomes an optimization problem.

10This type of decomposition is a standard approach in spatial economics. For example, economic geography
models á la Krugman (1991) consider the so-called short-run equilibrium, where market prices are determined
under the condition that the spatial distribution of mobile actors,m, is fixed. It defines the payoff of mobile agents
as a function of m. Then, the so-called long-run equilibrium considers the spatial distribution of mobile agents in
equilibrium, according to the payoff function.

11From an optimization theory perspective, this interpretation corresponds to a Benders’ Decomposition (Benders,
1962; Geoffrion, 1972) of problem (P0). Other possible decompositions of (P0) are discussed in Appendix C.
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Proposition 2. Any lower-stage equilibrium under a fixed m ∈ M has the following properties:

(a) The aggregate commuting pattern n is a KKT point for the following problem:

min
n∈N (m)

h(n). (S)

(b) The corresponding market prices (ř,w) are a KKT point for the following problem:

max
(ř,w)≥0

ϕ ∑
i∈I

wimi − ∑
i∈I

ři (ai − mi) s.t. 0 ≥ wj − tij − ři ∀i, j ∈ I , (D)

where we normalize ř and w by letting mini∈I{ři} = 0.

The problem (S) minimizes total commuting costs across the city while satisfying land and

labor market constraints. On the other hand, (D) is the dual problem for (S). The first term

of its objective is total wages received by households, and the second term is total land rent

paid. It determines the highest bid ř for land and the lowest possible wage w to compensate

for commuting costs and land rents. Also note that a bounded solution exists for both (S) and

(D), because (3.12), (3.13), and the nonnegativity constraint of n define a nonempty, closed,

and convex set.

4.2 Upper-stage game

Knowing households’ responses, firms choose their location i ∈ I . The “lower-stage” profit

π̌(m) = (π̌i(m))i∈I of firms is defined as

π̌i(m) = Ai(m)− ci(m), (4.2)

where ci(m) is the firms’ minimum possible cost required to operate in cell i ∈ I . With

lower-stage market prices (w(m), ř(m)) (i.e., a solution for (D)), ci(m) is given by

ci(m) ≡ ϕwi(m) + ři(m). (4.3)

In the upper stage, firms may have to pay higher land rents ri > ři(m) to win the compe-

tition for land. Let r̂i ≡ ri − ři(m) ≥ 0. With π̌(m) and r̂i, the profit-maximization condition

for firms in (3.6) can be rewritten as follows:12

0 ≤ mi ⊥ π∗ − (π̌i(m)− r̂i) ≥ 0 ∀i ∈ I . (4.4)

Regarding r̂ = (r̂i), the following conditions should be met:

0 ≤ ai − mi ⊥ r̂i ≥ 0 ∀i ∈ I . (4.5)

That is, if households cannot afford to reside in cell i (i.e., if ri = ři + r̂i > ři), the cell is

completely occupied by firms. Conversely, if mi < ai and ∑j∈I nij > 0, land rents paid by firms

12Firms’ profit (3.1) can be rewritten as πi = Ai − ϕwi − ri = Ai − ϕwi − (ři + r̂i) = Ai − ci − r̂i = π̌i − r̂i.
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and households must be the same, and r̂i = 0.
Equilibrium conditions for the upper-stage game can be summarized as follows.

Definition 3. An equilibrium in the upper-stage game is a strategy distribution of firms m ∈
M with its associated market prices and equilibrium profits of firms (r̂, π∗) that satisfy (4.4),

(4.5), and (3.9).

4.3 Potential maximization formulation for the upper-stage game

The upper-stage game reduces to an optimization problem. First, observe that the lower-stage

game induces a function ofm. Let ȟ : M → R denote the optimal value of (S) as a function of

m. With a solution n∗(m) to (S), we let13

ȟ(m) = h(n∗(m)). (4.6)

In the following, we assume an extension ȟ : RI
+ → R+ with an abuse of notation.14

We observe that ȟ(m) is the integral of the firms’ cost function c(m) = (ci(m))i∈I . To

see this, note that ȟ(m) is also the optimal value of (D) because of the strong duality of linear

programming. Thus, the envelope theorem regarding dual representation (D) implies that

∂ȟ(m)

∂mi
= ϕwi(m) + ři(m) = ci(m) (4.7)

for almost all m ∈ M.15

Define a function g : RI
+ → R by g(m) ≡ f (m) − ȟ(m). Then, g turns out to be the

potential function for π̌(m). Recalling that ∇ f (m) = A(m), we have

∂g(m)

∂mi
=

∂ f (m)

∂mi
− ∂ȟ(m)

∂mi
= Ai(m)− ci(m) = π̌i(m) (4.8)

for almost all m ∈ M. Thus, g(m) is a potential function for π̌(m).

To summarize, under Assumption 1 (ii), the upper-stage game can be interpreted as a non-

atomic potential game with strategy set I , state space M, payoff function π̌ : M → RI , and a

potential function g : RI
+ → R. In particular, the following result holds true.

Proposition 3. Suppose Assumption 1 (ii). Then, any equilibrium spatial distribution m in the
upper-stage game is a KKT point for the following maximization problem:

max
m∈M

g(m) = f (m)− ȟ(m). (P)

13Since (S) is a linear programming problem, in general, the equilibrium commuting pattern n∗(m) may not
be uniquely determined. However, because the minimized commuting cost h(n∗(m)) is uniquely given for any
m ∈ M, it can be regarded as a function of m.

14Such an extension is simple because ȟ is a piecewise affine function in m. We extend each affine function
defined on a nonempty subset of M to that defined on RI

+ and then take the point-wise maximum.
15Note that, in the standard sense, ȟ can be nondifferentiable in a measure-zero subset of M. See Remark B.5 in

Appendix B.
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Remark 2. Any equilibrium in the upper-stage game is a spatial equilibrium of the overall

model (Section 3), and vice versa. This follows from a known fact that (P) is equivalent to (P0)

under the condition that (S) admits solution for all m ∈ M, (Tuy, 1987, Proposition 2.1). In

particular, it implies that a pair of strategy distributions (m,n) locally (globally) maximizes

f (m)− h(n) if and only if m locally (globally) maximizes g(m) = f (m)− ȟ(m). ♢

4.4 General properties

The shape of the potential function g provides general insights into the properties of equilibria.

In g, the two terms f and ȟ encapsulate the two basic forces in the model laid out in Section 3,

one toward firms’ dispersion, and the other toward firms’ agglomeration. This is reflected in

the convexity properties of f and ȟ.
We observe that ȟ is convex.16

Observation 1. ȟ : RI
+ → R is piecewise affine and convex on M. ♢

This reflects that the second term corresponds to the dispersion forces for firms. Recall

that ȟ represents households’ minimized commuting costs (the primal representation (S)) and,

equivalently, the firms’ minimum possible operating costs (the dual representation (D)) at

m ∈ M. Observation 1 means that concentration of firms in a smaller number of cells induces

higher total commuting costs for households while also implying that firms’ higher operational

costs compensate for these greater commuting costs with higher wages. Also, ȟ(m) = 0 for

all m such that (1 + ϕ)mi ≤ ai for all i ∈ I . That is, if all households can reside at their

workplaces when firms are dispersed throughout a city, then no commuting costs are spent.

In sum, the second term of the potential function g is larger when firms are dispersed.
On the other hand, f is strictly convex.17

Observation 2. Under Assumption 1 (i), f : RI
+ → R is strictly convex on M. ♢

The convexity of f reflects that it corresponds to the agglomeration force for firms. Firms’

production levels are higher when they are located close to other firms. Representing the

agglomerative effects, f is larger near the corners of M, or when firms are agglomerated in a

smaller number of cells.

Whether firms agglomerate or disperse is determined by the balance of two opposing forces

expressed by the two terms f and −ȟ. In particular, the potential function g is generally

neither concave nor convex but piecewise strictly convex, indicating that there may be numerous

possible equilibria.

Remark 3 (Efficiency). A welfare-maximization problem for the model may be formulated as

follows:

max
m∈M

g̃(m) ≡ f̃ (m)− ȟ(m), (W)

16Note that ȟ(m) is a solution for (D) and therefore a point-wise maximum of affine functions of m.
17Assumption 1 (i) is the necessary and sufficient condition for the strict convexity of f on the hyperplanes of

the form M(α) ≡
{
m ∈ RI | ∑i∈I mi = α

}
(α ∈ R), implying the assertion since M = M(M).
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where f̃ (m) ≡ ∑i∈I Ai(m)mi, and g̃ represents firms’ aggregate profits. In equilibrium, firms’

agglomeration is inadequate when compared with a social optimum. To demonstrate this, we

build on Sandholm (2001), Section 5. Suppose that A is homogeneous of degree k > 0, that is,
A(αm) = αkA(m) for all α ∈ R and m ̸= 0. Then, we see that

f (m) =
1

k + 1
f̃ (m). (4.9)

This relationship implies that (P) assigns a smaller weight to f̃ (m) than (W) does. Because

f̃ (m) = (k + 1) f (m), f̃ (m) also preferres agglomeration. Clustering of firms in equilibria is

therefore less than efficient.

Next, suppose that A is characterized by a parameter τ > 0. Noting that h(n) is a linear

function of t = (tij), suppose that ȟ(m) is linear in a parameter t > 0. Then, it follows that

g(m) = f (m)− ȟ(m) =
1

k + 1

(
f̃ (m)− (k + 1)ȟ(m)

)
=

1
k + 1

g̃(m)|t:=(k+1)t .

The relationship implies that, if m∗ ∈ M locally (globally) maximizes the potential function

g for a parameter pair (τ∗, t∗), then it locally (globally) maximizes the welfare function g̃ for

the pair (τ∗, (k + 1)t∗). Also, if a spatial pattern m cannot globally maximize the potential, it

cannot be a global social optimum. ♢

4.5 The Fujita–Ogawa specification

In the remainder of the paper, we focus on the simple specification of A(m) = (Ai(m))i∈I

and t = (tij)ij∈I×I to derive concrete insights. Under these specification, the model can be

interpreted as a discrete-space version of Fujita and Ogawa (1982)’s seminal model.

Assumption 2. Ai(m) = ∑j∈I dijmj where dij = exp
(
−τℓij

)
with τ > 0 and tij = tℓij with

t > 0. ℓij ≥ 0 denotes the distance between cell i, j ∈ I , such that ℓii = 0, ℓi ̸=j > 0, and ℓij = ℓji.

The parameter τ determines how fast technological externalities decay over distance, where

a larger τ indicates a higher decay rate. On the other hand, t > 0 is the commuting cost rate

per unit of distance.18 We note that Assumption 2 is sufficient for Assumption 1.19 Also,

Assumption 2 implies that

f (m) =
1
2
m⊤Dm =

1
2 ∑

i∈I
∑
j∈I

dijmimj (4.10)

where D = [dij]. We confirm that ∇ f (m) = 1
2 (D + D⊤)m = Dm = A(m) for all m ∈ RI

+.

Remark 4. Under the FO specification, A is homogeneous of degree 1. The social welfare

function is given by g̃(m) = 2 f (m) − ȟ(m) (see Remark 3). If m∗ ∈ M locally (globally)

18Households’ equilibrium commuting pattern n∗(m) in the lower-stage game may not be unique for the linear
specification tij = tℓij (Berliant and Tabuchi, 2018). Minimized total commuting costs, however, are uniquely given
and suffice for our analysis of the upper-stage game.

19First, ∇A(m) = D = [dij] satisfies Assumption 1 (i). TM is spanned by {zj ≡ ei − ej | j ∈ I \ {i}} where
{ej} is the standard basis and i ∈ I may be arbitrarily chosen. We have (czj)

⊤D(czj) = 2c2(1 − dij) > 0 for any
c ∈ R because dii = djj = 1, dij = dji, and dij ∈ (0, 1). Second, D = D⊤ since ℓij = ℓji, satisfying Assumption 1 (ii).
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maximizes g(m) for a parameter pair (τ∗, t∗), it locally (globally) maximizes g̃(m) for the pair

(τ∗, 2t∗). ♢

As we reviewed in Section 1, any local potential maximizer for problem (P) is a locally

stable equilibrium under standard myopic dynamics. Also, any global potential maximizer

is a globally stable equilibrium in the sense of stochastic stability, or alternatively selection

under a perfect foresight dynamic. We define the sets L and G of firms’ spatial patterns by

L ≡ {The set of local maximizers for problem (P)} , (4.11)

G ≡ {The set of global maximizers for problem (P)} , (4.12)

respectively. Obviously, L and G are parameter dependent, and G ⊂ L ⊂ M. For the remain-

der of the paper, we study the properties of L and G.
In the example sections below, we presume the following condition for simplicity.

Assumption 3 (No excess land supply). (1 + ϕ)M = 1.

The left-hand side (1 + ϕ)M is the equilibrium mass of agents, and the right-hand side

is the total supply of land. If (1 + ϕ)M < 1, then extra land capacity exists in equilibrium.

In certain situations, some firms (and all their employees) can freely relocate to another cell,

which introduces a nonessential complication.20

5 The two-cell city

This section provides a concrete analysis of spatial equilibria in the model for the simplest

possible two-cell setup (I = 2) to illustrate the basic structure of the model. In particular,

this section addresses the roles of asymmetries in cells’ capacities a = (a1, a2). Section 6 then

focuses on the effects of τ and t by abstracting away all asymmetries across cells.

Let ℓ11 = ℓ22 = 0 and ℓ12 = ℓ21 = 1. Then, d11 = d22 = 1 and d12 = d21 = δ ≡ e−τ, and

t11 = t22 = 0 and t12 = t21 = t. We assume that a1 ≥ a2, i.e., a1 ≥ 1
2 , without loss of generality.

For simplicity, we take m1 as the variable. To satisfy m ∈ M, it must be that m1 ∈ [m̌, m̂]

with some m̌ ≥ 0 and m̂ ≤ M.21 Also, let m̄ ≡ M
2 and m̃ ≡ a1

1+ϕ . Note that m̄, m̌, m̃, and m̂ are

all independent of the transportation cost parameters t and τ.

If m1 = m̃, then Assumption 3 implies that m = ( a1
1+ϕ , a2

1+ϕ ) and that all firms and their

employees are located in the same cell. Following Fujita and Ogawa (1982), we call it the

integrated pattern. The two patterns m1 = m̌, m̂ are segregated patterns, since one of the cells

becomes a devoted business center. For instance, m1 = m̂ corresponds to m = (M, 0) (if

M ≤ a1).

To evaluate ȟ, we first solve the lower-stage game. Upon inspection, the solution for the

20For an illustration of the effects of dropping Assumption 3, compare the shape of the potential function in
Figure 1 with that of Figure D.4.

21Concretely, m̂ ≡ maxm∈M m1 = min{M, a1} and m̌ ≡ minm∈M m1 = max{0, M − (1 − a1)}.
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0 m̌ m̄ m̃ m̂

0

f (m1)

g(m1)

ȟ(m1)

(a) High t

0 m̌ m̄ m̃ m̂

0

(b) Medium t

0 m̌ m̄ m̃ m̂

0

(c) Low t

Figure 1: Graphs of g(m1) for high, medium, and low values of t. We let t = 3
2 t̂, t = 2

3 t̃+ 1
3 t̂, and

t = 1
2 t̃, respectively, where t̂ and t̃ are to be defined in Proposition 4. m1 = m̄ is the minimizer

of f , whereas m1 = m̃ is the maximizer of ȟ. •: local maximizers; ◦: locally minimizing KKT
points. M = 1

2 , a1 = 3
5 , δ = 1

10 .

lower-stage equilibrium under Assumption 3 is given by:22{
n11 = ϕm1, n12 = (1 + ϕ)m2 − a2, ř1 = w1 = 0,
n22 = ϕm2, n21 = 0, ř2 = w2 = t,

if m̌ ≤ m1 < m̃, (5.1a){
n11 = ϕm1, n12 = 0, ř1 = w1 = 0,
n22 = ϕm2, n21 = 0, ř2 = w2 = 0,

if m1 = m̃, (5.1b){
n11 = ϕm1, n12 = 0, ř1 = w1 = t,
n22 = ϕm2, n21 = (1 + ϕ)m1 − a1, ř2 = w2 = 0,

if m̃ < m1 ≤ m̂. (5.1c)

If m1 = m̃, then all households can reside in the same cells as their workplace, and there are

no inter-cell commutes. In this case, we let ři = wi = 0 for both i ∈ I . On the other hand, if

m1 ̸= m̃, then (1 + ϕ)mi − ai > 0 for one of the cells, meaning that a shortage of labor exists

in cell i and that (1 + ϕ)mi − ai workers commute to i from the other cell. Here, wi = t is the
minimal possible wage rate in cell i to compensate for commuting costs. The highest bid for

the land rents in each cell i must coincide with its wage rate. Thus, we have ři = wi = t.
Employing the analytic solution (5.1), ȟ(m) is expressed in terms of m1:

ȟ(m1) = (1 + ϕ)t |m1 − m̃| . (5.2)

Similarly, f (m) is expressed as:

f (m1) = (1 − δ)(m1 − m̄)2 + (1 + δ)m̄2. (5.3)

where δ = e−τ. As a function of m1, g(m) is computed as g(m1) = f (m1)− ȟ(m1). Problem

(P) is reduced to a maximization of g(m1) over the interval [m̌, m̂].

Figure 1 shows the graphs of g, f , and ȟ for three different values of t (high, medium, and

low). The functions g, f , and ȟ are extended to be defined over all R, whereas the state space

is the closed interval [m̌, m̂]. The potential function g is neither convex nor concave. Points in

L, the local maximizers of g, are indicated by black marks, and locally minimizing KKT points

22Appendix D explores the two-cell city in detail without Assumption 3.
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t̃ = 0 t∗ t̂

m̂

m̃

m̌

(a) a1 = 0.5

0 t̃ ť t∗ t̂

(b) a1 = 0.65

0 t̃ t∗ t̂

(c) a1 = 0.8

Figure 2: Local maximizer(s) of g(m1) in the t-axis. M = 0.5. The solid curves: local maxi-
mizers; The broken curves: locally minimizing KKT points; The background: the contours of
g(m1) over (t,m1)-space. G = {m̂} if t < t∗ and G = {m̄} if t > t∗.

are indicated by white circles. All these points are equilibria in the upper-stage game. For the

high-commuting-cost case in Figure 1a, the integrated pattern m1 = m̃ is the only local (and

hence global) maximizer. For the medium-commuting-cost case in Figure 1b, the segregated

patterns and the integrated pattern are the local maximizers. For the low-commuting-cost case

in Figure 1c, only the segregated patterns are the local maximizers.

The following proposition characterizes L and G, the local and global maximizer(s) of g.

Proposition 4. Assume that a1 ≥ 1
2 . Then, only patterns in {m̌, m̃, m̂} ({m̃, m̂}) can locally

(globally) maximize g(m1) in [m̌, m̂]. Let ť ≡ 2M(1 − δ)(m̂ − m̄), t̃ ≡ 2M(1 − δ)(m̃ − m̄),
t̂ ≡ 2M(1− δ)(m̂− m̄), and t∗ ≡ 1

2 (t̂+ t̃), with δ ≡ e−τ. Then,




m̌ ∈ L ∀t < ť,

m̃ ∈ L ∀t > t̃,

m̂ ∈ L ∀t < t̂,

and



m̃ ∈ G ∀t ≥ t∗,

m̂ ∈ G ∀t ≤ t∗.
(5.4)

Proposition 4 states that the integrated pattern (m1 = m̃) is the only possible local max-

imizer for larger values of t, whereas the segregated patterns (m1 = m̌ or m̂) become local

maximizer(s) for smaller values of t. The integrated pattern should be the only equilibrium

if the commuting cost per distance t is sufficiently high because the costs of commuting over-

come the benefit of agglomeration. When t is not too high, concentration of firms can be a

local maximizer when τ is large. For a firm, proximity to other firms matters more than higher

wage paid to its employees when τ is small and t is not too high. It is intuitive that m1 = m̌, a

concentration to a less advantageous cell 2, cannot be a global potential maximizer.

Figure 2 shows local maximizers in terms of m1 in line with varying t. Figure 2a is the

symmetric case (a1 = 1
2 ), for which we have m̃ = m̄ = M

2 and ť = t̂ and t̃ = 0. Figure 2c

shows a case where cell 1 is so advantageous that a concentration to cell 2 (m1 = m̌) can never
be an equilibrium. Figure 2b is an intermediate case. Note that, while concentration to either

cell 1 (m1 = m̂) or cell 2 (m1 = m̌) can locally maximize g(m1), m̂ is more likely to be a local

maximizer (i.e., t̂ > ť). Figure 1 shows snapshots of Figure 2b for three different values of t.
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Figure 3: Circular city.

6 Circular city

This section considers a symmetric geography to elucidate the intrinsic role of transportation

cost parameters t and τ. To abstract away the effects of asymmetries across cells, we assume

that the underlying geography is a circle with circumferential length 1, on which cells of the

same size are sequentially placed (Figure 3).

Assumption 4. �ij = 1
I min{|i− j|, I − |i− j|} for all i, j ∈ I . Also, ai = a ≡ 1

I for all i ∈ I .

Assumption 4 abstracts away cell-specific advantages arising from the shape of the under-

lying transportation network or extra capacities, which allows us to isolate the endogenous

forces that determine spatial patterns. For instance, in a line segment, the locations near city

boundaries have fewer opportunities to access other cells. By contrast, in a circle, every cell

has the same level of accessibility as the other cells. In particular, the uniform distribution of

firms m̄ = (m̄, m̄, . . . , m̄) (m̄ ≡ M
I ) is always an equilibrium.

For simplicity, following Fujita and Thisse (2013), Section 6.5, we assume that M = 1
2 . In

fact, the total mass of firms M does not affect the qualitative properties of equilibrium spatial

patterns (i.e., integrated or segregated) under Assumption 4.23

Assumption 5. M = 1
2 .

For the remainder of the paper, we assume Assumptions 2, 3, 4, and 5. In addition, to

simplify the analysis, we consider global maximization of the potential function as the equilibrium
refinement criterion There is a pair of useful predictions on the properties G.

Lemma 1. Consider problem (P) under Assumptions 2, 3, 4, and 5. Then, the following hold true.

(a) Any m ∈ L, and thus any m ∈ G, should satisfy mi ∈ {0, m̄, a} = {0, m̄, 2m̄} for all i ∈ I .

(b) For any τ > 0, G = {m̄} when t is sufficiently large.

Condition (a) substantially simplifies the enumeration of relevant spatial configurations.

It indicates that if m ∈ M locally maximizes g, every cell has to be used either for purely

residential (mi = 0), integrated (mi = m̄), or purely business (mi = a = 2m̄), purposes. For (b),

it would be natural that if t is very large, concentration of firms is inferior in potential value to

the uniform distribution m̄ because, while f (m) is bounded under Assumption 2, ȟ(m) can

be arbitrarily large in t.
23M acts as a scaling factor for t. See Remark D.2 in Appendix D for the I = 2 example.
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(M, 0, 0)

(0, 0, M)

(0, M, 0)(a, m̄, 0) (m̄, a, 0)

(m̄, m̄, m̄)

(0, m̄, a)

(0, a, m̄)(a, 0, m̄)

(m̄, 0, a)

(a) Agglomeration force f (m) (b) Dispersion force −ȟ(m)

Figure 4: Contours of f (m) and −ȟ(m) for the three-cell city.

(a) t = 0.15 (b) t = 0.05 (c) t = 0.03

Figure 5: Contours of g(m) for the three-cell city (e−
τ
3 = 0.5, M = 1

2 ). The coordinate system
is the same as Figure 4. •: local maximizer, ◦: local minimizer or saddle point.

6.1 The three-cell city

Assuming I = 3, this section explores the landscape of the potential function g(m). Because

the basic results are the same with I = 2, we focus on graphical intuitions. Without loss

of generality, we let m1 ≥ m2 ≥ m3. Lemma 1 implies that only the uniform distribution

m̄ = (m̄, m̄, m̄) and the monocentric pattern m̂ ≡ (a, m̄, 0) can be global maximizers of the

potential function.24

Figure 4 shows the contours of f (m) and −ȟ(m) on M employing a simplex coordinate.

The first term f (m) is a parabola centered at m̄. As discussed in Section 4.4, it is larger

near the boundary of M because it corresponds to the agglomeration force in the model. The

second term −ȟ(m) is a piecewise affine function attaining the maximum at m̄.25 It is larger

when m is close to the integrated pattern m̄, as total commuting costs is smaller. Being the

sum of these two terms, working in opposite directions, the potential function g is nonconvex.

Figure 5 shows the contours of g(m) for different values of t. The black markers indicate

local maximizers, whereas the white markers indicate other KKT points. For simplicity, only

those KKT points (i.e., equilibria) with m1 ≥ m2 ≥ m3 are drawn. Qualitative properties are

24Note that all the patterns (a, m̄, 0), (0, a, m̄), (m̄, 0, a), (a, 0, m̄), (0, m̄, a), and (m̄, a, 0) are essentially the “same”
spatial pattern and share the same potential value. There are five other local (global) maximizers of the same
meaning when m̂ = (a, m̄, 0) is a local (global) maximizer of the potential function.

25If we drop Assumption 4 so that ai can vary across cells, −ȟ(m) attains maximum at m̃ = 1
1+ϕ (a1, a2, a3),

analogous to the two-cell case with a1 > a2.
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C
C’

A B

B’

U
A’

Cell 1 Cell 2 Cell 3

(U) m̄ = (m̄, m̄, m̄)

(C’) (A’) (B’)

(C) (a, M−a
2 , M−a

2 ) (A) m̂ = (a, m̄, 0) (B) (M
2 , M

2 , 0)

Figure 6: Equilibrium spatial distributions of firms (I = 3). The left-hand side: a subset of M
that satisfy m1 ≥ m2 ≥ m3. The right-hand side: spatial patterns, with letters corresponding
to those in the contour plot on left-hand side.

consistent with the two-cell example. When t is large, m̄ is the only maximizer. For lower

values of t, there are numerous KKT points, all of which are equilibria in the model. Only m̄

and m̂ can be local maximizers, confirming Lemma 1. The figure also illustrates the landscape

of the potential function behind the lemma, in that any interior equilibrium with mi ̸= m̄ for

some i is either a local minimizer or a saddle point.

Figure 6 schematically illustrates equilibrium patterns associated with the markers in Fig-

ure 5b, as well as a magnification of Figure 5b for the subset of M such that m1 ≥ m2 ≥ m3.

Only the uniform distribution m̄ (pattern U) and the monocentric agglomeration m̂ (pattern

A) locally maximize the potential function. Patterns C and B are local minimizers on the

boundaries. Patterns A’, B’, and C’ are interior equilibria which may be interpreted as “in-

between” patterns.

The (possible) number of equilibrium patterns increases considerably (from 5 to 25 without

symmetry considerations), merely by moving from I = 2 to I = 3. The majority of equilibria

(18 out of 25) are less important (i.e., local minimizers or saddles). Thus, imposing some

equilibrium refinement is crucial for obtaining meaningful equilibria.

By focusing on patterns that can globally maximize g(m), i.e., m̄ = (m̄, m̄, m̄) and m̂ =

(a, m̄, 0), we obtain the following characterization. In words, dispersion m̄ is selected when

commuting cost t is large, and agglomeration m̂ is selected when t is small.

Proposition 5. Suppose that I = 3. Let t∗ = 1
4 (1 − δ) with δ ≡ e−

τ
3 . Then, the uniform distribu-

tion m̄ is a global potential maximizer for t ≥ t∗ and the monocentric pattern m̂ is a global potential
maximizer for t ≤ t∗.

6.2 The four- and eight-cell cities

Fujita and Ogawa (1982)’s model describes the formation of multiple urban centers as an equi-

librium outcome. The four-cell city (I = 4) is the minimal setup where the duo-centric pattern

m2 ≡ (a, 0, a, 0) can emerge. If we focus on the set of global maximizers G, however, only

the complete dispersion m̄ = (m̄, m̄, m̄, m̄) and the monocentric pattern m1 ≡ (0, a, a, 0) can
emerge.
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Proposition 6. Suppose that I = 4. Let t∗ ≡ 1
4 (1 − δ2) with δ ≡ e−

τ
4 . Then, only the uniform and

monocentric patterns (m̄ and m1) can be global potential maximizers. The uniform distribution
m̄ is a global potential maximizer for t ≥ t∗ and the monocentric pattern m1 is a global potential
maximizer for t ≤ t∗.

The duo-centric pattern cannot be a global potential maximizer because g(m1) > g(m2)

for all (τ, t). For households, there is no distinction between monocentric and duo-centric

equilibria because in both cases every household commutes to a cell next to its residential cell,

and the equilibrium commuting cost for a household is t
4 , implying that ȟ(m1) = ȟ(m2) = 2×

a × t
4 = tm̄. On the other hand, since a monocentric concentration m1 offers a higher level of

technological externalities for firms than the duo-centric patternm2, we have f (m1) > f (m2).

For I = 8, on the other hand, commuting length may vary for different spatial configu-
rations. Possible configurations include the uniform pattern m̄ = (m̄, m̄, . . . , m̄), the mono-

centric pattern m1 ≡ (0, 0, a, a, a, a, 0, 0), the duo-centric pattern m2 ≡ (0, a, a, 0, 0, a, a, 0), and
the quad-centric pattern m4 ≡ (a, 0, a, 0, a, 0, a, 0). Figure 7a illustrates m̄, m1, m2, and m4,

with arrows indicating households’ commuting patterns. As the commuting cost between two

neighboring cells is t
I = t

8 , a household’s commuting cost in patterns m̄, m1, m2, and m4 are

given by 0, t
8 ,

t
8 , and

t
4 , respectively.

The following proposition characterizes G for I = 8.26

Proposition 7. Suppose I = 8. Then, only uniform, monocentric, and duo-centric patterns (m̄,
m1, and m2) can be global potential maximizer(s). There exists τ∗ such that:

(a) If τ ≤ τ∗, then there exists t∗ such that (i) the uniform pattern m̄ is a global maximizer for
t ≥ t∗ and (ii) the monocentric pattern m1 is a global maximizer for t ≤ t∗.

(b) If τ > τ∗, then there exist t∗∗ and t∗∗∗ with t∗∗ > t∗∗∗ such that (i) the uniform pattern m̄

is a global maximizer for t ≥ t∗∗, (ii) the duo-centric pattern m2 is a global maximizer for
t∗∗∗ ≤ t ≤ t∗∗, and (iii) the monocentric pattern m1 is a global maximizer for t ≤ t∗∗∗.

It is far simpler to visualize Proposition 7 in the (τ, t)-space. Figure 7b shows a partitioning

of the (τ, t)-space on the basis of G. The letters U, M, and D in each region correspond, respec-

tively, to the uniform, monocentric, and duo-centric patterns (m̄, m1, m2). When t is large,
agglomeration cannot occur, and the uniform distribution is the global maximizer. Analogous

to the two- and three-cell cases, a concentration of firms is possible if t is sufficiently small,

where the benefit of proximity overcomes firms’ costs. When the decay rate τ is small, the

monocentric pattern is chosen. When τ is large, a new phenomenon emerges: duo-centric

pattern becomes the global maximizer of the potential. When spillover from one cell to its

neighbor is low (τ is high) and commuting cost t is intermediate, the benefit of agglomeration

cannot compensate for longer households commutes.

A rough intuitive rationale behind the emergence of the duo-centric pattern when τ is

large is as follows. Suppose that τ is large or that δ = e−
τ
8 is small, so that either δ2, δ3, or δ4

is negligibly small. Then, consider the third cell from the left in Figure 7a. In the monocentric

26The quad-centric patternm4 cannot be in G because g(m2) > g(m4) for all (τ, t), analogous to the I = 4 case.
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(M) m1 = (0, 0, a, a, a, a, 0, 0)

(D) m2 = (0, a, a, 0, 0, a, a, 0)

m4 = (a, 0, a, 0, a, 0, a, 0)

(U) m̄ = (m̄, m̄, m̄, m̄, m̄, m̄, m̄, m̄)

(a) Representative spatial patterns. (b) Partition based on G.

Figure 7: Partition based on G and associated spatial patterns (I = 8). The letter on each
region in Figure 7b corresponds to that in Figure 7a.

pattern m1, the cell is located at a boundary of the business center. The production level in

the cell is given by:

(
1 + δ + δ2 + δ3) a ≈ (1 + δ)a,

whereas firms’ operating costs in the cell are (1 + ϕ)× 2t
8 = t

2 . On the other hand, every firm

in the duo-centric pattern m2, including the third cell, enjoys the following production level:(
1 + δ + δ3 + δ4

)
a ≈ (1 + δ)a,

whereas firms’ operating costs are (1 + ϕ)× t
8 = t

4 . Thus, firms in the two boundary cells of

the single business center in m1 have an incentive to deviate toward the duo-centric pattern

m2 when δ is small (τ is large). The positive spillover is too low to compensate for higher

operating costs when τ is large.

6.3 A city with a large number of cells

The above analyses for small Is have demonstrated that multiple-center equilibria can be local

and global potential maximizers in the model. This exploratory section provides an additional

numerical investigation into the case when the number of cells I is extremely large.

For simplicity, we restrict our attention to a collection of symmetric spatial distributions

of firms: the uniform pattern (or the integrated pattern) m̄ = (m̄, m̄, . . . , m̄) and symmetric
J-centric segregated patterns mJ (J = 1, 2, . . .). The latter are spatial patterns of firms such that

mJ =
(
m̌J , m̌J . . . , m̌J︸ ︷︷ ︸

J times

)
where m̌J ≡

(
0, 0, . . . , 0︸ ︷︷ ︸

I
4J times

, a, a, . . . , a︸ ︷︷ ︸
I

2J times

, 0, 0, . . . , 0︸ ︷︷ ︸
I

4J times

)
(6.1)

where each m̌J is interpreted as an urban subcenter with a self-contained job market.27 For

27There are I
2J purely business cells and I

2J purely residential cells in each m̌J .
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(a) Uniform m̄ (b) Monocenter m1 (c) Duo-center m2 (d) Tri-center m3 (e) Quad-centerm4

Figure 8: Symmetric patterns in M∗ (I = 4LCM(4) = 48).

all mJ to exist up to K-center pattern (K ≥ 1), I
4J must be an integer for all J ≤ K. That is,

I = 4LCM(K) where LCM(K) denotes the least common multiple of {1, 2, 3, . . . , K}.28

Let M∗ ≡ {m̄,m1,m2, . . . ,mK} denote the set of symmetric spatial distributions. Figure

8 illustrates the patterns in M∗ when I = LCM(4) = 48. We consider global maximization

of the potential function g(m) over M∗. The conjecture behind this analysis is formalized as

follows.

Conjecture 1. Suppose I = 4LCM(K) (K ≥ 1). Let G∗ be the set of global potential maximizers
among M∗. Then, G = G∗.

The conjecture is, if m ∈ M∗ has the maximum potential value among the patterns in

M∗, then it globally maximizes g over M, and vice versa. Propositions 6 and 7 support the

conjecture for K = 1 and K = 2 (i.e., I = 4 and I = 8), respectively, since M∗ = {m̄,m1}
for K = 1 and M∗ = {m̄,m1,m2} for K = 2. Also, a possible local maximizer other than the

symmetric patterns M∗ can be regarded as a transitional pattern connecting two symmetric

patterns.29 Thus, it is expected that G∗ provides at least an approximate view of the overall

properties of G.
Figure 9 shows a partition of the (τ, t)-space on the basis of G∗, i.e., the global potential

maximizer amongM∗, when K = 50.30 Segregated patterns {mJ}K
J=1 dominate the integrated

pattern m̄ in the gray regions, whereas the uniform distribution is the global potential maxi-

mizer in the white region. Each gray region corresponds to one of the J-centric patterns, and
the number on each region corresponds to the number of business centers J. On the τ-axis,

gray regions are aligned in the increasing order of J.
Figure 9 has two basic implications. One is the effect of the commuting cost parameter t,

and the other is the effect of the distance decay parameter τ.

Observation 3. Fix τ > 0, suppose that t is very large initially, and consider a monotonic decrease
in t. Then, the global maximizer of g across M∗ is given by the following sequence: m̄ → mJ∗ →
mJ∗−1 → · · · → m2 → m1 for some J∗ ≥ 1. ♢

Multiple business centers are formed from uniformity and then the number of business

centers decreases as t decreases from a larger extreme. For instance, let τ = 25 and consider a

28For instance, I = 4, 8, 12, 48, 240, 240, 1, 680, and 3, 360 for each 1 ≤ K ≤ 8.
29For example, (0, a, m̄, m̄) can be a local maximizer when I = 4. It connects two patterns (0, a, 0, a) and (0, a, a, 0).

See Proof of Proposition 6 in Appendix A.
30In favor of efficiency of numerical computation, we employ a continuous version of the potential function g to

draw Figure 9. See Appendix E for details.

21



(a) Overview [τ ∈ (0, 200)] (b) Magnification [τ ∈ (0, 50)]

Figure 9: Partition of the (τ, t)-space based on G∗. The white region indicates that G∗ =
{m̄}. The gray regions indicate that one of the symmetric segregated patterns {mJ} globally
maximizes g among M∗; the number in each region indicates the number of subcenters J.

decrease of t (the vertical broken line in Figure 9b). When t is sufficiently large, m̄ maximizes

g (Lemma 1 (b)). But when t decreases and cuts a threshold,m4 emerges as the global potential

maximizer in M∗. As t decreases further, the potential maximizer sequentially switches, as

m4 → m3 → m2 → m1.31

Observation 4. Fix a sufficiently small t > 0, suppose that τ is very small initially, and consider
a monotonic increase in τ. Then, the global maximizer of g across M∗ is given by the following
sequence: m̄ → m1 → m2 → m3 → · · · . ♦

A monotonic increase in the number of subcenters occurs when τ monotonically increases

with a given t. For instance, let t = 0.08 and consider a monotonic increase in τ (the horizontal

broken line in Figure 9b). For small τ, the uniform distribution m̄ has the maximum potential

value on this line. A steady increase in τ induces a repetitive emergence of segregated patterns,

with an increasing number of subcenters J as the global potential maximizer in M∗.

If Conjecture 1 is true, Observations 3 and 4 generalize the implications of Proposition 7:

when t is large, segregation cannot become a global maximizer; when t is not too large, then

the number of business centers increases as decay rate τ rises.

7 Concluding remarks

Building on the seminal framework by Fujita and Ogawa (1982), this paper considered the

emergence of multiple business centers in the cities. A potential game approach is shown

to be efficacious for the analysis of the model. Through local and global maximizations of the

potential function, we characterized stable spatial equilibria in the model. Our results provide

an answer to the long-standing stability issue of polycentric equilibria of the FO model. We

31Figure E.7a and Figure E.7b in Appendix E show graphs of potential values for the symmetric patterns over
the vertical and horizontal broken lines in Figure 9b (τ = 25 and t = 0.08), respectively.
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also demonstrated that the model can have multiple local maximizers of the potential function.
The results presented in Sections 6.2 and 6.3 suggest that equilibrium refinement based on

global maximization of the potential function makes the discussion cleaner, without affecting
the basic implications of the model.

When t is large, the uniform distribution becomes the only global potential maximizer.

When commuting costs are too large, firms cannot compensate its employees for their com-

muting costs with wage, because their production level is finite. We note that households’

commuting costs has two interpretations. On the one hand, as emphasized in Sections 4, 5,

and 6, they acts as dispersion forces from a firm’s perspective. On the other hand, they can also

be interpreted as an inter-type agglomeration force (or co-location force) that glues firms and

households together (cf., Papageorgiou and Thisse, 1985). When t is large, the co-location

force become strong, and the integration (the uniform pattern) emerges as the global potential

maximizer.

When t is relatively small, segregation of firms and households can occur to form disjointed

business districts (provided that the number of cells I are sufficiently large to express such

patterns). Sections 6.2 and 6.3 illustrated that the number of business centers increases as τ

increases. As τ grows large, the contributions of positive spillovers from firms in distant cells

become negligible. At some point, firms can no longer pay the higher land rents and wages

required to support the emergence of large business clusters.

There are several topics that worth further exploration. First, relaxing the simplifying

assumptions in the basic framework (Section 3) would be important to provide policy impli-

cations. In particular, following Fujita and Ogawa (1982), we assume a fixed demand for land,

which should be relaxed. To this end, the potential game approach is effective for any exten-

sions that preserve the symmetry of externalities.32 Second, for a given specification of A(m)

or t (e.g., Assumption 2), the optimization representation (P) can be employed to study various

assumptions about the transportation network of a city, i.e., the geographical distances {ℓij}
between cells, including a line segment as in the original FO paper, or a variety of stylized but

interesting geographies, as in the paper by Matsuyama (2017).

32The Negishi’s theorem (Negishi, 1960) implies that any competitive assumptions may be reduced to maximiz-
ing a specific kind of welfare function. The optimal value of a welfare function, in tern, acts as a potential function
of the associated game when the mass of agents in each cell is taken as a variable.
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A Proofs

Proof of Proposition 1. Let ⟨p,x⟩ ≡ p⊤x = ∑i∈I pixi. With multipliers w = (wi) ∈ RI
+, r =

(ri) ∈ RI
+, v∗, and π∗, define the Lagrangian L for problem (P0) by

L =− f (m) + h(n) +
〈
r,−a+m+

(
I ⊗ 1⊤I

)
n
〉
+

〈
w, ϕm−

(
1⊤I ⊗ I

)
n
〉

+
〈

v∗,1⊤I2n− N
〉
+

〈
π∗,1⊤I m− M

〉
,

where I is the I-dimensional identity matrix and 1K denotes the K-dimensional all-one vec-

tor. The first-order optimality condition with respect to the Lagrangian L coincides with the

equilibrium conditions listed in Definition 1.

Proof for Proposition 2. Define the Lagrangian L for problem (S) by

L = h(n) +
〈
ř,−a+m+

(
I ⊗ 1⊤I

)
n
〉
+

〈
w, ϕm−

(
1⊤I ⊗ I

)
n
〉

.

Then, the first-order optimality condition with respect to L coincides with the conditions in

Definition 2. (D) is the Lagrangian dual problem for (S) and obtained by taking infn≥0 L .

Proof for Proposition 3. Define the Lagrangian L for problem (P) by

L = − f (m) + ȟ(m) + ⟨r̂,−a+m⟩+
〈

π∗,1⊤m− M
〉

.

Then, the first-order optimality condition with respect to L is equivalent to the conditions in

Definition 3 as well as the equilibrium conditions of the model (Definition 1).

Proof of Lemma 1. The lemma is a corollary of the following Lemma A.1.

Lemma A.1. Suppose Assumptions 2, 3 and 4. Then, the following properties holds true for (P).

(a) The uniform distribution m̄ is a local maximizer for all (τ, t).

(b) m̄ is the unique global maximizer when t is sufficiently large.

(c) Any interior KKT point other than m̄ (if it exists) is a local minimizer or a saddle point.

(d) No local maximizer involves more than one “unbalanced” cells, i.e., cells with mi > 0, ∑j∈I nij >

0, and ϕmi ̸= ∑j∈I nij so that there must be commuting from or toward the cell.

(e) If in addition Assumption 5 holds true, no local maximizer involves unbalanced mixed use
cells.

Proof. (a) m̄ is a local minimizer of ȟ with ȟ(m̄) = 0. Evidently, we have ȟ(m̄+ ϵ) > 0 for

any nonzero ϵ ∈ TM under Assumption 3. Since ȟ(m) is a piecewise affine function, m̄ is an

isolated local minimizer of ȟ for any t > 0. Similarly, for ϵ ∈ TM, define f̃ (ϵ) ≡ f (m̄+ ϵ) =

f (ϵ) + f (m̄) (see (D.8) of Proof of Proposition D.1 in Appendix D). We have ∇ f̃ (0) = 0. It

follows that m̄ is a local maximizer of g(m) = f (m)− ȟ(m) for any finite t > 0.
(b) For anly spatial distribution m ∈ M we compute ∆g(m) ≡ g(m)− g(m̄) = f (m−

m̄)− ȟ(m) by (D.8) and ȟ(m̄) = 0. The first term is bounded above by 1
2 m̄21⊤D1, which is
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finite for any τ > 0. There exists t∗ such that ∆g(m) < 0 for any m whenever t > t∗ because
ȟ(m) is a nonzero linear function of t when m ̸= m̄.

(c) Suppose that m ̸= m̄ is an interior equilibrium. Then, by definition there exists π and

c = (ci) such that c = Dm − π1 ≥ 0 and g(m) = f (m) − c⊤(m − m̄), where c > 0 iff
m = m̄. Suppose that m ̸= m̄ and take z ≡ ϵ(m− m̄) ∈ TM\ {0} with some ϵ > 0. Then,

g(m+ z) = 1
2 (m+ z)⊤D(m+ z)− c⊤(m− m̄+ z)

= 1
2m

⊤Dm− c⊤(m− m̄) + z⊤D(m+ z)− c⊤z

= g(m) + z⊤D(m+ z)− z⊤(Dm− π1) = g(m) + z⊤Dz > g(m),

where we note that z⊤1 = 0 and thus Assumption 1 (ii) implies z⊤Dz > 0 because z ̸= 0. It

shows that any interior equilibrium m other than m̄ is a local minimizer of g on the subspace

spanned by z = m− m̄. Therefore, m is either a local minimizer or a saddle point of g.
(d) Suppose thatm is a boundary equilibrium with at least two unbalancedmixed-use cells

j and k. Because m is an equilibrium, there exist {ci} and π such that ci = ∑j dijmj − π for all

i with mi > 0. Then, following the same procedure as in (a) with z ≡ ϵ(ej − ek) ∈ TM with

ei being the ith standard basis, one shows that m is a local minimizer along the extreme line

spanned by z, thereby showing the claim.

(e) Under Assumption 5, if a cell is unbalanced, then there must be another unbalanced

cell. By (d), such KKT point (if exits) cannot be a local maximizer.

Proof of Proposition 4. Noting that g′′(m1) = 2(1 − δ) > 0, g(m1) is piecewise strictly convex.

Since ȟ(m1) has only one kink (at m1 = m̃), there is at most three local maximizers, i.e., m̌, m̃,

and m̂. The left and right derivatives of g(m1) at m1 = m̃ are, respectively, given by

g′−(m̃) = 2(1 − δ)(m̃ − m̄) + (1 + ϕ)t and g′+(m̃) = 2(1 − δ)(m̃ − m̄)− (1 + ϕ)t. (A.1)

For m1 = m̃ to be a local maximizer, we must have g′−(m̃) > 0 and g′+(m̃) < 0, which reduces

to t > t̃ ≡ 2M(1 − δ)(m̃ − m̄) as we note 1
1+ϕ = M under Assumption 3. At m1 = m̂, we

compute

g′(m̂) = 2(1 − δ)min{m̄, a1 − m̄} − (1 + ϕ)t, (A.2)

so that g′(m̂) > 0 implies that t < 2M(1 − δ)min{a1 − m̄, m̄}. At m1 = m̌, we compute

g′(m̌) = 2(1 − δ)max{−m̄, m̄ − (1 − a1)}+ (1 + ϕ)t (A.3)

so that g′(m̌) < 0 implies t < 2M(1 − δ)min{m̄, (1 − a1)− m̄}. Summarizing the above con-

ditions, we shows that assertions concerning L. The assertions on G are given by a simple

comparison of the potential values for m̌, m̃, and m̂.

Proof of Proposition 5. It suffices to investigate g(m) on the extreme line from m̄ to m̂:

ḡ(ϵ) ≡ g(m̄+ ϵ(e1 − e3)) = f (m̄) + (1 − δ)ϵ2 − 2m̄t ((1 + ϕ)(m̄ + ϵ)− a) (A.4)
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M

(M, 0, 0, 0)
(0,M, 0, 0)

(0, 0, 0,M)

(a) M′ in M

m̃2

m̃1

m̃1

m̄

m̂1

m̂2 M′

(b) M′

m̃1 = (2m̄, m̄, 0, m̄) m̄ = (m̄, m̄, m̄, m̄)

m̂2 = (2m̄, 0, 2m̄, 0) m̃1 = (M3 ,
M
3 ,

M
3 , 0)

m̃2 = (2m̄, m̄, m̄, 0) m̂1 = (2m̄, 2m̄, 0, 0)

(c) Vertices of M′

Figure A.1: M′ and associated spatial patterns (I = 4).

where ε ∈ (0, m̄). Note that t
3 = 2m̄t. We note that 2(m̄ + ε) − a is the shortage of labor in

cell 1, i.e., the mass of commuters. Note that ε = 0 (ε = m̄) corresponds to m̄ (m̂). We have

ḡ′(0) = −2m̄(1+ φ)t < 0 and ḡ′(m̄) = 2m̄(1− δ) − 2m̄(1+ φ)t. m̂ is a local maximizer iff
ḡ′(m̄) > 0, i.e., t < 1

1+φ (1− δ) = 1
2 (1− δ). Also, ḡ(0) ≥ ḡ(m̄) is equivalent to t ≥ 1

4 (1− δ).

Proof of Proposition 6. For symmetry, we may focus on the following subset of M:

M′ ≡ {m ∈ M | m1 ≥ max{m2,m3,m4}, m2 ≥ m4, m1 +m3 ≥ 2m̄} . (A.5)

For instance, (2m̄, m̄, m̄, 0) ∈ M∗ but (0, 2m̄, m̄, m̄) /∈ M′. Figure A.1 illustrates the convex

polyhedron M′ with associated spatial patterns.

From Lemma 1, L (and G) restricted to M′ should consist of the following patterns: m̄ =

(m̄, m̄, m̄, m̄), m̃1 = (a, m̄, 0, m̄), m̃2 = (a, m̄, m̄, 0), m̂1 = (a, a, 0, 0), and m̂2 = (a, 0, a, 0).
Observe that all points other than m̄ is located on the surface of M.

Proposition 6 is a corollary of the following proposition. In the main text, we employ

(0, a, a, 0) instead of m̂1 = (a, a, 0, 0) for the ease of interpretation at the first glance.

Proposition A.1. Suppose I = 4 and let t∗ ≡ 1
2 (1− δ2), t∗∗ ≡ 1

2 (1− δ)2, and t∗∗∗ ≡ 1
2 (1− δ)

with δ ≡ e−
τ
4 . Then,





m̄ ∈ L ∀t > 0

m̂1 ∈ L ∀t < t∗

m̂2 ∈ L ∀t < t∗∗

m̃1 ∈ L ∀t ∈ ( 12 t
∗, t∗)

m̃2 ∈ L ∀t ∈ (t∗∗∗, δt∗∗∗)

and



m̄ ∈ G ∀t ≥ 1

2 t
∗

m̂1 ∈ G ∀t ≤ 1
2 t

∗
. (A.6)

Proof. Let p′(x; z) denote the one-sided directional derivative: p′(x; z) ≡ limε→+0(p(x +

εz) − p(x))/ε. Note that at any state m ∈ M, the directional derivative of f ′(m; z) to-

ward z ∈ TM is given by f ′(m; z) = m�Dz = A(m)�z. For instance, when z = ej − ei,

f ′(m; z) = Aj(m)− Ai(m). Note that t
4 = 2m̄t and a = 2m̄.

(i) The uniform pattern m̄ = (m̄, m̄, m̄, m̄) is a local maximizer for all δ and t (Lemma 1).
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(ii) Themonocentric pattern m̂1 = (2m̄, 2m̄, 0, 0) is a local maximizer if and only if all of the

directional derivatives g′(m̂1; z) with z ∈ {z23, z24, z14 + z23} are negative, where zij = ej − ei

expresses a marginal replacement of firms from cell i to j.33 The directions corresponds to the

lines connecting m̂1 to other possible local maximizers {m̃2, m̃1, m̄}. We compute that

g′(m̂1; z14 + z23) = −4m̄(1 − δ2) + 4m̄(1 + ϕ)t = 2g′(m̂1; z23) = 2g′(m̂1; z24).

Thus, m̂1 is a local maximizer of g when t < 1
1+ϕ (1 − δ2) = 1

8 (1 − δ2).

(iii) The duocentric pattern m̂2 = (2m̄, 0, 2m̄, 0) is a local maximizer if and only if all of the

directional derivatives g′(m̂2; z) with z ∈ {z12 + z34, z32, z32 + z34} are negative. We compute

that

g′(m̂2; z12 + z34) = g′(m̂2; z32 + z34) = −4m̄(1 − δ)2 + 4m̄(1 + ϕ)t = 2g′(m̂2; z32)

Thus, m̂1 is a local maximizer of g when t < 1
1+ϕ (1 − δ)2.

(iv) The pattern m̃1 ≡ (2m̄, m̄, 0, m̄) is a local maximizer if and only if all of the directional

derivatives g′(m̃2; z) with z ∈ {z13, z42, z23 + z43} are negative. We compute that

g′(m̃1; z13) = −2m̄(1 − δ2) + 2m̄(1 + ϕ)t, (A.7)

g′(m̃1; z42) = −2m̄(1 + ϕ)t < 0, (A.8)

g′(m̃1; z23 + z43) = −2m̄(1 − δ2)− 4m̄(1 + ϕ)t. (A.9)

It implies that m̃1 is a local maximizer if and only if 1
2(1+ϕ)

(1 − δ2) < t < 1
1+ϕ (1 − δ2).

(v) The pattern m̃2 ≡ (2m̄, m̄, m̄, 0) is a local maximizer if and only if all of the directional

derivatives g′(m̃2; z) with z ∈ {z14, z23, z32, z34} are negative. We compute that

g′(m̃2; z14) = −2m̄(1 − δ) + 2m̄(1 + ϕ)t, (A.10)

g′(m̃2; z23) = 2m̄δ(1 − δ)− 2m̄(1 + ϕ)t, (A.11)

g′(m̃2; z32) = −2m̄δ(1 − δ)− 2m̄(1 + ϕ)t < 0, (A.12)

g′(m̃2; z34) = −m̄(1 − δ)2 − 2m̄(1 + ϕ)t < 0. (A.13)

Thus, m̃2 is a local maximizer if and only if 1
1+ϕ δ(1 − δ) < t < 1

1+ϕ (1 − δ).

The claims concerning G follows by a comparison of the potential values for m̄, m̂1, m̂2,

m̃1, and m̃2.

Figure A.2 shows the contour of g(m) on the polyhedron spanned by {m̄, m̂1, m̂2} for dif-

ferent values of t. Figure A.3 shows the partition of (τ, t)-space according to Proposition A.1.

Observe that the partition based on L (Figure A.3b) become very complicated. The basic in-

tuitions, however, does not change from that obtained by G (Figure A.3c). Under fixed δ, high

(low) t encourages dispersion (agglomeration) of firms.

Proof of Proposition 7. Employing Lemma 1, one can enumerate all relevant spatial patterns

33If all of the directional derivatives are negative, it implies that the gradient of g points outward the polyhedron
spanned M′. For symmetry, it is the condition that the point is a local maximizer of g in M.
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m̂2 m̃2 m̂1

m̄

(a) t = 0.2
m̂2 m̃2 m̂1

m̄

(b) t = 0.1
m̂2 m̃2 m̂1

m̄

(c) t = 0.05

Figure A.2: Contours of g(m) over the polygon spanned by {m̂2, m̂1, m̄}. δ = 0.1. •: points
in L.
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Figure A.3: Partitions of (δ, t)-space (I = 4). In (a) and (b), the numbers over a region indicate
the patterns in L for the region. For instance, 1̂1̃2̃ means that m̂1, m̃2, m̃1 ∈ L. Also note that
m̄ ∈ L for all δ and t. (b) shows the partition for only m̃1 and m̃2.

such that mi ∈ {0, m̄, a} = {0, m̄, 2m̄} for all i ∈ I , which we refrain from explicitly listing up

here. The proposition follows by just comparing the potential values for the spatial patterns.

We note that, for any m ∈ M, ȟ(m) is computed by ȟ(m) = t
I ∑

I
i=1 |Mi − Ni − α| where

Mi ≡ ∑i
k=1 mk, Ni ≡ ∑i

k=1(a−mk), and α is the median of {Mi −Ni}i∈I (see Rabin et al., 2011).

The threshold values τ∗, t∗, t∗∗, and t∗∗∗ are given by τ∗ = −8 log(δ∗) with δ∗ ≡ 1
6 (
√
13− 1),

and t∗ = 2m̄(1− δ)(1+ δ)(1+ δ+ δ2), t∗∗ = 4m̄(1− δ)2(1+ δ)2, and t∗∗∗ = 4m̄δ(1− δ)(1+
δ)(1+ 2δ) where δ = e−

τ
8 .

B Non-atomic potential games

The precise definitions of non-atomic game and non-atomic potential game in this paper may be

formalized as follows:

Definition B.1 (Nonatomic game). LetQ ≡ {1, 2, . . . ,Q} be a set of agent types, where Q is the

number of types. Let Sq = {1, 2, . . . , Sq} be the set of strategies for type q ∈ Q agents, where

Sq is the number of strategies. Let X ⊂ RS
+, where S ≡ ∑q∈Q Sq, denote the set of all possible

strategy distributions, which is assumed to be closed and convex. A non-atomic game is a tuple
(S , F) of the product of the strategy sets S ≡ ∏q∈Q Sq and the payoff function F : X → RS

that assigns a state x ∈ X the payoff for each strategy in S .
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Definition B.2 (Nonatomic potential game). A non-atomic game (S ,X , F) is a potential game
if there exists a scalar-valued potential function g on a neighborhood of X such that

∂g(x)
∂xq

i
= Fq

i (x) ∀i ∈ S , q ∈ Q (B.1)

for almost all x ∈ X , where Fq
i is the payoff for an agent taking strategy i ∈ Sq and xq

i is the

mass of such agents in population q ∈ Q.

Remark B.1. Definition B.1 is a simple generalization of the standard definition of non-atomic

games with multiple types, or population games as synthesized by Sandholm (2010). The stan-

dard definition assumes that the state space X is the product of (Sq − 1)-simplexes X =

∏q∈Q X q where X q ≡ {x ∈ RSq

+ | ∑i∈Sq xq
i = Xq} and Xq > 0 is the total mass of agents

in population q ∈ Q. Definition B.2 is a non-atomic version of generalized Nash equilibrium
problems introduced by Facchinei and Kanzow (2007) in the context of games with atomic

players. A simple example is games with entry and exit (Sandholm, 2010, Exercise 3.1.8). ♢

Remark B.2. Definition B.2 assumes that g is defined on a neighborhood of X , not on X , so

the partial derivative (B.1) is well-defined. It is noted that, since we assume general convex

state spaces, Definition B.2 is a non-atomic version of generalized potential games introduced by

Facchinei et al. (2011) in the context of games with atomic players. ♢

By employing Proposition 1, we can define an equivalent non-atomic potential game (Def-

inition B.2) for the model laid out in Section 3.

Observation B.1. The FO framework (Section 3) is a non-atomic potential game with two types of
agents, i.e., Q = {firms, households}. The strategy sets of firms and households are I and I × I ,
respectively. The state space X ⊂ RI+I2

+ is given by the set of all feasible spatial distributions
m = (mi)i∈I and commuting patterns n = (nij)ij∈I×I :

X ≡
{
(m,n) ∈ RI

+ × RI2

+

∣∣∣ s.t. (3.12), (3.13), and (3.9)
}

, (B.2)

which is closed and convex. The respective payoff functions of firms and households are:

(firms) Fi(m,n) = Ai(m) ∀i ∈ I , (B.3)

(households) Fij(m,n) = −tij ∀ij ∈ I × I , (B.4)

Define the function g : RI
+ × RI2

+ → R by g(m,n) = f (m)− h(n) with f (m) and h(n) in (3.11)
and (3.10). Then, g is a potential function for the above payoff functions because ∂g(m,n)

∂mi
= Ai(m)

and ∂g(m,n)
∂nij

= −tij for all m ∈ RI
+ and n ∈ RI2

+ . ♢

As a non-atomic game, the model involves nonstandard constraints in the state space X ,

the supply constraints (3.12) and (3.13) that determine the admissible pairs of strategy dis-

tributions (m,n). Such game can introduce subtleties from an evolutionary perspective. For

instance, when a cell is completely occupied by firms, households may not be able to choose
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the cell as their residential location. Thus, a dynamic for the game thus should express state-

dependent interactions between the strategy switching behaviors of firms and households to

respect supply constraints. Technically, one has to define appropriate dynamics whose orbits

always stay in X .

The reduction considered in Section 4 is meant to alleviate the subtlety discussed above.

Interactions between firms and households are encapsulated by the lower-stage game and the

resulting function ȟ(m). The state space in the upper stage M, which consists only of the

simplex constraint and the capacity constraints mi ≤ ai, is independent of the strategy distri-

bution of households n.

Remark B.3. The projection dynamic (Dupuis and Nagurney, 1993) is well-defined for non-

atomic games in Definition B.1, because the dynamic was originally developed for general

convex state spaces. Other standard evolutionary dynamics in the literature, designed to be

well-defined on the simplex (or products of them), may not remain in X in (B.2). Therefore,

appropriate modifications, e.g., a projection step onto X , are required. ♢

Remark B.4. In standard multiple-type non-atomic games, or population games, such inter-

type interactions are summarized in the payoff function, and the strategy distributions only

have simplex constraints (Remark B.1). In the model presented in Section 3, if (i) there is a

fixed mass N of households and (ii) r and w can be obtained as simple functions of (m,n),
one can define Fi(m,n) = Ai(m) − ϕwi(m,n) − ri(m,n) and Fij(m,n) = wi(m,n) − tij −
ri(m,n) as the respective payoff functions for firms and households. The state space then

becomes X = {(m,n) ∈ RI
+ × RI2

+ | ∑i∈ mi = M, ∑ij∈I×I nij = N}, reducing to a standard

instance of multiple-type non-atomic games as laid out in Sandholm (2010). ♢

Observe that the lower- and upper-stage games are both an instance of non-atomic poten-

tial game, as in Definition B.2.

Observation B.2. The lower-stage game is a non-atomic potential game with strategy set I × I ,
state space N (m), payoff function F : RI2

+ → RI2

+ in (B.4), and potential function h : RI2

+ → R in
(3.10). ♢

Observation B.3. Suppose Assumption 1 (ii). Then, the upper-stage game is a non-atomic potential
game with strategy set I , state space M, payoff function π̌ : M → RI , and the potential function
g : RI

+ → R employed in the main text. ♢

Remark B.5. Regarding Definition B.2, it is also noted that we require differentiability of the

potential function g for almost all x ∈ RS
+, whereas the standard definition of non-atomic po-

tential games in the literature by Sandholm (2001) requires differentiability for all admissible

x. This modification is required because the optimal value function of (S), ȟ, can be nondiffer-
entiable in the standard sense.

The function ȟ is instead subdifferentiable. That is, c(m) is a subgradient, or an element of

subdifferential:

∂ȟ(m) ≡
{
z ∈ RI

∣∣∣ f (m′) ≥ f (m) + z⊤(m′ −m), ∀m′ ∈ M
}

. (B.5)
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This observation follows because (D) has a bounded solution for all m ∈ M, ȟ takes a finite

value and a bounded c(m) exists for allm ∈ M. See Rockafellar (1970) (Section 23). As illus-

trated by Figures 1, 4b, and D.4, ȟ is in fact differentiable (i.e., subdifferential is a singleton)

almost everywhere in M, and (4.7) holds true for almost all m ∈ M. ♢

C Alternative decompositions

In the main text, we decomposed the original model into a two-stage game, to reduce it to a

non-atomic game where firms are the only agents. Technically, this corresponds to partition-
ing of the optimization problem (P0), or Benders’ Decomposition after Benders (1962); Geof-

frion (1972). In this Appendix, we briefly summarize two alternative decompositions, each

corresponding to a different interpretation of the model. (The properties of equilibria are un-

affected.) The reformulations can be in turn employed as a building blocks of extensions.

C.1 Households choose only job location in the lower stage

Suppose that households first choose job locations in the lower stage and then residential

locations in the upper stage. Denote the residential location distribution of households by

N ≡ (Ni)i∈I , where Ni ≥ 0 is the mass of households residing in cell i ∈ I . The problem (P0)

is equivalent to the following problem:

max
m∈M,n≥0

f (m)− h(n) (C.1a)

s.t. mi + Ni ≤ ai [ri] ∀i ∈ I , (C.1b)

∑
i∈I

nij ≥ ϕmj [wj] ∀j ∈ I , (C.1c)

∑
j∈I

nij = Ni [vi] ∀i ∈ I . (C.1d)

Analogous to (S) and (D) in the main text, the following problem characterizes households’

equilibrium behavior in the lower-stage game.

min
n≥0

∑
i∈I

h(m), s.t. (C.1c) and (C.1d). (C.2)

max
(v,w)≥0

− ∑
i∈I

Nivi + ∑
i∈I

ϕmiwi, s.t. vi ≥ wj − tij ∀i, j ∈ I . (C.3)

where vi can be interpreted as the maximum possible payoff of households obtained by resid-

ing in i ∈ I . Denote a solution for (C.3) by {wi(m, N), vi(m, N)}.
The set of all feasible assignments of firms and households (m, N) is

X1 ≡
{
(m, N) ∈ RI

+ × RI
+

∣∣∣ mi + Ni ≤ ai ∀i ∈ I , m ∈ M
}

, (C.4)

which is a closed and convex set. Let h1(m, N) be the optimal value function of the problems
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(C.2) and (C.3). Then, it follows that

∂h1(m, N)

∂mi
= ϕwi(m, N) and

∂h1(m, N)

∂Ni
= −vi(m, N) (C.5)

almost everywhere. Let g1 be defined by g1(m, N) ≡ f (m)− h1(m, N). Then, we have

∂g1(m, N)

∂mi
= Ai(m)− ϕwi(m, N) and

∂g1(m, N)

∂Ni
= vi(m, N) (C.6)

almost everywhere. Also, (C.1) is equivalent to the problem max(m,n)∈X1
g1(m, N). If we

interpret Ai(m)− ϕwi(m, N) and vi(m, N) as the payoff functions of firms and households,

respectively, the upper stage game may be interpreted as a non-atomic potential game.

C.2 Households choose only residential location in the lower stage

Next, suppose that households first choose their residential locations in the lower stage and

then job locations in the upper stage. Denote the job distribution over households by N ≡
(Nj)j∈I in the lower-stage game, where, with notational abuse, Nj ≥ 0 is the mass of house-

holds working in cell j ∈ I . The problem (P0) is equivalent to the following problem:

max
m∈M,n≥0

f (m)− h(n) (C.7a)

s.t. mi + ∑
j∈I

nij ≤ ai [ri] ∀i ∈ I , (C.7b)

Nj ≥ ϕmj [wj] ∀j ∈ I , (C.7c)

∑
i∈I

nij = Nj [vj] ∀i ∈ I . (C.7d)

The next problem characterizes households’ equilibrium behavior in the lower-stage game.

min
n≥0

∑
i∈I

h(m), s.t. (C.7b) and (C.7d). (C.8a)

max
(v,w)≥0

− ∑
i∈I

Njvj − ∑
i∈I

ri(ai − mi), s.t. vj ≥ −ri − tij [nij]∀i, j ∈ I (C.8b)

where vj can be interpreted as households’ maximum possible payoff from working in j ∈ I .
Denote a solution for (C.8b) by {wi(m, N), vj(m, N)}.

The set of all feasible assignments of firms and households (m, N) is

X2 ≡
{
(m, N) ∈ RI

+ × RI
+

∣∣∣∣∣ Nj ≥ ϕmj ∀j ∈ I , M + ∑
j∈N

Nj ≤ 1, m ∈ M
}

, (C.9)

which is a closed and convex set. Let h2(m, N) be the optimal value function of the problems
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(C.2) and (C.8b). Then, it follows that

∂h2(m, N)

∂mi
= ri(m, N) and

∂h2(m, N)

∂Nj
= −vj(m, N) (C.10)

if h is differentiable. Let g2 be defined by g2(m, N) ≡ f (m)− h2(m, N). Then, we have

∂g2(m, N)

∂mi
= Ai(m)− ri(m, N) and

∂g2(m, N)

∂Nj
= vj(m, N) (C.11)

almost everywhere. Also, (C.7) is equivalent to the problem max(m,n)∈X2
g2(m, N). If we

interpret Ai(m)− ri(m, N) and vj(m, N) as the payoff of firms and households, respectively,

the upper stage game may be interpreted as a non-atomic potential game.

D The two-cell city in detail

This Appendix studies the two-cell case by straightforwardly investigating the equilibrium

conditions without Assumption 3. Let M0 ⊂ M be defined by

M0 ≡ {m ∈ M | (1 + ϕ)mi ≤ ai ∀i ∈ I} . (D.1)

Upon inspection, the solution for the lower-stage equilibrium (Definition 2) is given by:{
nii = ϕmi, nij = 0, ři = wi = 0,
njj = ϕmj, nji = 0, řj = wj = 0,

if m ∈ M0, (D.2a){
nii = ϕmi, nij = 0, ři = wi = t,
njj = ϕmj, nji = (1 + ϕ)mi − ai, řj = wj = 0,

if (1 + ϕ)mi − ai > 0, i ∈ I , (D.2b)

where we employ the convention that i ̸= j.
If m ∈ M0, or (1 + ϕ)mi − ai ≤ 0 for both cells 1 and 2, all households can reside at their

workplace and there are no inter-cell commutes. In this case, we let ři = wi = 0 for both

i ∈ I . On the other hand, if m /∈ M0, then (1 + ϕ)mi − ai > 0 for one of the cells, meaning

that there is a shortage of labor in cell i. There must be (1 + ϕ)mi − ai workers who commute

to cell i from the other cell. In this case, wi = t is the minimal possible wage rate in cell i
to compensate for the commuting cost. The highest bid for the land rents in each cell i must

coincide with the wage rates therein. Thus, we have ři = wi = t.
Take m1 = m̂ as a candidate of equilibrium in the upper-stage game. For simplicity, sup-

pose M > a1 and a1 > a2 so that m̂ = a1. Since (1 + ϕ)m̂ − a1 = ϕa1 > 0, there must be

commuters from cell 2 to cell 1. Thus, c1 = (1 + ϕ)t and c2 = 0, which gives

π̌1 = A1 − c1 = m̂ + δ(M − m̂)− (1 + ϕ)t, (D.3a)

π̌2 = A2 − c2 = (M − m̂) + δm̂ (D.3b)
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Figure D.4: Graphs of g(m1) for high, medium, and low values of t with excess land supply.
M = 0.4, a1 = 0.55, δ = 0.1, ϕ = 1. •: local maximizers; ◦: locally minimizing KKT points.

where δ = e−τ. Since 0 < m2 < a2, we have r̂2 = 0 from (4.5). For r̂1, it must be that

r̂1 = π̌1 − π̌2 = 2(1 − δ)(m̂ − m̄)− (1 + ϕ)t (D.4)

to satisfy equilibrium condition (4.4). The first term in r̂1 is A1 − A2, which is positive. Because

of the asymmetry a1 > a2, firms in cell 1 enjoy higher level of technological externalities than

those in cell 2 at m1 = m̂. The second term in r̂1 is the minimized cost that firms have to bear.

If r̂1 ≥ 0, then r̂1 satisfies (4.5), and m1 = m̂ is an equilibrium for the upper-stage game.

Note that the condition r̂1 ≥ 0 indicates either that δ is small (τ is large) or that t is small. If

t is large, then firms cannot support the devoted business cell 1. After paying the commuting

costs and land rents, firms’ profits in cell 1 become lower than those in cell 2. Similarly, if

δ is large, the difference between the production levels A1 and A2 becomes smaller, thereby

reducing the benefit of agglomeration to cell 1.
We may continue the above procedure to enumerate all equilibria. With the aid of the

potential function, the main text instead employs a more systematic approach.

The solution (D.2) gives the minimized total commuting costs ȟ(m) in the city:34

ȟ(m) = max {t ((1 + ϕ)m2 − a2) , 0, t ((1 + ϕ)m1 − a1)} (D.5)

=


t ((1 + ϕ)(M − m1)− a2) if m1 ≤ m̃−,

0 if m̃− ≤ m1 ≤ m̃+,

t ((1 + ϕ)m1 − a1) if m1 ≥ m̃+.

(D.6)

where m̃− = M − a2
1+ϕ and m̃+ = a1

1+ϕ . We confirm that ȟ(m) can be expressed as a piecewise

maximum of affine functions and that ∇h(m) = c(m) almost everywhere.

The interval [m̃−, m̃+] corresponds to M0. Observe that Assumption 3 implies m̃− = m̃+

and the plateau (m̃−, m̃+) of ȟ(m1) vanishes. Figure D.4 shows graphs of g(m1) without As-

sumption 3. As the figure illustrates, there is no essential difference in the properties of local

maximizers with additional complications. Agglomeration of firms in either of the cells be-

come local maximizers when t is low. Also note that m1 = m̄ is always a local minimizer. This

34Observe that the function ȟ(m) can be interpreted interchangeably as the total commuting cost ∑i∈I ∑j∈I tijnij
or as total household surplus ϕ ∑i∈I wimi − ∑i∈I ři(ai − mi) with the solution (D.2). This demonstrates the strong
duality between (S) and (D).
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Figure D.5: Effects of varying M. a1 = 0.6. When M < a1, it is more likely that m1 = m̌
become a local maximizer because cell 1 cannot contain all firms. When M > a1, the converse
holds true, and m1 = m̌ is less likely to be a local maximizer. If a1 = a2 = 1

2 , the diagram
become isomorphic to Figure 2a, and there are no qualitative differences when M varies.

generalizes to the circular case treated in Section 6 (see Proposition D.1 below).

Remark D.1. Suppose m1 �= m̃−, m̃+. Then, we have ȟ′(m1) = c1(m)− c2(m) and f ′(m1) =

2(1− δ)(m1 − m̄) = A1(m)− A2(m), so that g′(m1) = π̌1(m)− π̌2(m). For example, observe

that m̂ ∈ L if and only if g′(m̂) = π̌1 − π̌2 = r̂1 > 0. Thus, m̂ is a local maximizer whenever it

is an equilibrium, except for the borderline case r̂1 = 0. ♦

Remark D.2. The mass of firms M acts as a scaling factor for both t and a1. For t, observe that
|ȟ′(m1)| = (1+ φ)t = t

M whenever ȟ is differentiable under Assumption 3. For a1, we note

that when M < a1, it is more likely that a concentration to cell 2 becomes a local maximizer,

because cell 2 can contain the majority of firms (Figure D.5a); when M > a1, the converse

holds true (Figure D.5b). In Section 6, for simplicity we assume M = 1
1+φ = 1

2 so that M = a1
holds true under the symmetry of cells (a1 = a2 = 1

2 ). ♦

In addition, we note that the uniform distribution m̄ = (m̄, m̄, . . . , m̄) can never locally

maximize the potential function without Assumption 3 in the circular case in Section 6.

Proposition D.1. Suppose Assumption 2. Suppose that �ij = 1
I min{|i − j|, I − |i − j|} and that

m̄ ∈ M0. Then, m̄ is a locally minimizing KKT point of (P) if and only if (1+ φ)M < 1.

Proof. Since m̄ ∈ M0, ai − (1+ φ)m̄ ≤ 0 for all i ∈ I . Let

O ≡
{
ε ∈ TM

∣∣∣∣ max
i∈I

{εi} ≤ ai − (1+ φ)m̄
}
. (D.7)

Note that O = {0} iff (1+ φ)M = 1, i.e., O admits nonzero elements iff (1+ φ)M < 1.
Under Assumption 2, we have

f (m) =
1
2 ∑i∈I ∑j∈I

dij(mi − m̄)(mj − m̄) +
1
2
m̄2 ∑

i∈I
∑
j∈I

dij = f (m− m̄) + f (m̄). (D.8)

For all nonzero ε ∈ O, we have g(m) = f (m), since by definition m̄+ ε ∈ M0 and h(m̄+ ε) =

0. For ε ∈ O define ḡ(ε) ≡ g(m̄+ ε) = f (ε) + f (m̄) be the potential function defined onO. It

follows ∇ḡ(0) = 0 and ∇2 ḡ(0) = D. Note D is positive definite on TM and thus on O. Thus,

ε = 0 is a local minimizer of ḡ, whence m̄ is a locally minimizing KKT point of (P).
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E Computation of potential value when I is large

For J ≤ K, let f J = f (mJ) and hJ ≡ ȟ(mJ), so that g(mJ) = gJ ≡ f J − hJ . Let f∞ ≡ f (m̄),

h∞ ≡ ȟ(m̄) = 0, and g∞ ≡ f∞ − h∞ = f∞. Figure 9 is obtained by numerically comparing the

potential values {g∞} ∪ {gJ}K
J=1, where K = 50, so that I = 4LCM(20) = 931, 170, 240.

Let R ≡ I
4J be the “radius” of a business center in mJ ; R is an integer for all J ≤ K because

I = 4LCM(K). For the first block element m̌J in mJ , the set of cell indices for the residential

cells (mi = 0) is I−
J ∪ I+

J with I−
J ≡ {1, 2, . . . , R} and I+

J ≡ {3R + 1, . . . , 4R}, whereas the

business area (mi = a) is IJ ≡ {R + 1, R + 2, . . . , 3R}.
In the lower stage, households in cell i ∈ I−

J should commute to cell i + R ∈ IJ , whereas

those in cell i ∈ I+
J should commute to cell i − R ∈ IJ , thereby the commuting cost for

every household is tR
I . The mass of such households is (|I+

J |+ |I−
J |)a = 2Ra, and there are J

symmetric small cities. The total commuting cost hJ is

hJ = J × 2Ra × tR
I

=
t

8J
. (E.1)

Observe that hJ is decreasing in J and it is independent of I.
Noting that I is extremely large, we employ continuous versions of f by taking limit I → ∞

to simplify numerical computations. The continuous version of f is given as follows:

1
2

∫∫
C×C

exp (−τℓ(x, y))m(x)m(y)dxdy (E.2)

where C = [0, 1) parameterizes the circle; ℓ(x, y) = min{|x − y|, 1 − |x − y|} (x, y ∈ C) is
a continuous version of {ℓij}, and m(x) is the density interpretation of the spatial pattern.

For example, m̄ corresponds to m(x) = 1
2 for all x ∈ C, m1 may correspond to m(x) = 1

for x ∈ [ 1
4 , 3

4 ] and 0 otherwise, m2 may correspond to m(x) = 1 for x ∈ [ 1
8 , 3

8 ] ∪ [ 5
8 , 7

8 ] and 0
otherwise, and so on. In concrete terms, we let the density interpretation of mJ be

mJ(x) =

1 if x ∈ ⋃J
j=1 B

J
j

0 otherwise,
(E.3)

where B J
j ≡ [ j

2J −
1
4J , j

2J +
1
4J ] is the jth business center in mJ . For f (m̄), letting δ = e−

τ
I gives

f (m̄) =
m̄2

2
1⊤D1 =

1
8I

1 + δ

1 − δ

(
1 − δ

I
2

)
=

1
8I

1 + e−
τ
I

1 − e−
τ
I

(
1 − e−

τ
2

)
−→ 1

4τ

(
1 − e−

τ
2

)
(E.4)

as I → ∞. The last expression naturally coincides with a computation based on (E.2):

1
2

(
1
2

)2 ∫ 1
2

− 1
2

e−τ|y|dy =
1

4τ

(
1 − e−

τ
2

)
. (E.5)
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(a) ΨJ = ( f J − f∞)/ f∞ (b) f J (log vertical axis)

Figure E.6: Graphs of ΨJ and f J for J ∈ {1, 2, . . . , 7}.

For mJ , a computation based on (E.2) yields

f J = (1 + ΨJ) f∞ where ΨJ ≡
(

1 +
2C(δJ)

log(δJ)

)
Ψ̄J (E.6)

with C(z) ≡ 1−z
1+z ; δJ ≡ e−

τ
2J ; Ψ̄J ≡ 1 for an even J and Ψ̄J ≡ C(e−

τ
2 )−1 for an odd J. The

expression can also be obtained by first computing an explicitly discrete potential value for

mJ and then taking the limit I → ∞. We have ΨJ ∈ (0, 1) (Figure E.6a). Additional calculation
shows that ΨJ is decreasing in J, implying that f J is basically decreasing in J.35 The benefit of

agglomeration decreases with the number of business centers decreases (see Figure E.6b).

As an example of global potential maximization in M∗, Figure E.7 depicts the differences
∆gJ ≡ gJ − g∞ for 1 ≤ J ≤ 7. When ∆gJ < 0 for all J, the uniform distribution m̄ globally

maximizes g amongM∗. If J∗ = arg max1≤J≤K ∆gJ and ∆gJ∗ > 0, then J∗ globally maximizes g
inM∗. Thus, the patterns that correspond to the upper envelope of {0, ∆g1, ∆g2, . . . , ∆gK} also
correspond to the global maximizers of the potential function in M∗. Figure E.7a and Figure

E.7b show {∆gJ}7
J=1 on to the vertical and horizontal broken lines in Figure 9b, respectively.

Observe that the sequence of potential maximizing symmetric patterns while decreasing t is
given by m̄ → m4 → m3 → m2 → m1 for the former (i.e., J∗ = 4), whereas the sequence for

an increasing τ is given by m̄ → m1 → m2 → m3 → · · · for the latter.
It is also noted that gJ ≥ g∞ implies that mJ is an equilibrium when I grows large. The

market prices in the lower stage over I−
J ∪ IJ ∪ I+

J is then given by ři = wi =
t
I (i − 1) and

ř4R+(i−1) = ři for all i ∈ {1, 2, . . . , 2R}. For mJ to be an equilibrium, it must be that

r̂i = Ai(m
J)− ϕwi − ři − π∗ = Ai(m

J)− 2ři − π∗ ≥ 0 ∀i ∈ IJ (E.7)

where π∗ is the equilibrium profit level. We first note that A(m) is symmetric and concave on

IJ . From symmetry of the spatial pattern, Ak(m
J) = A3R−k(m

J). With Ak ≡ Ak(m
J), we have

A′′
k ≡ (Ak+1 − Ak)− (Ak − Ak−1)

2
=

Ak+1 − 2Ak + Ak−1

2
< 0 ∀k ∈ IJ \ {R + 1, 3R}, (E.8)

35In concrete terms, { f J} can be shown to satisfy the following properties: f J is monotonically decreasing in τ

for all J, f J > f∞ for all J, f J > f J+2 for all J, f1 > f2, limJ→∞ f J = f∞, and limτ→0 f J = limτ→0 f∞ = 1
8 .
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(a) ∆gJ in the t-axis (τ = 25) (b) ∆gJ in the τ-axis (t = 0.08)

Figure E.7: Relative potential values ∆gJ ≡ gJ − g and potential maximizing patterns.

thereby {Ak} is mid-point concave on IJ . In fact, for all k ∈ IJ \ {R + 1, 3R} we compute

A′′
k =

(
δ + δ−1

2
− 1

) I
2−1

∑
l=1

dk,k+l(mk−l + mk+l)− (1 − δ)
(

mk − δ−1d1, I
2
mk+ I

2

)
< 0 (E.9)

where mk ∈ {0, a} (mod I for indices); and δ = e−
τ
I , where the inequality follows by noting that

δ+δ−1

2 − 1 = cosh( τ
I )− 1 < 0; mk − δ−1d1, I

2
mk+ I

2
> mk − mk+ I

2
≥ a − a = 0. In addition, one

shows that 1
2 (AI + A1) =

1
2 (A4R + A4R+1) = Ā as well as that A1 > Ā and A4R > Ā, where Ā

is the uniform level of A(m) at m̄. Then, the equilibrium profit of firms may be evaluated by

the average profit of firms in cell 1 and I as π∗ = 1
2 (π̌1 + π̌I) = Ā − 2t

I

(
R − 1

2

)
= Ā − t

2J +
t
I .

Because {Ai} is symmetric and mid-point concave on IJ , (E.7) is satisfied when

r̂2R = r̂2R+1 = A2R − t
2J

− Ā − t
I
≥ 0. (E.10)

On the other hand, gJ − g∞ is computed as

f J − hJ − f∞ =
J
2 ∑

k∈IJ

aAk − J × 2R × t
4J

− 1
2

Im̄Ā =
J

2I ∑
k∈IJ

(
Ak −

t
2J

− Ā
)

. (E.11)

If gJ − g∞ ≥ 0, then it must be that A2R − t
2J − Ā > 0 because Ak is (mid-point) concave and

symmetric over IJ . If instead A2R − t
2J − Ā ≤ 0, then Ak − t

2J − Ā < 0 for all k ∈ IJ \ {2R, 2R+

1}, implying gJ − g∞ < 0. We thus observe that gJ ≥ g∞ is a sufficient condition for (E.10)

when I is extremely large so that the last term t
I in (E.10) is negligible.
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