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The invasion success of a diffusing predator  which changes its diffusion coefficient depending on 
whether the prey exists or not is investigated. The prey is assumed to be immobile and distributed 
in an isolated patch. The isolated patch consists of two kinds of region: prey-existing zone and 
prey-vacant zone. We discuss what relation a heterogeneity of prey distribution has with the 
predator 's invasion success into the patch. Its spatial heterogeneity appears to affect significantly 
the predator 's invasion. In an Appendix we briefly treat an analogous problem involving two 
competing species. 

1. Introduction. In nature, population dispersion is influenced by the spatial 
environmental heterogeneity: the distribution of resources, geography, 
disturbance regime, etc. Patchy structure is an example of such heterogeneity 
that has been attracting many theoretical biologists (Wiens, 1976; Levin, 1986). 

Skellam (1951 ) showed a starting point of mathematical study on population 
dispersion in a heterogeneuous environment by his pioneer work, in which to 
explain a dispersion of muskrat population, he used a diffusion equation 
belonging to the following type: 

?n/?t = •[D(n, x) an/?x]/~?x + F(n, x), 

where n is population density at location x and time t. D(n, x) is the diffusion 
coefficient at location x, generally depending also on population density n. 
F(n, x) is a term related to population growth. He studied the simplest case 
when D(n, x) = D and F(n, x) = rn, where D and r are constants independent of 
both population density n and location x. 

Encouraged by his work, various mathematical studies on the effect of 
heterogeneous environmental structure on population dynamics have been 
developed (see Levin, 1976a,b, 1986; Okubo, 1980, for reviews). Kierstead and 
Slobodkin (1953) and Okubo (1982) studied plankton patchiness using 
diffusion equations of the above type. They studied population persistence in 
an isolated homogeneous patch with the absorbing condition, n= 0, at the 
boundaries of isolated patch, and established a "critical patch size" below 
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which population becomes extinct. In Skellam's case, the critical size is given by 
~x/-D/r (see also McMurtrie, 1978). Further, taking account of the spatial 
environmental heterogeneity within a patch, some other modified one-species 
models have also been studied (for example, Gurney and Nisbet, 1975; Namba, 
1980; Shigesada, 1984). On the other hand, in nature, such patch size effects 
have been reported: for instance, for several montane Hispanolan anoles (Rand 
and Williams, 1969), for a small mammal fauna (Brown, 1971) and alpine 
plants (Harper et al., 1978) in the Nevada mountains. 

Diffusion systems of the above type have also been studied in the context of 
genetics, where, for example, Nagylaki (1975) studied the evolution of clines in 
allele frequency, considering such a heterogeneous environment that contains 
two environmental compartments which are adjacent to each other and their 
environmental parameters which are different from each other (also see 
Roughgarden, 1979). 

Also, as for interacting populations in a heterogeneous environment, a 
number of mathematical approaches have been developed making use of 
diffusion systems of the above type (Levin, 1974, 1976a,b; Steele, 1974a,b, 
1975; Dubois, 1975a,b; Platt and Denman, 1975; Wroblewski et al., 1975; Segel 
and Levin, 1976; Shigesada et al., 1979; Shigesada and Roughgarden, 1982; 
Teramoto and Seno, 1988). In this case, n, D and F are multi-dimensional 
vectors. Pacala and Roughgarden (1982) studied the coexistence condition of 
two competing species diffusing within two adjacent kinds of environments, 
that is, of Nagylaki's type mentioned above. They introduced the environ- 
mental heterogeneity as the difference of carrying capacity, which is assumed 
to be constant in each of two environmental compartments, and derived the 
existence of critical compartment size which determines the possibility of two 
species coexisting in the environment. Also, as for a prey-predator diffusion 
system of the same type, Guo Ben-Yu and Sleeman (1985) studied a critical 
size with respect to two-species coexistence by investigating the stationary 
solution. The biological context of their work is to determine the critical size 
of a patch in order to prevent an outbreak of predator, which is, for example, a 
spruce budworm whose host is a balsam fir. In the same context, there are 
some other mathematical works (Ludwig et al., 1979; Guo Ben-Yu et al., 
1983). 

On the other hand, making use of some spatially discrete systems, Allen 
(1983a,b, 1987) and Seno (1989) considered population dynamics in a multi- 
patchy environment, in which the number of patches is an important 
parameter. On a spatially discretized reaction~liffusion system of the above 
type, Allen (1987) discussed the "critical patch number" which corresponds to 
the critical patch size in the spatially continuous case. With a similar type of 
multi-patch system, Seno (1989) quantitatively discussed the effect of a 
"singular" (different kind of) patch on population persistence, and showed that 
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the location of such a singular patch has an important contribution to 
population persistence in the system. 

In this paper a Lotka-Volterra type of prey-predator system will be 
analysed, We shall focus on the predator's invasion success into a spatially 
heterogeneous distribution of prey. It is necessary for the coexistence of prey 
and predator. How a prey's heterogeneous distribution contributes to the 
predator's invasion success will be especially investigated. Two simple types of 
its heterogeneous distribution in an isolated patch will be considered: existence 
of a prey's aggregation and existence of a gap without any prey. Since the prey is 
assumed immobile, the former case may correspond to a gregariousness of 
plant for instance. The latter may correspond to a spatial gap caused by an 
ecological disturbance regime. The predator is assumed to diffuse Within the 
patch. At the edge of patch we shall consider both cases of the absorbing and 
the reflecting boundary conditions, and compare the results. 

2. Statement of Model. We consider the following prey-predator system on a 
one-dimensional interval f~ = [ - L / 2 ,  L/2]: 

OH 6 P 02H 
~t - ( ) ~fx 2 + 7 f l P H - p H  on (1) 

~t e 1 P - f l H P  

P = 0  on I o 

on Ip (2a) 

(2b) 

5(p)={~6~ on I o 
on Ip, (3) 

where f~ = IpwI o and IpnI  o = ~ .  In this system, prey is assumed to be able to 
exist only in a limited region Ip, the "prey-existing zone", of an isolated patch 
fL I o is called the "prey-vacant zone". The other symbols are defined as follows: 

H(x ,  t): population density of predator at a position x, time t 
P(x,  t): population density of prey at a position x, time t 
6(P): diffusion coefficient of predator, depending on the existence of prey 

as in equation (3) 
7: contribution rate of predation to population growth of predator 
fl: predation rate 
p: intrinsic death rate of predator 
e: intrinsic growth rate of prey 
x: carrying capacity of prey, 

where all parameters are positive. We shall assume that the predator's diffusion 



560 HIROMI SENO 

coefficients, 8 o and 6p, are constants independent of space and time. This is a 
Lotka-Volterra type of prey-predator system. The prey is assumed immobile. 
Thus, this system may make us imagine a plant-herbivore relation. In a case 
when prey has a very small diffusion coefficient compared with that of 
predator, the following analysis may be applied as the first step in the singular 
perturbation analysis on a system (as for singular perturbation analysis; for 
example, see Nayfeh, 1973; Mimura et al., 1979a,b). Here we shall focus on our 
system without mentioning any such advanced case. 

Since this system includes a lot of parameters, it is convenient to non- 
dimensionalize it by the following change of variables: 

X -  x .  lot  " P f iH = ~ , T = ~ , P = - - ; H  =_ 
K 8 

eL 2 7filcL 2 

A=-~0-0 ; F~- 8o 
8(P) 8p P "A(P)= ;Ap= . 

; B = - 7 ~ ,  6o 6o 

Then, we obtain the following system with dimensionless variables: 

0H A(P) 02H 
S T -  ~X ~ + F ( P - B ) H  on ~ (4) 

8P 
- A ( 1 - P - H ) P  on |p (5a) 

8T 

P~-O on Io (5b) 

1 on I o 
A(P)= Ap on Ip, (6) 

where ~ has the dimensionless length 1. 
In this paper we assume that the region ~ consists of three compartments as 

shown in Fig. 1. S has the length k(0 ~< k ~< 1 ). JL and JR have the length c(1 - k) 

c(1-k) ,ii~ k biq (1-c)(l-k) 

JL S JR 

Figure 1. Considered interval f~ which consists of J L, S and J~, where O ~ k ~  1 and 
O~c~l. 
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and ( 1 - c )  (1 -k ) ,  where, without loss of generality, 0~<c~<�89 Iv and I 0 are 
alternatively assumed to be S or JLVJ R . As for the case when c = 0, there have 
been some works carried out to consider two-species dynamics in such an 
environment (Ludwig et al., 1979; Guo Ben-Yu and Sleeman, 1985; Pacala and 
Roughgarden, 1982). 

We shall linearize equations (4) and (5) around an equilibrium [H*(X), 
P*(X)], and investigate the condition of predator's invasion success into the 
equilibrium environment. Let us define functions h(X, 7") and p(X, 7) as small 
perturbations from an equilibrium (H*, P*): H(X, T)=H*(X)+h(X, T); 
P(X, T)= P*(X)+ p(X, T). 

The equilibrium (H*, P*) = (0, O) is always globally unstable. Indeed, the 
linearized system around this equilibrium becomes: 

~h ~2h 
~ = A ( p ) ~ - F B h  on ~ (7) 

Op 
- Ap on |p ( 8 a )  

,~T 

p - 0  on I o, (8b) 

where p obviously increases as Tdoes. Note that, in our system, prey is not able 
to exist on I o. Therefore, we can always assume the condition (8b). In other 
words, we shall not consider any perturbation of prey on lo, where prey density 
is assumed to be zero. Since the local instability of equilibrium means the global 
instability of it, this trivial equilibrium is globally unstable. If prey also diffuses, 
the linearized equation corresponding to equation (8) becomes a Skellam type 
of diffusion equation, and the equilibrium (H*, P*)--(0,  0) can be locally 
stable under a condition (Skellam, 1951). In this paper, we do not consider this 
case further. 

The equilibrium of type (H*, P * ) =  (O*(X), 0), where 0 <  Sup{O*(X)}, 
x 

does not exist because, in our system, the predator's population growth relies 
only on the predation, as seen in equation (4). Without prey, predator cannot 
persist. Thus, in this system, predators alternatively coexist with prey or 
become extinct. 

We shall investigate the necessary and sufficient condition of a predator's 
invasion success into an environment where prey has a stationary distribution. 
To analyse it, we shall linearize equations (4) and (5) around the equilibrium 
(H*, P*)= (0, C*(X)), where C*(X) is given by: 

C*(X)={~ on I r 
on ! o . (9) 
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This is the prey's stationary distribution with no predator. The linearized 
system is: 

Oh OZh 
OT = A(p) ~X ~ + tP(X)h on ~ (10) 

0p 
O T = - A ( p + h )  on Ip ( l la)  

p = 0  on I o ( l lb)  

W(X)=~F(1-_B) on Ip (12) 
(--1"8 on I o. 

Note that p ~ 0  as T~oo if h--,0 as T---,oo, because, as easily seen from 
equation (lla),  Ipl decreases with the order exp( -AT)  when h becomes 
sufficiently small. 

It is clear that predator fails to invade into the environment 
(H*, P*)=(0,  C*(X)) if I < B ,  because, if so, the predator's dimensionless 
growth rate W(X) is negative everywhere in the patch. Indeed, since the 
parameter B corresponds to the ratio of death to birth of predator in the prey- 
existing zone at the moment of its invasion in it or when the predator is very 
rare in it, 1 < B means that the predator's death is beyond its birth in it. Hence, 
hereafter we shall assume that B~< 1. Then, W(X) is non-negative in the region 
Ip and negative in I o. 

3. Condition of Predator's Invasion Failure. For the two cases shown in Fig. 2, 

L t lo t L 
t) f~ 

CASE I CASE II 

Figure 2. Schematical figures of equilibrium state (H*, P* )=  (0, C*(X)), where 
C*(X) is given by (9). 

cases I and II, the following is the sufficient and necessary condition of 
predator's invasion failure for the equilibrium (H*, P*) = (0, C* (X)): 

Case I: when lp=S and IO=JLWJ R 

(i) with reflecting boundaries 
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( E < 1 -kk 

feoth(l~-'l'f,a)"-}'-RApftanh(~-~M)~ --N/[R]Ap'cOt{l~ k--~E} 
(ii) with absorbing boundaries 

E<I-- k 
k 

ftanh(~-~gm) q-RApfcoth(~-~gm)>/ -\/[RlAp'cot{~--kkgE}; 

Case II: when lp=JLWJ ~ and Io=S 
(i) with reflecting boundaries 

M<Sup{z[ 

1 
E< 

2(1-c) 

for O < V x < z < - -  
2(1 - c ) '  

X/~p'g(x)" c o t h D z M x / ~  [ 9(x)] ~< Ore(X)} 

Qre(X ) = ( RR~-x 1 
(ii) with absorbing boundaries 

{ M<Sup{zl 

ApX 
- -  - -  X ] "  E " f t a n ( ~ X )  --[- ~-Lot(~x) / 

1 E< 1--c 
1 for O<Vx<z < - -  

1 - - c '  

-x/Ap " g(x)" coth[nMx/~ g(x)] ~< Qab(X)} 

Qab(X)=(R~--X 1 x)'E'f~o&X)+Apx ~-f,..(~x) 
1 x 2 

g ( ~ )  = 1 R E 2" 
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Here we use the following notation: 

E -  m l - k /  ,.M=k~;R_, _ 1- -B  
rc "V Ap rc B 

1 

J~ =- Oic ) + O { (1 - c)z}  " 

The above conditions can be obtained by the eigenvalue estimation on 
equation (10) (Appendix A). 

4. Analysis. In this section, making use of the above conditions, we shall 
deduce some results about the predator's invasion into (H*, P * ) =  (0, C*(X)). 
Cases I and II will be discussed separately. 

Case I. In this case, S in Fig. 1 is the prey-existing zone and JLwJ R is the 
prey-vacant one. It may be imaged that there is a gregariousness of plant in an 
isolated region. From the above condition for the predator's invasion, we can 
obtain Fig. 3, in which regions for the invasion's success and failure are shown 

(a) 
F 

i ,' :i 
, 1 /  / t i  success / / / i  

/ / I 
, . / " / 3 , / '  I 
I / / i 
, / ~ /  i 
, / , i  i 
i/Af f / ' "  FAIL ] ( - - !  

0 B~ 1 

(b) 

Fc 

F 

success ,1,"'/j 
111 V / l ~  

j ~  / / y  I 
1 1 / , ' I /  

FAIL i 
. - ] 

i 

o 1 

Figure  3. B o u n d a r y  curves in the  F B space,  wi th  respect  to the  p r e d a t o r ' s  invas ion .  
(a) The  reflecting b o u n d a r y  case.  (b) The  a b s o r b i n g  b o u n d a r y  case. T h e  curves  2 
and  2' show critical b o u n d a r i e s  for a value c (0 < c < 1 ). In  (a), curve  1 is for c = �89 3 is 
for c = 0. In  (b), curve 1' is for c = 0 in case I, a n d  for c = �89 in case II; 2' is for c = �89 in 
case I and  for c = 0 in case II. B c = k in case I and  B c = 1 - k in case II. F c is respect ively 

given by equa t i ons  (14) and  (17) in cases I a n d  II. 

in the F - B  space. Figure 3a is for the case of the reflecting boundary,  and 
Fig. 3b for the case of the absorbing boundary.  Between the two boundary 
cases, the contribution of the location of the prey-existing zone S in the patch is 
characteristically different as follows: 

CHARACTERISTIC I 1. The predator's invasion is more likely to Jail as the 
location of prey-existing zone gets: 

more central in the patch when the patch boundary is reflecting; 
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nearer to the edge of patch when the patch boundary is absorbing. 
This can be proved by the c-dependency of the condition for the invasion 

success. The contrasting results between the two boundary conditions above 
indicate a significant effect of population dissipation at the boundary on the 
predator's invasion. However, when the prey-existing zone is sufficiently rich 
(or poor), it is likely that the predator's invasion success (or failure) is 
independent of its location. 

There is a stronger condition of the predator's invasion success in the 
reflecting boundary case, as seen in Fig. 3a. 

CHARACTERISTIC I2. In the reflecting boundary case, if 
B~<k, (13) 

then the predator's invasion succeeds independently of any other conditions. 
Therefore, if the prey-existing zone is wide enough to satisfy condition (13), 

the invasion of predator succeeds independently of the other parameters. This 
condition (13) can be translated as follows: in the moment of invasion, the 
predator's population growth in the prey-existing zone overcompensates its 
population death in the whole patch. Indeed, in such a moment, condition (13) 
can be approximately rewritten to: 

f n p H  dx<~ fuTflPH dx, 

where P is approximately a constant ~: in the prey-existing zone and 0 in the 
other. However, it should he noted that, in fact, the distribution of predator 
gradually changes by the specific interaction and the diffusion process as well as 
the distribution of prey changing in the prey-existing zone. Thus, the above 
rewriting is approximately valid only at the moment of invasion of the predator 
or only when the predator's density is very low throughout and its distribution 
is almost uniform. 

In the absorbing boundary case, there is also a stronger condition. 

CHARACTERISTIC I3. In the absorbing boundary case, if 

~ / A p  

c (1 -c )  (1 - k ) x ~ p r  
(1 - k ) ~  ( ~Ap~ 

(14) 

then the invasion fails independently orB (see Fig. 3b). 
This result can be obtained when B ~ 0  for the condition of invasion failure. 
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The condition (14) is principally on the environmental heterogeneous structure 
in the patch. We can say that the effect of population dissipation at the patch 
boundary brings it. Moreover, the population dissipation at the boundary 
brings another particular aspect. 

CHARACTERISTIC 14. In the absorbin9 boundary case, if  

1 < Ap, (15) 

then there is a unique optimal size k (0 < k < 1) of  prey-existin9 zone for the 
predator's invasion success. Otherwise, the predator's invasion is the most likely 
to succeed when k = 1, this is, when prey is distributed everywhere in the patch (see 
Fig. 4). 

F 

UCCESS 

(1_.) 
FAIL 

i k 
0 kop, 1 

Figurc 4. Boundary curves in the F-k space, with respcct to the predator's invasion 
in case I. Two boundarics are schematically shown for I < Ap and for Ap ~ i. Whcn 

I < Ap, the boundary curve has a minimum at k = kop t. 

Here the word "optimal" means that the parameter region expanded by the 
parameters except for the size of the prey-existing zone is the widest for the 
predator's invasion success. The optimal size is less than the size of the whole 
patch. Unless condition (15) is satisfied, the invasion is most likely to succeed 
when the prey-existing zone expands throughout the patch. Condition (15) 
means that the diffusion coefficient in the prey-existing zone is greater than that 
in the other zone. If the predator behaves as in condition (15), it is better for the 
prey, in order to prevent or at least modify the predator's invasion, that it 
distributes more in the patch even if the total population may reduce, or that it 
distributes more widely. The latter strategy of prey can be regarded as relying 
on the effect of predator population dissipation at the boundary. However, if 
the predator changes its strategy so that it does not satisfy (15), then the prey's 
wider distribution becomes rather better for the predator's invasion success. In 
this case, prey may evolutionarily have to become distributed in a more 
concentrated fashion. As a whole, the prey's concentrated, that is, patchy 
distribution is evolutionarily rather adaptable. Rigorously speaking, in such a 
co-evolutionary process, since the available strategy may be restricted for prey 
and predator, depending on their evolutionary capability, there may be an 
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evolutionarily stable strategic stage between them (that is an "ESS": as for this 
concept, for example, see Maynard Smith, 1982). 

Case IL In this case, S in Fig. 1 is the prey-vacant zone and JLUJR is the 
prey-existing one. There is a gap without any prey in an isolated patch. The gap 
may be imaged as that by an ecological disturbance. From the obtained 
condition for the predator's invasion, we can investigate the parameter 
dependency of the invasion and arrive at qualitatively similar results with those 
for case I. 

As for the contribution of the location of the prey-vacant zone to the 
predator's invasion, we can obtain the following. 

CHARACTERISTIC II  1. The predator's invasion is more likely to fail as the 
location of prey-vacant zone gets more central in the patch, independently of 
whether the patch boundary is reflecting or absorbing. 

We remark that, in the absorbing boundary case, the tendency is contrary 
between cases I and II. However, depending on the environmental richness in 
the patch, the location of prey-vacant zone loses its contribution to the 
predator's invasion. As in case I, there is a stronger condition for each 
boundary case. 

CHARACTERISTIC I I2 .  In the reflecting boundary case, if 

a ~< 1 - k ,  ( 16 )  

then the predator's invasion succeeds independently of any other conditions. 

CHARACTERISTIC II3.  In the absorbing boundary case, if 

_ 1 k F (17) 

5. A Generalization. Results obtained in this paper are applicable to a general 
family of prey-predator systems. Let us consider the following type of such a 
system: 

then the invasion fails independently of B. 
This is obtained when B-~0 for the condition of invasion failure. 
In case II, the absorbing boundary does not bring any particular 

characteristics corresponding to Characteristic I4. Instead, the narrower the 
prey-vacant zone, the more likely the predator's invasion success. 
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?H ?2H 
?t - 8(P) ?x ~ + F(P, HjH on E~ (18) 

~P 
- G ( P , H ) P  on lp (19) 

8t 

P=O on I o, 

where 6(P) is given by (3). The diffusion term in equation (18) is the same as in 
equation (1). F and G are functions of P and H such that: 

(A) Fand  G a r e  C 1 on [0, + ;c)x  [0, + ~ ) ;  
(B) G(K, 0)=0; K has a unique finite positive value; 
(C) 0<G(0, 0); 
(D) ?G/SH<O; 
(E) 
(F) F(0, H)<0;  
(G) F(K, 0)~>0; 
(H) 0 ~< 8F/SP. 

These assumptions define a family of F and G. Focusing on the predator's 
invasion, we can obtain a formal linearized system for equations (18) and (19) 
as we did in the previous section. Then it appears that the equilibrium 
(H*, P*)=(0,  0) is globally unstable due to assumption (C). Besides, 
assumption (F) assures that an equilibrium such as (H*, P * ) =  (qS*(x), 0) does 
not exist, where 0<  Sup.~{qS*(x)}. With linearization around the equilibrium 
(H*, P* )=  (0, C*(x)), we obtain: 

?h ~2h 
8t - g~(p) ~ + F(C*(x), O)h on ~ (20) 

St- [ \?Hi o n  I, (21) 

P - 0  on 1 o, 

where 

C , ( x ) =  {0 K on |p 
on 1 o. 

In equation (21), { )* means the value for {H*, P*). Equation (20)is practically 
independent ofp and corresponds to (10). From assumptions (D) and (E), p ~ 0  
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as t---, oo if h - , 0  as t-~ oo. Through the comparison between equations (10) and 
(20), we can find the following correspondences: 

F(O, O) 
B ~  (22) 

F(O, O)- F(K, O) 

F~--~F(K, O)- F(O, 0). (23) 

Assumptions (F) and (G) assure that the right-hand sides of the above 
correspondences are positive. Moreover, assumption (G) corresponds to B < 1. 
These correspondences can afford us to apply those results obtained for 
equations (1) and (2) to the system (18) and (19). 

As for those results with respect to the position of lp and 1 o for equations (1) 
and (2) they are also the same for equations (18) and (19), because they have 
been obtained for any fixed set of parameters except for c and k. Further, for 
equations (18) and (19), it is likely that there may be a unique optimal size k of 
prey-existing zone for the predator's invasion success when 60<6 ~ as 
mentioned in Characteristic I4. 

As a whole, our results for equations (1) and (2) can be reliably extended for a 
more general system than (18) and (19). Since our main interest is in 
equations (1) and (2), we shall not consider further the system of (18) and (19) 
in this paper. 

6. Discussion. We have analysed the relation between a prey's heterogeneous 
distribution and its predator's invasion success. It was shown that the spatial 
structure of prey distribution seriously affects the predator's invasion. 

In case I when prey has a unique gregariousness, if the predator does not leak 
from the considered isolated region (i.e. the boundary is reflecting), the 
predator's invasion is more difficult as the gregariousness becomes more 
centrally located in the region. If the dissipation of the predator's population is 
hard at the boundary of the region (i.e. the boundary is absorbing), the 
invasion is more difficult as the prey gets distributed closer to the. boundary. 
This result shows that the predator's invasion is influenced by the spatial 
position of the prey's gregariousness. However, when the quality of 
gregariousness is sufficiently rich or poor, the invasion succeeds or fails 
independently of the location. In such a case, in order to prevent the predator's 
outbreak, a reduction of its size may be effective, which makes its quality 
poorer. In the reflecting boundary case, it may also make the reduction more 
effective that it was for the part near to the boundary of the considered isolated 
region. This is because, after such a reduction, the position of gregariousness 
corresponds to having moved more centrally in the region. In the absorbing 
boundary case, involving the effect of population dissipation at the boundary, 
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an+interesting feature is revealed: if the predator behaves such that it disperses 
faster in the prey-existing zone than in the prey-vacant one, there may be a 
unique sizeof prey-existing zone that makes the predator's invasion more likely 
to succeed. In such a case, to prevent the predator's outbreak, the 
gregariousness must be reduced or expanded in size. In the latter case, however, 
the wider distribution of prey can improve the predator's invasion success if the 
predator switches its behavioural strategy to disperse faster in the prey-vacant 
zone than in the prey-existing one. Therefore, as for the prey's distribution, the 
centrally concentrated patchy one is rather adaptable as a whole. Also in this 
case, the reduction of the part nearer to the boundary of the considered region 
is effective in preventing the predator's outbreak. In detail, however, such a 
reduct ion of gregariousness may affect the prey's reproductivity to make it 
become extinct. Thus, in reality, the degree of reducing the gregariousness 
should not be imprudently selected. 

On+the other hand, case II considers when the prey distribution had a spatial 
gap, for example, created by an ecological disturbance regime. Making use of 
our results, we can argue the effect of position and quality of such a gap on the 
predator's invasion. Analysis of the position concludes that the invasion is 
more likely to fail as the gap becomes located more centrally in the considered 
isolated region, independent of the boundary condition. According to this 
result, if defoliation is projected to prevent the outbreak of an insect in an 
isolated region, the effective defoliation has to take place in a middle part of the 
region. Of course, also in this case, the position of the gap makes no 
contribution to the predator's invasion if the prey-existing zone is sufficiently 
rich or poor. Besides, the predator's invasion becomes more difficult as the gap 
gets wider. Therefore, since a wider gap makes the quality of the prey-existing 
zone poorer, a sufficiently large gap prevents the predator's invasion, 
independently of its location. A gap sufficient to prevent the outbreak of 
predator has the smallest size when it is created in the centre of the considered 
isolated region. 

The spatially heterogeneous distribution treated in this paper is one of the 
simplest types of mathematical models. However, the results show some 
interesting features to consider the effect of such heterogeneity on population 
dynamics. A spatial environmental structure was shown to significantly affect 
the predator's invasion of a prey-predator system. 

By the way, this type of analysis can be applied to a competing two-species 
system, which corresponds to that investigated by Pacala and Roughgarden 
(1982). It is likely that some new features may be obtained by it (see 
Appendix B). 

The spatial environmental structure is one of the environmental factors 
which can be easily changed by some artificial regimes. Whether the purpose of 
such an artificial change is to stabilize an ecosystem to conserve species or to 
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eliminate the immigration of a species to protect a present ecosystem, our 
results would give an implicit warning to make such a change with sufficient 
care to the spatially environmental structure around where it is done. Without 
such care, a spatially artificial change of environment might do serious damage 
to the present ecosystem. Any environmental project should be carried out with 
as much research as possible on the relation between the present ecosystem and 
the spatial environmental structure around it, such as those in Geographical 
Ecology (for instance, see MacArthur, 1972). It is expected that this paper will 
give some stimuli to such research. 
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A P P E N D I X  A 

Instead of equation (10) itself, for convenience, we consider the following general kind of one- 
dimensional diffusion system (see Fig. 1): 

On/&=cS[d(x) On/Ox]fl?x+r(x)n on f~ (AI) 

an+fld(x)~n/3x=O on 3fl (A2) 

d(x)= for x e S  

r(x)=fre for x e J  L, JR 
for x e S  ' 

where "n" is population density at point x, time t. d(x) is the diffusion coefficient which is constant 
in each o f J  L, S, and Jg:  de, d~, d e. r(x) is the intrinsic growth rate which is also constant in each 
region: re, r,, r e. At the boundary 0k ,  condition (A2) is assumed, and we shall investigate only 
two special cases: (i) the reflecting boundary case (i.e. c~ =0),  (ii) absorbing boundary case (i.e. 
fl = 0). With the following results, we can easily derive the corresponding result for equation (10). 

Since this system is linear, the population becomes extinct or increases infinitely at the limit 
t ~  oo. There is no stationary distribution except for the zero-solution. 

Obviously, the population becomes extinct if the intrinsic growth rate is negative throughout 
1"~. Let us assume that 0 < max(r e, r~). Moreover, in the reflecting boundary case, the population 
never becomes extinct if the growth rate is non-negative throughout 1'~. Thus, we shall assume 
min(re, r , )<0  in the reflecting boundary case. However, in the absorbing boundary case, even 
though the growth rate is positive throughout, population extinction is likely to occur. This is 
due to the population leakage from the boundary of patch. Equation (A1) can be solved by 
means of the variable separation method. That is, the solution can be written in the following 
form: 

+co 

n(x, t )=  ~ q)j(x)'exp(2/), (A3) 
j = O  
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where q~flx) is thej th  eigenfunction depending on thej th  eigenvalue 2~ of our system. Eigenvalues 
of our system are distinct and all real because the system is regular and self-adjoint (Berg and 
McGregor ,  1966). If all eigenvalues are negative, as easily seen from equation (A3), the 
populat ion becomes extinct at t--+oo independently of its initial distribution. Estimating the 
eigenvalue 2~, we shall derive the necessary and sufficient condit ion that  all eigenvalues are 
negative. If at least one eigenvalue is positive, the populat ion increases infinitely. 

In order to derive the condition that  all eigenvalues are negative, at first, we shall obtain the 
characteristic equation which determines eigenvalues, making use of boundary  conditions of 
and continuity condit ions at discontinuous boundaries between ,1L and S, and between S and .1R . 
Next, by investigating the characteristic equation, we shall derive the search condition. The 
method of analysis is basically the same as that  of Nagylaki  (1975). 

Reflectin9 boundary case. In this case, As is given as a root 2 of the following characteristic 
equation: 

I ~s d s "cot{kL# s} = {(re-r.;  ) d j p  e d e - l , "  d~} ../~. {(1 - k ) L l ,  ~} +l  ~e d e ..Lot{ (1 - k ) L p e } ,  (A4) 

where 

~ e = ~  
lts= x / { r~-r , ,  + d,, ' (t, el21/ds 

fa , (Z)=[ tan{c-z}  + t a n l ( l - - c ) - z } ]  ' 

J~o,(Z)=[cotl~c'z} + c o t [ ( l - - c ) ' z } ]  ' 

For  convenience, we shall also define the following: 

f,,a.h(z) = [ t a n h l c ' z l  + tanh{(1 - c)- z}] 1 

.f~ot.(z)=[coth{c'z} +coth{(1 - c ) - z } ]  ' 

The characteristic equation (A4) has an infinite number of discrete roots with respect to pe. 
Hereafter we shall use the following dimensionless variables: 

D = de/d~ ; R = re/r ~ 

M =  (kL/~),/ lr~l/d~; E =  { t l - -k  )L/rr}x/lr~i/de. 

The existence of positive root 2 of equation (A4) can be estimated, and consequently the 
necessary and sufficient condition of non-existence of positive root 2 can be derived: 

(i) r, < O < r  e 

E<�89 
M<sup={z I for 0 < V x < z < � 8 9  x/D'9(x) 'coth{~zMx// lRl 'q(x)}<<.Q,e(X)}  

(ii) r e < 0 < r  , 

Q~(x)  = E{ ( R -- 1)/ Rx  - x} " ~ a n ( 7 ~ X ) - I -  ( Dx/  E) - f~ot(rrx ) 

9(x) = 1 -- I / R -  x 2/E2 

~ M <  l 
�9 . ~  / (fta,h(TzE) + RD " [coth(nE)-.~ X~ [ RI D - cot{ zcM}. 
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Absorbing boundary case. The characteristic equation is 

-I~S d s ' c o t { k L # S } = { ( r e - r s )  d J l d  d e - # ~  d~} . f co t { (1 -k )Lg~}+#~ de . f tan{ (1-k )L l~} .  (A5) 

We use the same notation as before. From equation (A5), the condition for non-existence of 
positive root 2 can be obtained: 

(i) r s < 0 < r  ~ 

E <  1/(1 --c) 

M<supz{z I 

(ii) 0~<re, rs 

(iii) r e < 0 < r  s 

for 0 < Vx < z < 1/(1 - c), - x / D  .g(x) .  coth{nM ~x/~" g(x)} ~< Q.b(x)} 

Q~b(X) = E { ( R - -  1) /Rx -- x}  "f~ot(nx) + (Dx/E)"fta.  (nx) 

g(x) = 1 -- 1 / R - - x 2 / E  2 

E <  1 
M < I  

.foot(hE)-- R D  "fa.(rcE)~ x ~ "  cot {riM} 

M <  1 

fcotla(TcE) q- R D  "ftanh(gE) < x / I  R I D  cot{riM}. 

The results obtained in the main text are easily derived from the above results, considered the 
correspondence between equations (AI) and (10). 

A P P E N D I X  B 

In this Appendix, applying our method of analysis, we treat a competing two-species system 
which corresponds to that investigated by Pacala and Roughgarden (1982): 

(3N1/& = D1 ~ 2 N1/Ox 2 + r 1 (1 - N 1/K 1 -- ~ 12 N2/K1 )N1 (m) 

ON 2/ ~t -~ 4?[0 2 (x) (~ N2/63x]/(~x -~- r 2 {1 --  N 2 /  K 2 (x) -- ~2 a N 1 / K 2  (x)} N 2 (B2) 

D2(x)=fO2e on JL and JR (B3a) 

(D2s on S (B3b) 

K 2 ( x ) = f K 2 e  on JL and JR (B4a) 

(K2~ on S, (B4b) 

where gL S, JL, and JR are defined as before. Other symbols are defined as follows: 

Ni(x, t): 
D~ : 
D2(x): 
r i : 

population density of species i at a position x, time t 
diffusion coefficient of species 1, a positive constant independent of position 
diffusion coefficient of species 2, depending on position as (B3) 
intrinsic growth rate of species i, a positive constant independent of position 
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K 1 : carrying capacity of species 1, a positive constant independent of position 
K2(x): carrying capacity of species 2, depending on position as (B4) 
cgf coefficient representing inter-specific competition effect. 

Species 1 is assumed to be totally insensitive to the environmental heterogeneity in the patch. 
Our following analysis corresponds to the analysis on finding (I) in Pacala and Roughgarden 
(1982). They obtained the following result: "The invasion of species 2 succeeds if the suitable 
region is larger than a threshold minimum." 

The condition of invasion success of species 2 into such an environment is considered where 
only species 1 exists, taking its stationary distribution in the patch. The reflecting boundary is 
assumed, when the stationary distribution of species 1 is uniform in the patch: N*= K 1 . Pacala 
and Roughgarden (1982) analysed only the reflecting boundary case. The linearized system 
around the equilibrium point (N*, N*)= ( K 1 , 0 )  is given by: 

Onl/St = D 1 82n~/Sx2--r lnl  - ritz12/'/2 (B5) 

~n2/St = 0[D2(x ) ~rt2/Sx]/~x + S(x)n 2 (B6) 

S(X).~Se-=r2(I-~z21K1/K2e) on JL and JR 
/ 

[Ss=ra(1-~21K1/Kzs  ) on S. 

As in Pacala and Roughgarden (1982), it is assumed that Kz~/Kl<C~zl<Kzs/K1. This 
assumption means that the region S is "suitable" for the invasion of species 2 but the other is 
"unsuitable" for it, in terms of the possibility of its invasion success in the absence of diffusion. 
Note that n 1 ~ 0  as t-~ oo, because equation (B5) has only negative growth terms. Therefore, the 
perturbation of species 1 always dumps down and the distribution of species 1 returns to N~'. 

Our analysis can show that the invasion of species 2 is more likely to fail as the suitable region 
gets more centrally located in the patch. Therefore, we find that Pacala and Roughgarden (1982) 
investigated the case when the invasion,of species 2 is the most likely to succeed with respect to 
the location of the suitable region. Thus, even if the size of the suitable region is larger than the 
threshold minimum given by their analysis, it is possible that the invasion fails in our system, 
depending on the location of the suitable region. 

k 

LisuccEss~/]i 

L 
o ~o ~ o ~ ,  

K~ K~ 

(a) 

L 

0 K~-~ ~ %~ 
Kl K 1 

(b) 
Figure 5. The parameter region of invasion success of species 2 for a fixed set of other 
parameters: (a) in the , z x - k  space; (b) in the c~21-L space. The arrow indicates how 
the curve moves as c increases from 0 to �89 The critical curve by Pacala and 
Roughgarden (1982) is always below the lowest critical curve for any size of suitable 
region. In (a), the top curve in the region of invasion success is given by 
equation (B7) in the text, and the bottom curve is a critical curve for a fixed set of 
other parameters. In (b), the critical curve has the asymptote 0~21 =K2s/K 1 . The 
critical value c~ c given by equation (B8) increases from K z J K  ~ to Kzs/K ~ as k 

increases from 0 to 1. 
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Further we can find a critical relation: 

K2s(0{21 - K 2 e / K 1  )/{0{21 (1 -- KzjK2,)} ~ k. (B7) 

As ~21 changes from K2e/K 1 to K2s/K1, the le•hand side of condition (B7) monotonically 
changes from 0 to 1. If the size k of the suitable region satisfies relation (B7), then the invasion 
succeeds independently of the other parameters. As ~21 changes from K2e/K 1 to K2s/K 1, the 
invasion of species 2 is less likely t o succeed. And it succeeds for any ~21 less than the following 
critical value, say 0{c: 

(~c ~ {k(K1/K2s)  -~- (1 - k )  ( K  I /K2e)} - 1, (88)  

~ increases from K2e/K 1 tO K2s/K 1 as k increases from 0 to 1. On the other hand, it can be shown 
that, with a21 beyond ec, there is a critical size of the whole patch. Only when the patch size is 
greater than the critical size, does the invasion of species 2 succeed. Consequently, we get Fig. 5. 
Figure 5a shows that the size effect of the suitable region is significant when ~2: is small; that is, 
when the competition is mild between two species. Moreover, the effect of competition is more 
sensitive when the suitable region is large than when it is small. Figure 5b shows that the invasion 
of species 2 succeeds independently of the patch size if the competition is milder for species 2 than 
a critical degree. 

L I T E R A T U R E  

Allen, L. J. S. 1983a. Persistence and extinction in Lotka-Volterra reaction-diffusion equations. 
Math. Biosci. 65, 1-12. 

Allen, L. J. S. 1983b. Persistence and extinction in single-species reaction-diffusion models. Bull. 
math. Biol. 45, 209~27. 

Allen, L. J. S. 1987. Persistence, extinction, and critical patch number for island populations. J. 
math. Biol. 24, 617-625. 

Berg, P. W. and J. L. McGregor. 1966. Elementary Partial Differential Equations. San Francisco: 
Holden-Day. 

Brown, J. H. 1971. Mammals on mountain tops: nonequilibrium insular b]ogeography. Am. 
Nat. 104, 547-559. 

Dubois, D. M. 1975a. Simulation of the spatial structuration of a patch of prey-predator 
plankton populations in the Southern Bight of the North Sea. Proc. Liege Colloq. Ocean 
Hydrodyn. 6th Mere. Soc. Roy. Sci. Liege VII, 75 82. 

Dubois, D. M. 1975b. A model of patchiness for prey-predator plankton populations. Ecol. 
Modelling 1, 67 80. 

Guo Ben-Yu and B. D. Sleeman. 1985. Spatial patterning of the spruce budworm in the presence 
of defoliation. In: Lecture Notes in Mathematics, Vol. 1151, B. D. Sleeman and R. J. Jarvis 
(Eds), pp. 192-203. Berlin: Springer-Verlag. 

Guo Ben-Yu, A. R. Mitchell and B. D. Sleeman. 1983. Spatial patterning of the spruce budworm 
in a circular region. UDDM Report DE 83-5. 

Gurney, W. S. C. and R. M. Nisbet. 1975. The regulation of inhomogeneous populations. J. 
theor. Biol. 52, 441M57. 

Harper, K. T., D. C. Freeman, Ostler and L. G. Kikoft. 1978. The flora of Great Basin mountain 
ranges: diversity, sources and dispersal ecology. Great Basin Nat. Mem. 2, 81-103. 

Kierstead, H. and L. B. Slobodkin. 1953. The size of water masses containing plankton blooms. 
J. mar. Res. 12, 141-147. 

Levin, S. A. 1974. Dispersion and population interactions. Am. Nat. 108, 207-228. 
Levin, S. A. 1976a. Population dynamic models in heterogeneous environments. Ann. Rev. Ecol. 

Syst. 7, 287-310. 



576 HIROMI SENO 

Levin, S. A. 1976b. Spatial patterning and the structure of ecological communities. In: Some 
Mathematical Questions in Biology, Lectures on Mathematics in the Life Sciences, Vol. 7, S. A. 
Levin (Ed.), pp. 1-36. Providence, RI: Ann. Math. Soc. 

Levin, S. A. 1986. Population models and community structure in heterogeneous environments. 
In: Mathematical Ecology: An Introduction, Biomathematics, Vol. 17, T. G. Hallam and S. A. 
Levin (Eds), pp. 295 320. Berlin: Springer-Verlag. 

Ludwig, D., D. G. Aronson and H. F. Weinberger. 1979. Spatial patterning of the spruce 
budworm. J. math. Biol. 8, 259-263. 

MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. New 
York: Harper & Row. 

Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge: Cambridge University 
Press. 

McMurtrie, R. 1978. Persistence and stability of single-species and prey~redator  systems in 
spatially heterogeneous environments. Math. Biol. 39, 11-51. 

Mimura, M., M. Tabata and Y. Hosono. 1979a. Multiple solutions of two-point boundary value 
problems of Neumann type with a small parameter. Researching Report 1, Konan Univ. 

Mimura, M., Y. Nishiura and M. Yamaguti. 1979b. Some diffusive prey and predator systems 
and their bifurcation problems. In: Bifurcation Theory and Applications in Scientific 
Disciplines, O. Gurel and O. E. R6ssler (Eds), pp. 490-510. New York: Ann. N.Y. Acad. Sci. 

Nagylaki, T. 1975. Conditions for the existence of clines. Genetics 80, 595 615. 
Namba, T. 1980. Density-dependent dispersal and spatial distribution of a population. J. theor. 

Biol. 86, 351-363. 
Nayfeh, A. H. 1973. Perturbation Methods. New York: John Wiley. 
Okubo, A. 1980. Diffusion and Ecolo.qical Problems: Mathematical Models. New York: Springer- 

Verlag. 
Okubo, A. 1982. Critical patch size for plankton and patchiness. In: Lecture Notes in 

Biomathematics, Vol. 54, S. A. Levin (Ed.), pp. 456-477. Berlin: Springer-Verlag. 
Pacala, S. W. and J. Roughgarden. 1982. Spatial heterogeneity and interspecific competition. 

Theor. Pop. Biol. 21, 92-113. 
Platt, T. and K. L. Denman. 1975. A general equation for the mesoscale distribution of 

phytoplankton in the sea. Mere. Soc. Roy. Sci. Liege 7, 31-42. 
Powell, T. and P. J. Richerson. 1985. Temporal variation, spatial heterogeneity, and competition 

for resources in plankton system: a theoretical model. Am. Nat. 125, 431-464. 
Rand, A. S. and E. E. Williams. 1969. The anoles of La Palma: aspects of their ecological 

relationships. Breviora 327, 1 18. 
Roughgarden, J. 1979. Theory of Population Genetics and Evolutionary Ecology: An Introduction. 

New York: Macmillan. 
Segel, L. A. and S. A. Levin. 1976. Application of nonlinear stability theory to the study of the 

effects of diffusion on predator-prey interactions. In: Topics in Statistical Mechanics and 
Biophysics: A Memorial to Julius L. Jackson, R. A. Piccirelli (Ed.), pp. 123-152. Proc. AIP 
Conf. 

Seno, H. 1989. The effect of a singular patch on population persistence in a multi-patch system. 
Ecol. Modellin9 43, 271-286. 

Shigesada, N. 1984. Spatial distribution of rapidly dispersing animals in heterogeneous 
environments. In: Lecture Notes in Biomathematics, S. A. Levin and T. G. Hallam (Eds), 
pp. 478-491. Berlin: Springer-Verlag. 

Shigesada, N. and J. Roughgarden. 1982. The role of rapid dispersal in the population dynamics 
of competition. Theor. Pop. Biol. 21,353-373. 

Shigesada, N., K. Kawasaki and E. Teramoto. 1979. Spatial segregation of interacting species. J. 
theor. Biol. 79, 83-99. 

Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38, 196-218. 
Steele, J. H. 1974a. Spatial heterogeneity and population stability. Nature 83, 248. 
Steele, J. H. 1974b. Stability of plankton ecosystems. In: Ecological Stability, M. B. Usher and 

M. H. Williamson (Eds), pp. 179-191. London: Chapman & Hall. 



EFFECT OF PREY DISTRIBUTION ON PREDATORY INVASION 577 

Steele, J. H. 1975. The Structure of Marine Ecosystems. Cambridge, MA: Harvard University 
Press. 

Teramoto, E. and H. Seno. 1988. Modeling of biological aggregation patterns. In: Biomathema- 
tics and Related Computational Problems, R. M. Ricciardi (Ed.), pp. 409--419. Dordrecht: 
Kluwer Academic Publishers. 

Wiens, J. A. 1976. Population responses to patchy environments. Ann. Rev. Ecol. Syst. 7, 81-120. 
Wroblewski, J. S., J. J. O'Brien and T. Platt. 1975. On the physical and biological scales of 

phytoplankton patchiness in the ocean. Mere. Soc. Roy. Sci. Liege 7, 43-57. 

Rece ived  19 Apr i l  1990 

Revised  19 J u n e  1990 


