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Abstract
We present an improved mathematical model of population dynamics of mosquito-
borne disease transmission. Our model considers the effect of mosquito repellent
use and the mosquito’s behavior or attraction to the infected human, which cause
mosquitoes’ biased distribution around the human population. Our analysis of the
model clearly shows the existence of thresholds for mosquito repellent efficacy and its
utilization rate in the human population with respect to the elimination of mosquito-
borne diseases. Further, the results imply that the suppression of mosquito-borne
diseases becomesmore difficultwhen themosquitoes’ distribution is biased to a greater
extent around the human population.

Keywords Mosquito-borne disease · Mosquito repellent · Mosquitoes’ biased
distribution

1 Introduction

Mosquito-borne diseases are spread by several types ofmosquitoes, for exampleAedes
aegypti andAedes albopictus for dengue, zika, yellow fever, and chikungunya, anophe-
les for malaria, and culex for Japanese encephalitis and West Nile fever (Calvo et al.
2016; Yang et al. 2018). These diseases are mainly caused by viruses, bacteria, or
parasites. In many cases, infections in mosquitoes do not affect the mosquito itself.
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These diseases have posed serious public health problems in many countries (WHO
2017; ECDC2018) not only because of the unavailability ofmedicines to cure infected
humans but also in pro and contrawith regard to vaccines, and controversies on the best
vector control strategies.

Different mosquito control strategies, such as insecticides (larvicides or adulti-
cides), insecticide-treated nets, mechanical reduction in mosquito habitats, screens,
and mosquito repellents, are used as primary prevention strategies for mosquito-
borne diseases. These strategies reduce the contact rate between mosquito and human,
by decreasing the population density of mosquitoes or the chance of contact itself.
Although the use of mosquito repellents is the easiest and cheapest way to reduce con-
tact between humans and mosquitoes, numerous implementation challenges remain,
such as the difficulties of testing and quantifying the repellency and the fact that many
different repellent phenomena are not well-defined (Deletre et al. 2016). Despite these
aspects, many studies since 2015 have proven how mosquito repellents potentially
prevent infections in humans due to mosquito bites (Alpern et al. 2016; Diaz 2016).

Besides the problems mentioned above, the characteristics of each disease also
affect the complexity in understanding the spread of the disease. These include the
extrinsic incubation period, effect of multiple strains of viruses, antibody-dependent
enhancement (ADE), and temporary cross-immunity phenomena pertaining to dengue
(Ferguson et al. 1999; Kooi et al. 2013), effect of multiple species of malarial parasites
(Anderson et al. 1992), and the vector-bias effect in malaria and chikungunya (Tset-
sarkin et al. 2007). Vector bias in malaria is defined as a situation where mosquitoes
are more attracted to malaria-infected individuals (Lacroix et al. 2005). These phe-
nomena arise as the anopheles mosquito searches for its meal (human blood) by using
the sweat, breath, and odors of its human victims (Costantini et al. 1996; Mukabana
et al. 2004).

A wide variety of mathematical models have been constructed and used to discuss
and understand different aspects of the epidemic dynamics of mosquito-borne dis-
eases [for modern reviews, see Mandal et al. (2011), Wiratsudakul et al. (2018)]. A
mathematical model that discusses a vector-bias effect on the spread of malaria can be
found in Xu and Zhao (2012), Xu and Zhang (2015), Kim et al. (2017), and Li et al.
(2018). The model was constructed as a system of ordinary/partial differential equa-
tions, and then the routine exercise was conducted (e.g., analyses of equilibrium states
with regard to existence and stability, and basic reproduction number) to arrive at the
results. The optimal control problem was applied to the malaria model by Buonomo
and Vargas-De-León (2014), and the results showed that the intervention costs would
increase whenever the vector-bias effect increases.

A mathematical model discussing how mosquito repellent potentially reduces the
spread of dengue can be found in Aldila et al. (2012a, b). By applying the optimal
control problem to their model, they found that mosquito repellent could successfully
and optimally suppress the spread of dengue. However in these models, mosquito
repellent only reduces the human–mosquito contact. The fact that mosquito repellent
can also reduce the ability of mosquitos to find their meal (blood) for reproduction has
not been discussed yet in these models. Such an effect on the mosquito reproduction
could affect the mosquito population dynamics, and subsequently on the dynamics of
mosquito-borne disease spread.
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In this paper, we shall show a reasonable mathematical modeling introducing such
effects of a mosquito repellent use, taking into account the relationship between its
use and themosquito population dynamics. Following themodeling, ourmathematical
model includes not only the effect of mosquito repellent use but also the mosquito’s
attraction to the infected human, which causes mosquitoes’ biased distribution around
the human population. Since we believe that our model is open to developments in
the future to other aspects ofmosquito-borne diseases, and since themodeling includes
some non-trivial parts for its reasonable design, we carefully describe it in the first
part of this paper. Then, we analyze our model to show the existence of thresholds for
mosquito repellent efficacy and its utilization rate in the human populationwith respect
to the containment ofmosquito-bornedisease. Further,we show that the containment of
mosquito-borne disease becomes harder when the mosquitoes’ distribution is biased
more around the human population. We expect that this paper could contribute to
the more advanced study on some vector-borne disease dynamics and to reconsider
on the problem discussed in the previous literatures making use of the mathematical
model.

2 Generic Model System

Let the human population (N ) be divided into three classes, that is, susceptible (S),
infected (I ), and recovered (R) humans, while the adult mosquito population (M) is
divided into two classes, namely non-carrier (susceptible) (U ) and carrier (infected)
(V ) mosquitoes. Moreover, we consider the mosquito larva population (L) to ensure
correct modeling, as described in later sections. We assume that there is no migration
both in the human and mosquito populations, and that no additional death rate is
attributed to mosquito-borne diseases.

In this paper, we consider the population dynamics governed by the following
system of ordinary differential equations:

dS

dt
= B(N ) − Λh S − μh S + νR (1a)

dI

dt
= Λh(S, I , R, V )S − ρ I − μh I (1b)

dR

dt
= ρ I − μh R − νR (1c)

dL

dt
= χ(L) rm(U , V ) − γ L (1d)

dU

dt
= γ L − ΛmU − μmU (1e)

dV

dt
= Λm(S, I , R)U − μm V , (1f)

where S = S(t), I = I (t), R = R(t), L = L(t), U = U (t), and V = V (t)
are the population sizes (e.g., density) for the corresponding classes at time t . The
functions Λh , Λm , and rm are, respectively, the infection rate per susceptible human,
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the infection rate per non-carrier adult mosquito, and the net reproduction rate of
the mosquito population, which are generally as functions of related population sizes
(see the later sections for details on their modeling). Specifically, Λh and Λm are
sometimes called the “force of infection” from the mosquito to the human, and that
from the human to the mosquito. The term B(N ) is the net reproduction rate of the
human population, which is now assumed to be independent of the epidemic structure,
and to depend only on the total human population size N = S + I + R.

Positive parameters μh and μm are the natural death rates, respectively, for the
human and the adult mosquito, which are assumed to be independent of the state in
terms of the disease. Positive parameter ρ is the recovery rate of the infected human.
Thus, the expected duration for the infected to retain infectivity is given by 1/ρ. We
assume now that the recovered human has gained immunity against the mosquito-
borne disease. Positive parameter ν is the rate of the waning of the immunity. The
expected duration to maintain the immunity is now given by 1/ν.

The positive parameter γ is the coefficient of the transition of a larva to an adult.
Hence, the expected duration of the larva period is now given by 1/γ . The function
χ(L) of L introduces a density effect with regard to the survival and growth of larvae.
The larvae need an appropriate microhabitat, such as a puddle with water, for their
survival, growth, and maturation. Thus, the larva population size is limited by envi-
ronmental conditions, which restrict the availability of appropriate habitats within the
region inhabited by the mosquito population. Moreover, there is intraspecific competi-
tion between larvae within each microhabitat. In fact, Lord (1998) provided evidence
suggesting the density effect due to such habitat limitations and intraspecific competi-
tion pertaining to larvae population dynamics. [The overview and discussion about the
density effect on the mosquito larvae population can be found in Legros et al. (2009),
and related classical arguments can be seen in Gurney et al. (1980) and Dye (1984).]
Thus, we introduce the density effect with a function χ(L) of L . The function χ is
assumed to not exceed 1 and be a continuous function that monotonically decreases
in terms of L > 0: χ(0) = 1, χ(L) < 1, and χ ′(L) < 0 for any L > 0.

3 Modeling to Introduce the Effect of Mosquito Repellent Use

3.1 Biting Rate andMosquito Repellent Use

Lacroix et al. (2005) found that malaria-infected human individuals were more attrac-
tive to mosquitoes. Their study suggested that mosquitoes are more attracted to human
individuals infected with the transmissible gametocyte stage of malaria parasites than
to uninfected ones or ones infected with asexual, non-transmissible stages. A similar
preference has been found for Chikungunya fever (Tsetsarkin et al. 2007).

Since such a vector-bias effect exists between the human and mosquito, resulting
in differences in the likeliness of encounters between them, we introduce the “biting
rate” via a positive constant parameter b. Then, we assume that the expected number
of bites by the mosquito in the sufficiently short period �t is given by b�t between
a mosquito and a human individual without the mosquito repellent. Note that in this
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paper, we consider the simplest case, assuming that the biting rate is independent of
the states of the mosquito and human in terms of disease.

Further, we assume that mosquito repellent use reduces the number of bites. The
biting rates for a humanwho has appliedmosquito repellent are now given by (1−ξ)b,
with a positive parameter ξ (0 < ξ < 1), which refers to the efficacy of the mosquito
repellent to reduce the number of bites. The more effective the mosquito repellent,
the larger the value of ξ . In reality, the efficacy of mosquito repellent depends on how
manufacturers/pharmaceutical companies develop and choose the best chemicals to
make the mosquito repellent. In a variety of mosquito repellent materials, for example,
some are based on plants that emit mosquito-repelling scents, such as lavender, lemon
eucalyptus oil, and thyme extract oil.

It should be noted that we ignore the intraspecific competition in the adult
mosquito population with respect to the encounters with and bites to human
individuals, which can be regarded as the resource for the energy required for
the mosquito’s reproduction. Further, we do not take into account any density-
dependent interaction between adult mosquitoes in our modeling. This type of
modeling assuming a constant biting rate without density dependence may be called
“reservoir frequency-dependent transmission” (Wonham et al. 2006), which follows
Anderson and May (1991).

3.2 Biased Distribution of Mosquitoes Among Human Individuals

We use the parameter α to introduce the bias of a mosquito’s to be attracted to the
infected human. When α = 0, the mosquito randomly comes into contact with human
individuals, without any bias depending on the encountered human’s state in terms of
the disease. For the case of malaria, we could consider α > 0 because the mosquito
is attracted to infected individuals rather than uninfected ones (Lacroix et al. 2005;
Tsetsarkin et al. 2007).

Using the parameter α, we introduce the biased distribution of adult mosquitoes
among human individuals in the following way. The expected total number of adult
mosquitoes around the susceptible human individuals MS is assumed to be given by

MS = θ
S

S + (1 + α)I + R
M, (2)

while those around the infected human individuals MI and the recovered human
individuals MR are, respectively, given by

MI = θ
(1 + α)I

S + (1 + α)I + R
M and MR = θ

R

S + (1 + α)I + R
M (3)

with the positive parameter θ < 1. The ratio θ of the adult mosquito population M =
U + V , that is, θ M = MS +MI +MR is assumed to lie in the zone they encounter
human individuals in. The parameter θ refers to the encounterability between the
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adult mosquito and the human, which could reflect the sanitary conditions, cultural
and social factors, etc., related to the encounter between them. In other words, the
ratio 1 − θ of the adult mosquito population, (1 − θ)M , is assumed to be outside the
zone in which the human hardly encounters them.

3.3 Infection Rate Per Susceptible Human Individual�h

Using the above-mentioned expected number of mosquitoes around the susceptible
human individuals, the expected number of mosquitoes per susceptible human indi-
vidual is now given byMS/S. Within this number of mosquitoes, the ratio of carrier
mosquitoes is expected to be given by V /M . Here, we are making use of the mean-
field approximation in contact dynamics. Then, the expected total number of bites by
the carrier mosquitoes in the period �t for the susceptible human individual without
the mosquito repellent use is given by

b�t
V

M

MS

S
, (4)

while that for the susceptible human individual with the mosquito repellent use is
given by

(1 − ξ)b�t
V

M

MS

S
. (5)

Let us assume that the probability of infection for a susceptible human individual
in the sufficiently short period �t is proportional to the expected total number of bites
by the carrier mosquitoes in this period. Hence, from (4) and (5),

βhb�t
V

M

MS

S
(6)

for the human individual without the mosquito repellent use, and

βh(1 − ξ)b�t
V

M

MS

S
(7)

for the human individual with the mosquito repellent use. The positive coefficient
βh denotes the probability of successful infection per bite by the carrier mosquito
(0 < βh ≤ 1). Thus, its value would reflect the detail of disease transmission to
determine the possibility of the susceptible human contracting a successful infection
from the carrier mosquito. The larger βh refers to the easier transmission of the disease
from the carrier mosquito to the susceptible human.

From (6) and (7) with (2), the infection rate Λh per susceptible human individual
is now given by
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Λh = (1 − ω) βhb
V

M

MS

S
+ ωβh(1 − ξ)b

V

M

MS

S

= (1 − ξω) βhb θ
V

S + (1 + α)I + R
(8)

as the function of S, I , R, and V , where ω is the ratio of human individuals who
use the mosquito repellent, say the utilization rate of the mosquito repellent. We
now assume that the utilization rate is independent of the state of the human with
respect to the disease. That is, the ratio of susceptible human individuals who use
the mosquito repellent is assumed to be equal to that of infected human individu-
als and to that of removed human individuals. The utilization rate of the mosquito
repellent ω is related to the human behavior determined also by the cultural and
social background of the considered population. It could be controlled and changed
by an intensive social campaign, and be affected by the policy on the public health by
the government.

Hereafter, we call the parameter value ξω (0 ≤ ξω ≤ 1) the effective utiliza-
tion rate. Indeed, if ξ = 0 when the mosquito repellent is useless, the utilization
rate ω has no meaning with regard to controlling the epidemic dynamics. In con-
trast, if ξ = 1 when the mosquito repellent can always repel the mosquito from
the human, then the utilization rate ω itself denotes the frequency of disease-
free human individuals. The larger the effective utilization rate ξω, the stronger
the effect of mosquito repellent use on epidemic dynamics, as shown in the later
sections.

Strictly speaking, the infection rate Λh of (8) refers to the expected infection rate
for a susceptible randomly chosen human individual, independent of whether the
individual uses the mosquito repellent or not. At the same time, it can be regarded as
the infection rate averaged over all susceptible human individuals when the ratio ω of
the human population uses the mosquito repellent.

3.4 Infection Rate of Non-carrier Mosquitoes�m

Similarly, for the case of disease transmission from a carrier mosquito to a susceptible
human, we assume that the probability of the successful disease transmission from
the infected human to the non-carrier mosquito within a sufficiently short period
�t is proportional to the total number of bites. Thus, we refer βmb�t for a non-
carrier mosquito around an infected human who does not use mosquito repellent, and
βm(1−ξ)b�t for a non-carriermosquito around an infected humanwho usesmosquito
repellent, with the positive parameter βm , a proportional coefficient closely related to
the infectivity of the disease from the infected human to the non-carrier mosquito via
biting. That is, the positive coefficient βm refers to the probability of the successful
transmission of the pathogen from the infected human to the non-carrier mosquito per
bite (0 < βm ≤ 1).

Since the probability that a randomly chosen non-carrier mosquito stays around an
infected human is given byMI/M , the infection rate Λm per non-carrier mosquito is
now given by
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Λm = βmb (1 − ω)
MI

M
+ βm(1 − ξ)b ω

MI

M

= (1 − ξω) βmb θ
(1 + α)I

S + (1 + α)I + R
, (9)

where we use (3). The infection rate of mosquito Λm is the function of S, I , and R.
Such modeling for the coefficients Λh and Λm described in the previous and the

present section follows that of Ngwa and Shu (2000) and Brauer et al. (2016) pertain-
ing to malaria dynamics, or of Bowman et al. (2005), Cruz-Pacheco et al. (2005), and
Wonham et al. (2006) for the West Nile virus transmission. In their modelings, these
coefficients were simply proportional to V /N and I/N , respectively, since their mod-
els did not consider biased distribution of adult mosquitoes among host individuals,
which is the case when α = 0 in our model It should be noted that modeling to include
the disease transmission term(s) is crucial for an appropriate conclusion to be derived
from the analysis of the model, as reviewed and discussed by Wonham et al. (2006).

3.5 Mosquito Net Reproduction Rate rm

In this section, we first consider the energy gain of the mosquito from biting humans.
It is well-known that the reproduction of the mosquito population depends on the
extent of access of the mosquito to the blood of other living creatures, primarily
humans. Some species of mosquitoes show a preference for the blood source used for
their metabolism, energy, and reproduction of eggs (Takken and Verhulst 2013). Pha-
somkusolsil et al. (2013) experimentally found that the durability rate, fecundity rate,
and hatching rate decreased when sheep provided the blood source for the mosquito
compared towhen it was human. Other than the above facts, here in this paper, we shall
try to capture the nature of a mosquito-borne disease especially in urban areas where
the population density is relatively high and the other blood sources for the mosquito
reproduction would be hardly available, so that we could regard the humans as the
principal resource and ignore the other blood sources for the mosquito reproduction.

Let us assume that the energy gain of a mosquito individual in the sufficiently short
period�t is proportional to the number of human individuals bitten in the same period.
Further, the reproduction of mosquito offsprings in the period �t is assumed to be
proportional to the energy gain in the period, and is independent of the state of the
mosquito with respect to disease. Every offspring is assumed to be non-carrier, that
is, no vertical transmission is introduced.

In the case without mosquito repellent use, each mosquito around the human pro-
duces the expected number of non-carrier offsprings, given by cb�t in the period �t ,
where c is the coefficient used to convert the energy gain to the reproduction rate.
Since the biting rate becomes (1 − ξ)b (0 < ξ < 1) for the human with mosquito
repellent use, as introduced in the previous section, so does the reproduction rate.

As a result, we obtain the following equation as the total number of produced
mosquito offsprings rm�t in the sufficiently short period �t :
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rm�t = cb�t (1 − ω)
U

M
MS + c(1 − ξ)b�t ω

U

M
MS

+ cb�t (1 − ω)
U

M
MI + c(1 − ξ)b�t ω

U

M
MI

+ cb�t (1 − ω)
U

M
MR + c(1 − ξ)b�t ω

U

M
MR

+ cb�t (1 − ω)
V

M
MS + c(1 − ξ)b�t ω

V

M
MS

+ cb�t (1 − ω)
V

M
MI + c(1 − ξ)b�t ω

V

M
MI

+ cb�t (1 − ω)
V

M
MR + c(1 − ξ)b�t ω

V

M
MR

= (1 − ξω)cθbM�t . (10)

The reproduction rate rm is now given by the function of the total adult mosquito
population size M = U + V : rm = rm(M).

4 Dynamics of Total Population Sizes

From (1), we obtain the following equations, which govern the dynamics of total
population sizes, N = S + I + R and M = U + V :

dN

dt
= B(N ) − μh N (11a)

dL

dt
= χ(L) rm(M) − γ L (11b)

dM

dt
= γ L − μm M, (11c)

where Eq. (11b) is the same as Eq. (1d).
Note that the system (11) does not include any epidemic variable (of S, I , R, U ,

and V ) but is composed of only variables in terms of total population sizes N , L ,
and M . This means that the dynamics of total population sizes is not affected by the
epidemic dynamics within it, and those sizes temporally change independently of how
the epidemic variables do at the same time.

4.1 Assumption for Total Population Size in Epidemic Dynamics

In this paper, we consider a mathematical model under the condition that the total
population sizes of humans and mosquitoes have become constant independently of
time. This assumption may be called the “stationary state approximation” (SSA). This
means that we consider the equilibrium state for the dynamics of total population size.
Then, we discuss the efficiency of mosquito repellent use to suppress the outbreak of
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mosquito-borne disease under the condition that the total population sizes of humans
and mosquitoes are constant independently of time.

This assumption would be reasonable in most real cases because the life cycle of
mosquito is sufficiently faster than that of human. For this reason, we regard the time
scale of epidemic dynamics as sufficiently fast compared to that of a significant change
in the human population size.

Alternatively, our approach described in the following sections with the above
assumption of constant population sizes to derive the model system given in the later
Sect. 5 may be regarded as considering the asymptotically autonomous system for (1),
as seen in the arguments by Castillo-Chavez and Thieme (1995). This means that the
asymptotic behavior of (1) as t → ∞ can be regarded as mathematically equivalent
to that of the limiting system given in Sect. 5 for the asymptotically autonomous
system rewritten from (1). We shall not step further in the mathematical arguments
with the theory of asymptotically autonomous system, because our model system
given in Sect. 5 can be indeed regarded as a model per se based on the reasonable
modeling described in the following sections. [For an example of the mathematical
detail treatment about the asymptotically autonomous system, see Bai et al. (2019)
and references therein.]

4.2 The Human Population Size N

For the human total population size N governed by (11a), the assumption of the
constant size leads to the following equality:

B(N ) = μh N . (12)

Hence, we hereafter consider the population dynamics (1) with the human total pop-
ulation size N of a constant satisfying the equality (12), assuming a priori that it is
asymptotically stable for the population dynamics given by (11a). Although a concrete
formula of the function B of N is necessary to determine the size N , we do not need
to determine it while we just use N as a constant size of the human population. Thus,
we hereafter replace B(N ) by μh N with a given constant N .

4.3 TheMosquito Population Sizes L andM

Since the reproduction rate rm is given by (10) which is the function of M only, the
system of (11b, c) is closed in terms of L and M as follows:

dL

dt
= χ(L) (1 − ξω)cθbM − γ L (13a)

dM

dt
= γ L − μm M . (13b)

To apply the assumption of constant population sizes L and M , we need the follow-
ing arguments to make sense the assumption as a reasonable modeling, and to make
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clear the relation of the mosquito population sizes L and M to the repellent use (i.e.,
ξ and ω) and the other factors involved in the population dynamics.

Let us consider the equilibrium (L, M) = (L∗
ω, M∗

ω), which satisfies the following
equations:

χ(L∗
ω) (1 − ξω)cθbM∗

ω − γ L∗
ω = 0; γ L∗

ω − μm M∗
ω = 0. (14)

As a result, if the equilibrium (L, M) = (L∗
ω, M∗

ω) exists, it is given by the positive
root of the equation

χ(L∗
ω) = μm

(1 − ξω)cθb
(15)

and M∗
ω = (γ /μm)L∗

ω. Note that the values of L∗
ω and M∗

ω necessarily depend on those
of ω and ξ . In other words, the equilibrium state depends on the mosquito repellent
use. Notably, when nobody uses the mosquito repellent, let us denote the non-trivial
equilibrium of (L, M) by (L∗

0, M∗
0 ), if it exists. By the monotonically decreasing

nature of function χ , it is clear from (15) that L∗
ω is monotonically decreasing in terms

of ω. Therefore, L∗
ω < L∗

0 and subsequently M∗
ω < M∗

0 for any positive ω, whenever
they exist. This is a consistent nature of L∗

ω and M∗
ω because mosquito repellent use

is now assumed to have a negative effect on mosquito reproduction.
Since χ(L) is less than 1 and monotonically decreasing in terms of L > 0, as

mentioned in Sect. 2, the following condition should be necessarily satisfied for the
existence of L∗

ω > 0 satisfying (15):

inf
L≥0

χ(L) <
μm

(1 − ξω)cθb
< χ(0) = 1,

that is,

cθb

μm
inf
L≥0

χ(L) <
1

1 − ξω
<

cθb

μm
, (16)

where χ(L) < χ(0) = 1 for any L > 0 as assumed in Sect. 2. Generally, we allow
that inf

L≥0
χ(L) = −∞. Further since χ(L) is monotonically decreasing in terms of

L > 0, the non-trivial equilibrium is unique if it exists. Consequently, we obtain the
following theorem about the existence of non-trivial equilibrium (L∗

ω, M∗
ω):

Theorem 1 The non-trivial equilibrium (L∗
ω, M∗

ω) for the total mosquito population
size exists only if condition (16) is satisfied. If it exists, it is uniquely given by

L∗
ω = χ−1( μm

(1 − ξω)cθb

); M∗
ω = γ

μm
L∗

ω. (17)

Then, we have the following corollary:
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Corollary 1 The non-trivial equilibrium (L, M) = (L∗
ω, M∗

ω) for the total mosquito
population size exists only if

Rm := cθb

μm
> 1. (18)

We defineRm as the intrinsic net reproduction rate of themosquito population. This is
becauseRm refers to the upper bound for the net reproduction rate in terms ofmosquito
repellent use. The net reproduction rate is generally defined as the expected number
of surviving (i.e., successfully mature) offsprings produced by a mosquito during its
life span, which may be called reproductive success. In the context of our modeling,
Rm can be regarded as the net reproduction rate of the mosquito population when
nobody uses mosquito repellent. Indeed, from (10), the production rate of offsprings
per adult mosquito in a unit time is given by cθb, while the expected life span of an
adult mosquito is now given by 1/μm from (11c).

Condition (16) means that the intrinsic net reproduction rate of the mosquito popu-
lationRm should necessarily be larger than a critical value 1/(1−ξω) for the existence
of L∗

ω > 0 satisfying (15). Note that the value of 1/(1−ξω) is necessarily not below 1
and not over 1/(1−ξ), because 0 ≤ ω ≤ 1 and 0 < ξ < 1. Specifically, when nobody
uses mosquito repellent, condition (16) results in the condition Rm > 1. Hence, we
note that under condition (16) with ω ≥ 0, the condition Rm > 1 is necessarily
satisfied.

These arguments are only about the existence of the equilibrium (L, M) =
(L∗

ω, M∗
ω), and it is still unclear whether an equilibrium such as the stable state is

reachable. To reasonably apply the assumption of constant population sizes L and M ,
it is necessary to have a stable equilibrium for (13). Unstable equilibrium is not reason-
able for our modeling with the assumption. Therefore, we need to find the condition
to make the equilibrium stable. We discuss this aspect in the following sections.

4.4 Case of UnboundedMosquito Population Growth

Equation (15) does not have any positive root if the following condition is satisfied:

inf
L≥0

χ(L) >
μm

(1 − ξω)cθb
= 1

(1 − ξω)Rm
, (19)

because χ(L) is monotonically decreasing in terms of L > 0. This is a case when
condition (16) is unsatisfied. In this case, we obtain the following inequality from
Eq. (13a):

dL

dt
= χ(L) (1 − ξω)cθbM − γ L > μm M − γ L = −dM

dt

for any t ≥ 0. Then, we have

d(L + M)

dt
> 0
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for any t ≥ 0. Hence, if equation (15) does not have any positive root under condition
(19), the mosquito population has no equilibrium and keeps temporally increasing in
size toward infinity, that is, unbounded mosquito population growth occurs. This case
of unbounded mosquito population growth can be easily proven by the phase plane
analysis for system (13):

Theorem 2 If the continuous function χ(L) satisfies condition (19), the mosquito
population size temporally increases toward infinity, that is, the mosquito population
size tends to grow unboundedly.

As a special case, if

inf
L≥0

χ(L) >
1

Rm
, (20)

the mosquito population grows unboundedly when nobody uses mosquito repellent.
Thus, if condition (16) is satisfied for some ω > 0 under condition (20), there could
be a case where the unbounded mosquito population growth could be suppressed by
the use of mosquito repellent but the growth would continue without its use.

If the condition of the inverse inequality to (19) is satisfied for a chosen function
χ(L), the unbounded mosquito population growth never occurs, since it is easily
shown in such a case that d(L + M)/dt < 0 for a sufficiently large value of L + M .
As a specific variant of this result, we obtain the following corollary:

Corollary 2 If the continuous function χ(L) satisfies the condition that lim
L→∞ χ(L) ≤

0, the mosquito population approaches a positive equilibrium or goes extinct.

4.5 Case of Mosquito Extinction

The non-trivial equilibrium cannot exist if

Rm <
1

1 − ξω
, (21)

because this is the case when condition (16) is unsatisfied. In this case, we can easily
find that the mosquito population eventually goes extinct:

Theorem 3 If condition (21) is satisfied, the mosquito population goes extinct.

From (13) and the decreasing nature of χ(L), we have

d(L + M)

dt
= χ(L) (1 − ξω)cθbM − μm M

≤ χ(0) (1 − ξω)cθbM − μm M

= (1 − ξω)μm M
(
Rm − 1

1 − ξω

)
< 0 (22)
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for any M > 0 when condition (21) is satisfied. Thus, L + M monotonically decreases
in time as long as M > 0.Thismeans thatwhen condition (21) is satisfied, themosquito
population goes extinct.

Further, we find that condition (21) is necessarily satisfied ifRm < 1, because the
right-hand side of (21) is not less than 1 for any ω and (1 − ξ). Thus, we have the
following corollary:

Corollary 3 IfRm < 1, the mosquito population eventually goes extinct, independently
of mosquito repellent use.

This result is consistent with the meaning of the intrinsic net reproduction rate Rm .
WhenRm < 1, the expected number of surviving offsprings produced by a mosquito
during its life span is less than 1, so that the expected number of adults in the subsequent
generation must be less than the present value. This results in the eventual decrease
in the population toward its extinction. In contrast, the mosquito extinction as per
Theorem 3 when Rm > 1 and condition (21) is satisfied can be regarded as the
repellent-induced mosquito extinction. This repellent-induced mosquito extinction
can occur in our model because only humans are assumed to be the resource for
the mosquito’s reproduction. However, even when other resources (besides humans)
exist, such extinction could occur, for instance with a demographic fluctuation, if the
other resources could not supply satisfactory reproductive energy for the mosquito
population.

The behavior of the population dynamics given by (13) significantly depends on
the detailed nature of function χ(L). However, we can carry out the local stability
analysis on the trivial equilibrium (L, M) = (0, 0) for any function χ(L) of class C1.
The Jacobian matrix about the equilibrium (L, M) = (0, 0) is easily obtained as

[−γ (1 − ξω)cθb
γ −μm

]
. (23)

From the characteristic equation for matrix (23), it can be easily proved that the equi-
librium (L, M) = (0, 0) is locally asymptotically stable if condition (21) is satisfied.
This result is consistent with Theorem 3.

The results of this section and the previous allow us to draw the following conclu-
sion:

Theorem 4 Whenever the non-trivial equilibrium for the total population sizes exists,
the mosquito population never goes extinct. In contrast, whenever the trivial equilib-
rium is asymptotically stable, the mosquito population necessarily goes extinct and
no non-trivial equilibrium exists.

4.6 Effect of Mosquito Repellent Use on the Persistence of theMosquito
Population

From the result, given as Corollary 3, it is not worthwhile to consider the case that
Rm < 1, because the mosquito population goes extinct independently of mosquito
repellent use. Thus, let us consider only the case of Rm > 1 in this section.
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Condition (21) can be rewritten as

ω > ωc := 1

ξ

(
1 − 1

Rm

)
. (24)

When condition (24) is satisfied, the mosquito population eventually becomes extinct.
In contrast, whenω < ωc, the mosquito population persists, so that mosquito repellent
use cannot exterminate the mosquito population. This result means that a possibility
exists such that a sufficiently large utilization rate of mosquito repellent causes the
extinction of the mosquito population.

Even when condition (24) is not satisfied (so that the mosquito population is per-
sistent), the improvement in the utilization rate of mosquito repellent is likely to not
only suppress but also exterminate the mosquito population if

ξ > ξc := 1 − 1

Rm
. (25)

This is because ωc is less than 1 when ξ > ξc.
If ξ < ξc, condition (24) cannot be satisfied for any ω such that 0 ≤ ω ≤ 1,

because ωc is then greater than 1. This means that when the efficacy of mosquito
repellent ξ is poor and thus smaller than the critical value ξc, the mosquito population
cannot be exterminated onlywith the improvement in themosquito repellent utilization
rate. In such a case, when and only when the efficacy of mosquito repellent ξ is
improved, becoming high enough to exceed ξc, it becomes possible to exterminate
the mosquito population with a sufficiently high mosquito repellent utilization rate.
Hence, in this case, it becomes possible to exterminate the mosquito population with
mosquito repellent use only after a new mosquito repellent with a sufficiently high
efficacy could be developed and circulated in the human population.

4.7 Local Stability of the Non-trivial Equilibrium for theMosquito Population

Let us consider the case that the non-trivial equilibrium (L, M) = (L∗
ω, M∗

ω) exists
under condition (16). The Jacobian matrix for the non-trivial equilibrium (L, M) =
(L∗

ω, M∗
ω) for system (13) can be obtained as follows:

J (L∗
ω, M∗

ω) =
[
χ ′(L∗

ω) (1 − ξω)cθbM∗
ω − γ χ(L∗

ω) (1 − ξω)cθb
γ −μm

]

=
[
γ
{χ ′(L∗

ω)L∗
ω

χ(L∗
ω)

− 1
}

μm

γ −μm

]

, (26)

where we use (14) and (15). Since χ ′(L∗
ω) < 0 from the assumption for function χ ,

we immediately obtain tr J (L∗
ω, M∗

ω) < 0 and det J (L∗
ω, M∗

ω) > 0. Therefore, the
real part of every eigenvalue for J (L∗

ω, M∗
ω) is negative for any L∗

ω > 0. As a result,
we find that the non-trivial equilibrium is necessarily locally stable whenever it exists.
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From Theorems 1 and 4, and using the (L, M)-phase plane analysis, we can get the
following conclusion:

Theorem 5 The non-trivial equilibrium for the total population sizes is necessarily
globally asymptotically stable whenever it exists.

Since the aim of this paper is to theoretically discuss the effect of mosquito repellent
use on the epidemic dynamics of mosquito-borne disease, we must primarily start
our argument with the situation in which the disease exists for the considered human
population.Thismeans thatweneed todiscuss our problemwith regard to thepersistent
mosquito population. Therefore, in the following part, we consider our model under
condition (16), when the non-trivial equilibrium (L, M) = (L∗

ω, M∗
ω) is globally

stable.

5 Epidemic Dynamics Model with the Constant Total Population Sizes

Using the results obtained in Sect. 4 formodel (1), we apply the assumption of constant
total population sizes of humans and mosquitoes. Then, we have the following system
as our epidemic dynamics model with (8) and (9):

dS

dt
= μh N − (1 − ξω)βhb θ

V

S + (1 + α)I + R
S − μh S + νR (27a)

dI

dt
= (1 − ξω)βhb θ

V

S + (1 + α)I + R
S − ρ I − μh I (27b)

dR

dt
= ρ I − μh R − νR (27c)

dU

dt
= μm M∗

ω − (1 − ξω)βmb θ
(1 + α)I

S + (1 + α)I + R
U − μmU (27d)

dV

dt
= (1 − ξω)βmb θ

(1 + α)I

S + (1 + α)I + R
U − μm V , (27e)

where N = S + I + R and M∗
ω = U + V are constant independently of time, and M∗

ω

is given by (17) under condition (16). This system (27) may be regarded as the limiting
system for the asymptotically autonomous system (1) with (11) (Castillo-Chavez and
Thieme 1995; Bai et al. 2019).

This model (27) is similar to that for malaria dynamics in Bustamam et al.
(2018), whereas their model did not take into account either the biased distribution of
mosquitoes or the effect of mosquito repellent use; rather, it specifically involved the
effect of vaccination in the vaccinated class of the human population.

Note that the total population size ofmosquitoes M∗
ω depends on the efficacy (ξ ) and

the utilization rate of mosquito repellent (ω). As mentioned in the previous section, we
discuss the epidemic dynamics when the mosquito population keeps a certain positive
size, that is, when it persists, under condition (16).
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Making use of the following transformations of variables and parameters,

fS = S

N
; fI = I

N
; fR = R

N
; fU = U

M∗
ω

; fV = V

M∗
ω

;

ηω = M∗
ω

N
; σh = βhb θ; σm = βmb θ, (28)

we obtain the system in terms of population frequencies, fS, fI, fR, fU, and fV with
fS + fI + fR = 1 and fU + fV = 1, which is mathematically equivalent to (27):

d fS
dt

= μh − (1 − ξω)σh
fV

fS + (1 + α) fI + fR
ηω fS − μh fS + ν fR (29a)

d fI
dt

= (1 − ξω)σh
fV

fS + (1 + α) fI + fR
ηω fS − ρ fI − μh fI (29b)

d fR
dt

= ρ fI − μh fR − ν fR (29c)

d fU
dt

= μm − (1 − ξω)σm
(1 + α) fI

fS + (1 + α) fI + fR
fU − μm fU (29d)

d fV
dt

= (1 − ξω)σm
(1 + α) fI

fS + (1 + α) fI + fR
fU − μm fV. (29e)

Then, we can draw the following three-dimensional closed system from the above
five-dimensional system (29):

d fS
dt

= −(1 − ξω)σh
fV fS

1 + α fI
ηω + (μh + ν)(1 − fS) − ν fI (30a)

d fI
dt

= (1 − ξω)σh
fV fS

1 + α fI
ηω − (μh + ρ) fI (30b)

d fV
dt

= (1 − ξω)σm
(1 + α) fI(1 − fV)

1 + α fI
− μm fV. (30c)

6 Basic Reproduction Number

In the biological context, the basic reproduction number is defined as the expected
number of new cases of an infection caused by an infected individual in a population
consisting of susceptible contacts only. Following this biological definition, a mathe-
matical theory is used to derive the basic reproduction number as the spectrum radius
of a specific matrix called the “next-generation matrix” for the system of ordinary
differential equations governing epidemic dynamics [see Diekmann et al. (2013) for a
complete reference, or see van den Driessche (2017) for the recent review]. As shown
in “Appendix A,” making use of the next-generation matrix with the theory given by
van den Driessche and Watmough (2002, 2008), we can derive the following basic
reproduction number R0 for model (30):
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R0 := (1 − ξω)2σmσhηω(1 + α)

μm(μh + ρ)

=
{
(1 − ξω)βmbθ(1 + α) · 1

ρ + μh

}

︸ ︷︷ ︸
production of carrier mosquitoes

·
{
(1 − ξω)βhbθηω · 1

μh

}
.

︸ ︷︷ ︸
human infection with the carrier mosquitoes

(31)

Note that this formula of the basic reproduction numberR0 may be specifically called
“type reproduction number,” similar to the terminology of Roberts and Heesterbeek
(2003) and Heesterbeek and Roberts (2007), because we are interested only in the
total number of expected secondary infections in human individuals originating from
an infected human individual (also see Smith et al. 2007; Yakob and Clements 2013;
van den Driessche 2017). Although a different formula (R0) could be mathematically
derived for our model (30), we consider only the above R0 of (31) in this paper.
[For such possibly different expressions of the basic reproduction number, see the
arguments in Brauer et al. (2016), Cushing and Diekmann (2016), van den Driessche
(2017), and Lewis et al. (2019).]

The basic reproduction number R0, given by (31), can be rewritten as follows:

R0 = (1 − ξω)2
M∗

ω

M∗
0
R0, (32)

where R0 is the basic reproduction number when nobody uses mosquito repellent,
that is, when ω = 0:

R0 := σm

μm
(1 + α)

σh

μh + ρ

M∗
0

N
. (33)

It is clear that R0 ≤ R0 always, because M∗
ω ≤ M∗

0 always and 1 − ξω ≤ 1.

7 Equilibrium States

7.1 Disease-Free Equilibrium E0

The disease-free equilibrium (DFE) E0 of system (30) is given by ( fS, fI, fV) =
(1, 0, 0). The local stability of E0 can be analyzed with the Jacobian matrix approach.
The Jacobian matrix of system (30), evaluated at E0 gave us three eigenvalues, that is,
−μh − ν and the other two derived from the roots of the following quadratic equation
in terms of λ:

λ2 + (μh + μm + ρ)λ + μm(μh + ρ)(1 − R0) = 0.

Hence, we can easily find that the real part of every eigenvalue is negative if and only
ifR0 < 1:
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Lemma 1 The disease-free equilibrium E0 of system (30) always exists and is locally
asymptotically stable if R0 < 1, while it is unstable if R0 > 1.

7.2 Endemic Equilibrium E+

At the endemic equilibrium E+, all classes in both the humanandmosquito populations
have positive equilibriumvalues. The endemic equilibrium E+ given by ( fS, fI, fV) =(

f ∗
S , f ∗

I , f ∗
V

)
is uniquely determined by

f ∗
S = 1 − ρ + μh + ν

μh + ν
f ∗
I ,

f ∗
V

1 − f ∗
V

= σm

μm
(1 − ξω)

(1 + α) f ∗
I

1 + α f ∗
I

, (34)

and f ∗
I is obtained as follows: when α = 0,

f ∗
I = (

R0
∣∣
α=0 − 1

){ρ + μh + ν

μh + ν
R0
∣∣
α=0 + σm

μm
(1 − ξω)

}−1
, (35)

and when α > 0, f ∗
I = ζ ∗−1

α
with

ζ ∗ =
a1 +

√
a2
1 + 4a0a2

2a2
(36)

which is the larger root of the following quadratic equation in terms of ζ such that
1 < ζ ∗ < 1+ μh+ν

ρ+μh+ν
α in order to make both f ∗

I and f ∗
S positive and their sum less

than 1:

F(ζ ) := a2ζ
2 − a1ζ − a0 = 0, (37)

where

a2 = α + σm

μm
(1 + α)(1 − ξω);

a1 = σm

μm
(1 + α)(1 − ξω) − ρ + μh + ν

μh + ν
R0;

a0 =
(
α + ρ + μh + ν

μh + ν

)
R0.

It can be easily proved that equation F(ζ ) = 0 given by (37) has a unique root greater
than 1 and less than 1+ μh+ν

ρ+μh+ν
α if and only if F(1) < 0 and F(1+ μh+ν

ρ+μh+ν
α) > 0.

In conclusion, we can obtain the following result about the existence of the endemic
equilibrium E+:
Lemma 2 The endemic equilibrium E+ of system (30) exists if and only if R0 > 1.

Further, when the endemic equilibrium E+ exists, we can prove that it is locally
asymptotically stable, as shown in “Appendix B,” making use of a local Lyapunov
function:
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Lemma 3 The endemic equilibrium E+ of system (30) is locally asymptotically stable
whenever it exists.

As a result, we obtain the following theorem from Lemmas 1, 2, and 3:

Theorem 6 If R0 < 1, only the disease-free equilibrium exists to be locally asymptot-
ically stable. If R0 > 1, the disease-free equilibrium is unstable, while the endemic
equilibrium exists, and is unique and locally asymptotically stable.

Numerical calculations about our model imply that the endemic equilibrium E+
would be not only locally but also globally asymptotically stable whenever it exists,
though we could not give the mathematical proof.

8 Dependence of Endemics on Each Factor

In this section, we analyze the dependence of the basic reproduction numberR0 on the
parameters α,ω, and ξ , and discuss the relation of the endemics of disease to mosquito
repellent use. To simplify the argument, we carry out the following arguments under
the condition that the total adultmosquito population size M∗

0 given by (17)withω = 0
exists. Thus, from Corollary 3, we hereafter consider the case when the intrinsic net
reproduction rate of the mosquito population Rm necessarily satisfies the condition
Rm > 1.

Now, let us consider a case with ω > 0 such that M∗
ω given by (17) exists when

condition (16) is satisfied. Since R0 ≤ R0 (the basic reproduction number when
nobody uses mosquito repellent), if R0 < 1, as shown in Theorem 6, the disease
eventually disappears even when nobody uses mosquito repellent. Such a case is not
of our interest because it can be regarded as a situation where mosquito-borne diseases
would not pose a serious public health problem. Thus, let us hereafter consider the
case that the disease is endemic without mosquito repellent use, so thatR0 > 1.

8.1 Mosquito Repellent Use

As M∗
ω and 1−ξω are decreasing in terms of ω, the higher the mosquito repellent use,

the smaller the value ofR0. This is a consistent result because mosquito repellent use
is now assumed to have a negative effect on mosquito reproduction, possibly reducing
the endemicity of mosquito-borne disease.

8.2 Mosquito’s Preference to an Infected Human

A larger α denotes that the mosquito’s preference (attraction) to the infected human is
stronger, which causes a biased distribution of mosquitoes with respect to the human
state of disease infection. Since themosquito’s stronger preferencemakesR0 and sub-
sequentlyR0 greater, themosquito’s preference contributes positively to the endemics.

In the next section, we discuss the contribution of the biased distribution of
mosquitoes to the endemics in more detail, making use of a specific linear function χ .
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8.3 Case of Specific Linear Function �

Now, let us consider a specific function χ(L) given by

χ(L) = 1 − L

K
(38)

with a positive parameter K . The introduction of this linear function for χ may be
regarded as that of a density-dependent competition in the larvae population. In the
mathematical modeling of intraspecific competition, it is frequently introduced by a
quadratic-like term of the population density, like the logistic equation for the single
species population dynamics. This could be regarded as the case also in our model
with the above linear function (38).

rm means the mosquito net reproduction rate given by (10), which provides the
renewal ofmosquito offspring density as explained in Sect. 3.5.As explained in Sect. 2,
the function χ can be translated as the per capita survival and growth probability of
mosquito larva, including the density effect on the survival and growth. Since the
density effect in (38) is given by the term proportional to the larva density L , the net
reduction in the larva population size under the density effect results in a proportional
term to Lrm . The product Lrm is not the square of L but is proportional to the product of
L and M , which can be regarded as a second-order term of larva population density.
Indeed in our modeling, the renewal of larva population rm is introduced by (10),
proportional to the adult mosquito population density M , so that the term by the
product of L and M does not mean the interaction between the larva and the adult but
does that among the larvae.

In this case, from Corollary 2, the mosquito population dynamics necessarily has
an asymptotically stable nonnegative equilibrium. Since M∗

ω is given by (17) under
condition (16):

M∗
ω = γ

μm
K
{
1 − 1

(1 − ξω)Rm

}
(39)

with (1 − ξω)Rm > 1, the basic reproduction number (32) becomes

R0 = (1 − ξω){(1 − ξω) − 1/Rm}
1 − 1/Rm

R0 (40)

with

R0 = σm

μm
(1 + α)B

(
1 − 1

Rm

)
, (41)

where

B := σh

μh + ρ

γ

μm

K

N
.
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Fig. 1 Classification of the
parameter region (1/R0, ξω)

with Rm > 1 in case of the
specific function χ(L) given by
(38). For the region where
1/R0 > 1, the disease is
naturally eliminated even
without mosquito repellent use.
For the region where 1/R0 < 1,
mosquito repellent use can make
the resultant reproduction
numberR0 less than 1 and
eliminate the disease. The
boundary between the regions of
Controlled DFE and Endemic is
given by (42). For details, see
the main text

Then, we can obtain the following necessary and sufficient condition for R0 < 1:

ξω > 1 − 1

2

{
1

Rm
+
√(

1

Rm

)2

+ 4

R0

(
1 − 1

Rm

)}
, (42)

where the right-hand side is necessarily positive and less than ξc = 1−1/Rm because
the intrinsic net reproduction rate Rm is now assumed to be larger than 1 in order
to ensure the persistence of the mosquito population when nobody uses mosquito
repellent, while the upper bound of the basic reproduction number R0 is similarly
assumed to be larger than 1 in order to assure the endemic state of the disease when
nobody uses mosquito repellent.

From condition (42) with Theorems 4 and 6, we get the result seen in Fig. 1, which
shows the effect of mosquito repellent use. It is easily seen that if the efficacy of
mosquito repellent is too poor so as to be

ξ < ξ∗
c := 1 − 1

2

{
1

Rm
+
√(

1

Rm

)2

+ 4

R0

(
1 − 1

Rm

)}
, (43)

then mosquito repellent use cannot eliminate the disease from the human population.
This is because ξω ≤ ξ . Thus, if condition (43) is satisfied, condition (42) cannot
be satisfied for any utilization rate ω of mosquito repellent. In other words, use of
mosquito repellent can help eliminate the disease only if its efficacy is high enough to
satisfy ξ > ξ∗

c .
If ξ > ξ∗

c , a utilization rate ω, which satisfies condition (42), may exist when
mosquito repellent successfully eliminates the disease from the human population. In
such a case, the critical value ω∗

c for the utilization rate ω is given by

ω∗
c := ξ∗

c

ξ
. (44)
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(a) (b) (c)

Fig. 2 Dependence of equilibrium values in the endemic state on mosquito repellent use. The figure was
drawn for the linear function χ(L) given by (38), making use of (34)–37, (40), and (41) with σh = 0.0084;
σm = 0.084; μh = 3.9 × 10−5; μm = 0.1; ν = 2.74 × 10−3; ρ = 3.5 × 10−3; Rm = 4.0 (ξc = 0.75);
η0 = M∗

0 /N = 1.0; a α = 0.0,R0 = 1.99, ξ∗
c = 0.249; b α = 2.0,R0 = 5.98, ξ∗

c = 0.499; c α = 10.0,

R0 = 21.9, ξ∗
c = 0.652. Parameters value are taken from Chitnis et al. (2008) and CDC (2015) (same in

every other numerical calculations of this paper)

(a) (b)

Fig. 3 Numerical calculation of the temporal variation for system (30) with the linear function χ(L)

given by (38) and a temporally variable utilization rate of mosquito repellent ω: ω = 0.0 for t ≤ 3000 and
ω = 0.8(1−exp[−0.01(t−3000)]) for t > 3000. σh = 0.0084; σm = 0.084;μh = 3.9×10−5;μm = 0.1;
ν = 2.74×10−3; ρ = 3.5×10−3;α = 2.0;Rm = 4.0 (ξc = 0.75); η0 = M∗

0 /N = 1.0;R0 = 5.98; ξ∗
c =

0.499; ( fS(0), fI(0), fV(0)) = (1.0, 0.0, 0.001);
(

f ∗
S , f ∗

I , f ∗
V
) = (0.490, 0.226, 0.282) for t ≤ 3000. a

ξ = 0.25,
(

f ∗
S , f ∗

I , f ∗
V
) = (0.629, 0.164, 0.200) for t > 3000; b ξ = 0.75,

(
f ∗
S , f ∗

I , f ∗
V
) = (0.0, 1.0, 0.0)

for t > 3000. In (b),mosquito repellent use induces the elimination of disease, that is, the epidemic dynamics
are controlled by mosquito repellent use toward the DFE

When ξ > ξ∗
c , mosquito repellent use successfully eliminates the disease from the

human population if ω > ω∗
c .

These results are also shown in Fig. 2 by numerical calculations. It is clear that even
if ξ < ξ∗

c , mosquito repellent use can serve to decrease the frequency of infection
in humans, since the basic reproduction number is reduced by it, as indicated in
Sect. 8.1. As an example, the numerical result in Fig. 3a, which concerns the temporal
variation in ( fS(t), fI(t), fV(t)) and the relative size of the adult mosquito population
M∗

ω/M∗
0 demonstrates a case where mosquito repellent use can work toward reducing
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the frequency of infected human individuals when ξ < ξ∗
c . In Fig. 3b, we demonstrate

a case of the controlled DFEwith highly efficient mosquito repellent use when ξ > ξ∗
c .

Note that in the numerical calculation seen inFig. 3,weuse the quasi-stationary state
approximation (QSSA) such that the temporal change in the mosquito population size
is relatively very fast compared to the epidemic dynamics, and it can be approximated
with the value M∗

ω determined by the value of the utilization rate ω at each moment
while ω is temporally varying [in the application of QSSA for mathematical modeling
of biological population dynamics. For example, see Segel and Slemrod (1989), De
Boer and Perelson (1995), Borghans et al. (1996), Huisman and De Boer (1997),
Schneider and Wilhelm (2000), Tzafriri and Edelman (2004), Schnell et al. (2006),
Pedersen et al. (2007) and Seno (2016)].

On the other hand, Fig. 2 clearly indicates that the controllability of endemics
significantly depends on the strength of the mosquito’s preference to the infected
human. The controllability becomes more difficult as the mosquito’s preference gets
stronger, being consistent with the result indicated in Sect. 8.2.

As seen from Fig. 2, however, the dependence of the frequencies at the endemic
state on the mosquito’s preference to the infected human, indexed by the parameter
α, is not simple. Actually, our numerical calculation of the equilibrium frequency f ∗

I
as the function of α, determined by (35)–(37), indicates the existence of a specific
positive value α, say αc that maximizes the value f ∗

I , as shown in Fig. 4. For the range
of α larger than the specific αc, the equilibrium frequency f ∗

I gets smaller for larger
α. This feature is supported by the more detailed numerical investigation shown in
Fig. 5 about the parameter dependence of the equilibrium frequency of infected human
individuals f ∗

I at the endemic state. The higher mosquito density makes the feature
more noticeable, while it appears less noticeable for sufficiently lowmosquito density.
Further, more effective mosquito repellent use with larger ξω makes it less noticeable.
As a consequence, we find that the mosquito’s stronger preference to the infected
human does not necessarily mean a higher frequency of infected human individuals.

From the evolutionary viewpoint with regard to the benefit of mosquito-borne dis-
ease, itwould be optimal tomaximize the infected humanpopulation for the pathogen’s
reproduction. In this sense, the mosquito with the preference indexed by α nearer to
the value αc would be evolutionarily favored if a beneficial relation exists between

(a) (b) (c)

Fig. 4 Dependence of frequencies at the endemic state on the mosquito’s preference to the infected human,
indexed by the parameter α. Numerically drawn for the linear function χ(L) given by (38), making use of
(34)–(37), (40), and (41) with σh = 0.0084; σm = 0.084; μh = 3.9× 10−5; μm = 0.1; ν = 2.74× 10−3;
ρ = 3.5 × 10−3; Rm = 4.0 (ξc = 0.75); ξω = 0.25; a η0 = M∗

0 /N = 0.2; b η0 = 1.0; c η0 = 5.0. In
each case, the value f ∗

I (resp. f ∗
S ) takes its maximum (resp. minimum) for a specific value of α, say αc
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(a) (b) (c)

Fig. 5 Contour maps showing parameter dependence of the equilibrium frequency of infected human
individuals f ∗

I at the endemic state. Numerically drawn for the linear function χ(L) given by (38), making

use of (34)–(37), (40), and (41) with σh = 0.0084; σm = 0.084; μh = 3.9 × 10−5; μm = 0.1; ν =
2.74 × 10−3; ρ = 3.5 × 10−3; Rm = 4.0 (ξc = 0.75); a ξω = 0.25; b η0 = M∗

0 /N = 1.0; (c) α = 2.0.

For the region of “Natural DFE”,R0 < 1, while for the region of “Controlled DFE”,R0 > 1 andR0 < 1

the mosquito and the pathogen with respect to their fitnesses, whereas the prefer-
ence indexed by α is the behavioral nature of the mosquito even for the non-infected
mosquito individual. We do not argue about this issue in more detail here because such
evolutionary discussion is out of the scope of our modeling study. Nonetheless, it is an
interesting problem in terms of themosquito’s preference according to its evolutionary
meaning.

9 Concluding Remarks

In this paper, we presented a mathematical model of the population dynamics of
mosquito-borne disease transmission, carefully describing its modeling for future
development, since the modeling includes some non-trivial parts for its reasonable
design. Our model takes into account of the effect of mosquito repellent use and
the mosquito’s behavior (i.e., attraction to the infected human), which causes the
mosquitoes’ biased distribution. Our analysis of the model clearly shows that thresh-
olds exist with regard to the efficacy of mosquito repellent use and its utilization rate
in the human population with respect to the elimination of mosquito-borne disease.
Further, the results imply that the suppression of mosquito-borne disease becomes
more difficult as the mosquitoes’ distribution in the human population grows more
biased.

Three types of interventions in epidemic dynamics are considered for the purpose
of protection or control of mosquito-borne (or more generally, vector-borne) disease:
vaccination, reduction in contact rate with mosquitoes, and reduction in mosquito
population size. Use of mosquito repellent or prevention screens is interventions that
reduce the contact rate with mosquitoes. The first type of intervention, vaccination,
itself is, in principle, independent of the others.Vaccinations can be regarded as playing
a role in suppressing the number of infected individuals. Such a vaccinated individual
may be regarded as being identical to a recovered one, as in many previous mathemat-
ical models. Alternatively, from the viewpoint of mean-field approximation applied to
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population dynamics, the effect of vaccination could be introduced as the reduction in
the likelihood of successful infection of disease in the human by the carrier mosquito.
In such a modeling, the effect of vaccination could be expressed as a reduction in the
value of the parameter βh introduced in Sect. 3.3, which denotes the probability of
successful infection of disease per bite by the carrier mosquito. Then, its reduction
corresponds to the smaller value of σh in (29), so that the basic reproduction number
(31) becomes smaller, proportional to the value of σh (i.e., βh).

The third type of intervention to reduce the mosquito population size includes the
use of insecticides (larvicides or adulticides), insecticide-treated nets, or mechanical
reduction in mosquito habitats. The effect of insecticide is to increase the death rate of
mosquitoes. Thus, it could be considered in the death rate as an increase inμm or in the
reproduction rate as a decrease in rm . The effect of adulticides would typically entail
an increase in the death rate, though some types of adulticides may affect and disturb
the reproduction cycle of mosquitoes. The reduction in the reproduction rate by such
an effect could be introduced in the parameter c defined in Sect. 3.5. This effect (to
reduce the value of c) is reflected to the decrease in the intrinsic net reproduction rate
Rm defined in (18) of our model. The inverse value of the rate Rm contributes to the
basic reproduction number R0, as shown by (40) and (41), and related arguments in
Sect. 8. Therefore, the intervention of insecticide use would contribute to the epidemic
dynamics in a nonlinear manner. In contrast, the effect of the mechanical reduction in
mosquito habitats to suppress their population size could be introduced as the smaller
value of K in (38) in our model. Since the contribution of K is proportional to the
basic reproduction number R0 of (40) and (41), the effect of such an intervention
would appear in an easy, tractable manner.

As mentioned above, the model presented in this paper would be adaptable with
extended development to other problems related to mosquito-borne diseases. As an
example of the future direction of this work, we may additionally introduce a specific
characteristic of human behavior with regard to the use of mosquito repellent, as
suggested in Brauer (2017). Humans tend to usemosquito repellent more readily when
themosquito density per human rises. This is because a humanwould bemore likely to
use repellent when the individual is aware of the danger posed by mosquitoes around
him/her, while a human would be more likely to stop using it when the individual
is less aware of the danger. This remark introduces a functional relation between the
utilization rate ω and the mosquito density around each human individual. Then, one
choice would be to model the relation between them such that the utilization rate
of mosquito repellent ω has a functional relation to the mosquito density around the
human individual. Such a function indicates that the mosquito density per human
determines the utilization rate ω of mosquito repellent. In other words, the mosquitoes
total population size is determined by the natural and social environment and has a
feedback relation to the utilization rate ω, or alternatively to the frequency of human
individuals who use mosquito repellent. Another interesting issue about the epidemic
dynamics of mosquito-borne disease is the contribution of such a response of human
behavior to it.

As for our density dependence modeling, we chose the simplest mathematical
structure to construct the model. From the characteristics of the density effect for the
mosquito population, which are mentioned in Sect. 2 about the function χ , we simply
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introduced it in the juvenile population dynamics, because the density effect for the
mosquito population would be significant especially for the juvenile, whereas only
the adult mosquito contributes to the disease transmission. It would seem possible
to use a logistic equation for the adult mosquito population without taking account
of the juvenile population dynamics. However, as mentioned in Sect. 2, the density
effect for the mosquito population would be significant especially for the juvenile. For
this reason, we introduced the juvenile population in our modeling for the mosquito
population dynamics.One of the easiest human interventions to suppress themosquito-
borne disease is to reduce the microhabitats for the mosquito juvenile, though we did
not discuss the effect in this paper. We expect that our modeling would be useful to
develop a model to consider the effect of such a kind of intervention, since it could be
easily introduced with an appropriate modification of our modeling.

As Rock et al. (2014) described, mathematical modeling for infectious diseases has
developed significantly, and the theoretical/mathematical considerations of the mathe-
maticalmodel provide someuseful ideas for practical discussions on public health even
if the model is simple. Further, although such practical use and discussion regarding
public health frequently require a complex modeling above and beyond mathematical
analysis, the mathematical understanding of the skeleton model is essential to discuss
the results obtained from such a model. It would be usually analyzed numerically
with a certain set of parameter values estimated from the real data. As many public
health professionals recognize, many problems in epidemic dynamics await detailed
mathematical/theoretical studies. We expect that the work presented in this paper will
contribute to this area of study.

Acknowledgements The authors sincerely thank to the chief editor and two anonymous reviewers for their
valuable comments.

A Derivation of the Basic Reproduction NumberR0

At first we rearrange the system (30) as follows in the order according to the relation
to the disease transmission:

d fI
dt

= (1 − ξω)σh
fV fS

1 + α fI
ηω − (ρ + μh) fI

d fV
dt

= (1 − ξω)σm
(1 + α) fI(1 − fV)

1 + α fI
− μm fV

d fS
dt

= μh − (1 − ξω)σh
fV fS

1 + α fI
ηω − μh fS + ν(1 − fS − fI).

(45)

Next, we decompose the dynamical terms into two classes in which one shows the
new infection process, and the other does show the other processes of the population
dynamics:

dϕ

dt
= F ( fI, fV, fS) − V ( fI, fV, fS), (46)
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where ϕ := T
[

fI fV fS
]
;

F ( fI, fV, fS) :=
⎡

⎢
⎣

(1 − ξω)σh
fV fS
1+α fI

ηω

0
0

⎤

⎥
⎦ ;

−V ( fI, fV, fS) :=
⎡

⎢
⎣

−(ρ + μh) fI
(1 − ξω)σm

(1+α) fI(1− fV)
1+α fI

− μm fV

μh − (1 − ξω)σh
fV fS
1+α fI

ηω − μh fS + ν(1 − fS − fI)

⎤

⎥
⎦ .

The vector F is for the terms of new infection process, while −V is for the other.
The Jacobian matrices ofF and V about the disease-free equilibrium ϕ0 := T

[
0 0 1

]

are given by

DF (ϕ0) =
⎡

⎣
0 (1 − ξω)σhηω 0
0 0 0
0 0 0

⎤

⎦ ;

DV (ϕ0) =
⎡

⎣
ρ + μh 0 0

−(1 − ξω)σm(1 + α) μm 0
ν (1 − ξω)σhηω μh + ν

⎤

⎦ .

Then, with the 2 × 2 matrices

F :=
[
0 (1 − ξω)σhηω

0 0

]
and V :=

[
ρ + μh 0

−(1 − ξω)σm(1 + α) μm

]
,

the next-generation matrix K is given by FV−1, that is,

K = FV−1 =
⎡

⎣
(1 − ξω)2σmσhηω(1 + α)

μm(μh + ρ)

(1 − ξω)σhηω

μm
0 0

⎤

⎦ . (47)

The theory by van den Driessche and Watmough (2002), van den Driessche and Wat-
mough (2008) says that the spectrum radius, that is, the maximum absolute value of
the eigenvalue of K gives the basic reproduction number R0. Therefore, from (47),
we can derive the basic reproduction number (31).

B Local Stability of the Endemic Equilibrium E+

In this appendix, we consider the local stability of the endemic equilibrium
E+, ( fS, fI, fV) = (

f ∗
S , f ∗

I , f ∗
V

)
uniquely determined by (34)–(37) when it

exists, that is, when R0 > 1 as shown in Lemma 2. Setting ( fS, fI, fV) =(
f ∗
S + x, f ∗

I + y, f ∗
V + z

)
, we can get the following system of linear ordinary differ-

ential equations in terms of the perturbation T
[
x y z

]
around the endemic equilibrium

E+ for (30):
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d

dt

⎡

⎣
x
y
z

⎤

⎦ =

−(μh + ρ)
f ∗
I

f ∗
S

− (μh + ν) (μh + ρ)
α f ∗

I
1+α f ∗

I
− ν −(μh + ρ)

f ∗
I

f ∗
V

(μh + ρ)
f ∗
I

f ∗
S

−(μh + ρ)
1+2α f ∗

I
1+α f ∗

I
(μh + ρ)

f ∗
I

f ∗
V

0 μm
f ∗
V/ f ∗

I
1+α f ∗

I
− μm

1− f ∗
V

⎡

⎣
x
y
z

⎤

⎦ ,

(48)

where we used the relations (34) about E+.
Next, let us consider the following function L = L (x, y, z) constructed by the

solution T
[
x y z

]
of the ordinary differential equations given by (48):

L (x, y, z) := 1

2
(x + y)2 + ρ + 2(μh + ν)

2(μh + ρ)

f ∗
S

f ∗
I

y2 + Q

2
z2, (49)

where we will determine a positive constant Q appropriately in the following argu-
ments. With a positive constant Q, the functionL takes only nonnegative value, and
becomes zero when and only when x = y = z = 0, which corresponds to the endemic
state E+.

Time derivative of L along the solution T
[
x y z

]
of (48) gives the following

equation:

dL

dt

∣∣∣
∣
(48)

= −(μh + ν)x2 − (A0y2 − A1yz + A2z2)

= −(μh + ν)x2 − A0
(
y − A1

2A0
z
)2 + A2

1 − 4A0A2

4A0
z2 (50)

with positive constants given by

A0 = ρ + μh + ν + {
ρ + 2(μh + ν)

} f ∗
S / f ∗

I

1 + α f ∗
I

;

A1 = {
ρ + 2(μh + ν)

} f ∗
S

f ∗
V

+ μm
f ∗
V/ f ∗

I

1 + α f ∗
I

Q;

A2 = μm

1 − f ∗
V

Q.

Hence, if we can choose a positive value of Q such that A2
1−4A0A2 < 0, thenwe have

the time derivative (50) which is always non-positive for any T
[
x y z

]
and becomes

zero for T
[
0 0 0

]
. The formula A2

1 −4A0A2 can be expressed as the quadratic function
of Q, G(Q) := B2Q2 − 2B1Q + B0 with positive constants

B2 = μ2
m

(
f ∗
V/ f ∗

I

1 + α f ∗
I

)2

;
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B1 = μm
{
ρ + 2(μh + ν)

} f ∗
S / f ∗

I

1 + α f ∗
I

1 + f ∗
V

1 − f ∗
V

+ 2μm(ρ + μh + ν)

1 − f ∗
V

;

B0 = {
ρ + 2(μh + ν)

}2
(

f ∗
S

f ∗
V

)2

.

Since B1 > 0 and B2
1 − B0B2 > 0, we find that the equation G(Q) < 0 for a positive

finite range of Q. Therefore, if we choose a value of Q from the positive range, then
the time derivative (50) is always non-positive for any T

[
x y z

]
. Since the largest

invariant set where the time derivative (50) becomes zero is the singleton consisting
of only T

[
0 0 0

]
, the function L becomes a Lyapunov function for the equilibrium

T
[
0 0 0

]
of the dynamical system (48). Thus, by LaSalle’s invariance principle (LaSalle

1976), the equilibrium T
[
0 0 0

]
is asymptotically stable with respect to the dynamical

system (48). Consequently, the endemic equilibrium E+ is locally asymptotically
stable whenever it exists.
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