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Abstract
Information warfare requires more attention as competing interests get escalated by the
spread of information on various Internet-based social media platforms in recent times.
In this work, we construct and analyze a mathematical model with a system of ordinary
differential equations to consider how two interacting pieces of information, where the first
one is incomplete and misleading while the second one is corrective of the first, evolve
with time in an online population. The counter and correctional information is the rejoinder.
Human psychological and sociological attributes like disbelief in the rejoinder and increased
tendency to keep spreading the misleading information even after knowing the correct one
are factored into our model. We find that in correcting a misleading piece of information that
is already spreading within a population, the rejoinder has to be released early enough within
a certain time range. The findings can help us appreciate the impact of misinformation on
the society and promote information literacy at optimal cost.

Keywords Information transmission · Population dynamics · Mathematical modeling ·
Rejoinder model · Human attributes · Information literacy

Mathematics Subject Classification 34C60 · 92D25 · 93A30

1 Introduction

The whole existence of nature is built on information and its transmission; in fact, things
hardly happen in the universe exclusive of the concepts of information and communication
[21, 54, 55]. Parker [50] gives one of the most fundamental definitions of information as
‘the pattern of organization of matter and energy’. In a sense, Bates [3] sees information as
something which exists objectively in our cosmos but is however handled subjectively by
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individuals in the process of construction, storage and acting upon it. Insights into the nature
and attributes of information has been brought to the forefront by a number of authors like
[17, 22, 23, 30, 58]. More so, some work has been done on information disorders like rumors,
gossips, fake news, etc. (see [5, 12, 28, 29, 32, 47, 53, 63]). The spread of false information
through social networks looks somuch like the progression of communicable infections since
they are both enhanced by social connections. As such, analyzing the dynamics of online
propagation and competition of different pieces of information can be quite revealing. With
the growing interest among people to source for news on social media primarily, transmission
models together with relevant data might be of great help in understanding this new terrain
(see [35, 62]).

In a world of rumors, gossips, urban legends, political propaganda and commercial adver-
tisements, there are always loads of information competing for human attention.Many a time,
the nature of some information can be quite divisive and get people polarized as they hold
on tenaciously to their respective view points. As such, mathematical modelers have been
interested in such warfare in recent times. Chisolm et al. [8] developed an infectious disease
type of model for the diffusion of two competing opinions of a polarizing view which inte-
grates outside elements and person-to-person connections. The model is derived from both
epidemiological and competing species models to understand how members of America’s
Republican Party supported or were skeptical about the greenhorn candidates in the 2016
primary polls. The study developed and analyzed two skeptic, unexposed, proponent (SUP)
models, one basic and one modified. The modified model is applied to a case study using the
poll results for candidates Carson, Fiorina, and Trump to fit parameters.

Liu et al. [43] investigated the characteristics of a rumor propagation model with the
concurrent spread of truth. They considered four population categories, namely the ignorants,
the rumor spreaders, the truth spreaders and the stiflers. They assumed that the different
spreaders have some likeliness of becoming stiflers when they interact or when they lose
interest in spreading the information they know. The work by Mikhailov et al. [46] takes a
deep dive into various dimensions of an information battle process in which two opposite
views about a particular information item spread in the environment. They showed that in
an information battle, the winning side is the one with the higher number of spreaders in the
long run. Earlier works on rumor models like [9, 14, 15, 44, 49] were quite helpful in these
studies. Feria et al. [16] developed a spreader-spreader and an exposed-spreader model based
on the popular SEIR model for epidemics in order to understand the dynamics of rumor and
truth spreading together in a population. Going by the first model, it is crucial to have a high
removal rate of rumor spreaders so that truth can prevail. The second model requires that
those who are exposed to rumor are quickly exposed to the truth afterwards in order to drown
out the rumor.

In our context, a rejoinder is a reply issued to correct an incomplete or misleading piece
of information that is already in circulation within a population. According to a study by
Akpabio [2] on the direction of rejoinders in two of Nigeria’s famous newspapers, it was
discovered that the noble attribute of balanced reporting was lacking among some journalists.
As a result, there were more of adversarial thanmild rejoinders to some news items published
about some individuals, organizations andgovernments.Weherebypropose a rejoindermodel
in order to understand the nuances of counteracting pieces of information spreading within
a population in a typical Internet-based social media setting. We propose a mathematical
model that includes the possibility of human psychological and sociological tendencies like
skepticism or deliberate negligence towards the corrective information such that some people
continue to spread falsehood even after getting the accurate information. These kinds of
behaviors are supported by various authors (including [13, 40]). Earlier on, rumormodels, e.g.
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Fig. 1 Stage transition of individuals and their relation according to information transmission in the rejoinder
model

the ones by [9, 34, 41, 44] were more suitable for person-to-person information transmission
which follow the typical idea of networks.

2 Assumptions for modeling

Two pieces of information: The two pieces of information are such that the first one is
incomplete and misleading whereas the second one is a rejoinder which is complete and
corrective to the first.

Transmission and spread of information: The accurate piece of information is only shared
alongside the wrong one such that a non-knower either gets to know and transmit only the
first piece or both pieces of information at any given time. We assume that interactions on
the Internet tend to happen very fast and do not significantly rely on the detailed structure of
networks. So, complete mixing is assumed among those who are unexposed and transmitters
who are either misinformed or correctly informed.

Two stages of the information spread: We consider the spread of information in two steps
as shown in Fig. 1: first is the primary stage when themisinformation is introduced and begins
to spread till a given time t = ts ; afterwards, we have the interaction stage after the complete
piece of information is introduced at t = ts . In the interaction stage, the complete piece of
information spreads together with the wrong piece of information from time ts which is the
moment of rejoinder introduction.

Different attitudes towards the rejoinder: Of those who get to know the complete infor-
mation after being misled initially, some get reinforced in transmitting the misleading
information thereby going into the subpopulation V while the rest go directly into the sub-
populationW+ where they transmit the complete information (see Figs. 1 and 2). We assume
that the wrongly informed people are expected to keep transmitting the incomplete and mis-
leading information with probability b even after knowing the complete one (the transition
to V ). Further, we assume a strengthened motivation for V to be dogmatic and not want to
stop transmitting the misleading information after getting to know the second piece. As such,
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Fig. 2 State transition in the population dynamics for the spread of two interacting pieces of information. In
the primary stage, we have the system (1) consisting of U and P , and at the interaction stage, we have (4)

the wrongly informed person comes to believe and transmit the complete information with a
probability 1 − b after getting it (the transition to W+).

3 Model

Primary stage

When the first piece of information, which is misleading, is the only one in circulation, we
have the following dynamics of information spread for t ∈ [0, ts):

dU

dt
= −β

P

N
U ; dP

dt
= β

P

N
U (1)

with initial condition (U (0), P(0)) = (U0, P0). U = U (t) is the population size of those
who have not been exposed to the considered piece of information at time t , while P = P(t)
is the population size of those who come to know and transmit the misleading information
at time t with transmission coefficient β > 0.

It is assumed that the total population size N is constant independently of time, so that
the system (1) satisfies U (t) + P(t) = N for any t ∈ [0, ts).

We can derive the following closed one-dimensional differential equation in terms of P
from (1):

dP

dt
= β

P

N
(N − P) (2)

with initial condition P0 = N −U0 > 0. The solution is easily obtained as

P(t) = N

1 + U0
P0
e−βt

, (3)

so thatU (t) = N − P(t) for t ∈ [0, ts]. This is monotonically increasing towards N in time.
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Interaction stage

After the rejoinder is introduced at time t = ts ,we have the followingdynamics of information
spread for t > ts (see Fig. 2):

dU

dt
= −β

P

N
U − (1 + ε)β

V

N
U − α0

W0

N
U − α+

W+
N

U ;
dP

dt
= β

P

N
U + (1 + ε)β

V

N
U − α0

W0

N
P − α+

W+
N

P;
dV

dt
= bα0

W0

N
P + bα+

W+
N

P − σV ;
dW0

dt
= α0

W0

N
U + α+

W+
N

U ;
dW+
dt

= (1 − b)α0
W0

N
P + (1 − b)α+

W+
N

P + σV ,

(4)

withU (t)+ P(t)+V (t)+W0(t)+W+(t) = N for any t > ts . Every parameter is a positive
constant whose meaning is explained in the following part.

At this stage, as shown in Fig. 2, the non-knowers of U may get either the misleading
information only or the complete one. After an individual ofU gets the complete information,
such a person is assumed to always come to transmit it; this is defined as the transition from
the state U to W0. W0(t) is the population size of those who have not been misled but
transit from the state U to the state in which they know and transmit the complete (correct)
information at time t .

P(t) is the population size of those who know ONLY the misleading information and
transmit it at time t . W+(t) is the population size of those who get misled before knowing
and transmitting the complete information at time t . V (t) is the population size of those who
know the second piece of information but transmit ONLY the first piece of information at
time t . It is now assumed that even such an individual, after getting the complete information,
may get hardened in spreading the misleading information with a probability b, which is now
defined as the transition from the state P to V .

The coefficient α0 is for the transmission of complete information to U by those of W0;
α+ is for the transmission of complete information to U by those of W+; σ is the transition
rate from V toW+. It represents the change of thoughts to transmit the complete information
after insisting on spreading the misleading first piece of information despite knowing the
complete one before. ε is the increment of the transmission coefficient for the individuals
of V , because of their tendency for information transmission psychologically stimulated or
excited by receiving the second piece of information as mentioned in Section 2.

As the continuity between the primary and the interaction stages, we define

U (ts − 0) = lim
t→ts−0

U (t); U (ts + 0) = lim
t→ts+0

U (t) (5)

as well as the other variables. It marks the end of the primary stage (represented by ts − 0)
on the interval [0, ts) and the beginning of the interaction stage (given by ts + 0). With
θ (0 < θ < 1) representing the portion of people that get to learn about the complete
information at time ts , we define the initial condition at t = ts + 0 as

(U (ts + 0), P(ts + 0), V (ts + 0),W0(ts + 0),W+(ts + 0))

= ((1 − θ)U (ts − 0), (1 − θ)P(ts − 0), bθ P(ts − 0), θU (ts − 0), (1 − b)θ P(ts − 0)),
(6)
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where

θN = θ [U (ts − 0) + P(ts − 0)] = V (ts + 0) + W0(ts + 0) + W+(ts + 0). (7)

The values of P(ts − 0) and U (ts − 0) are given by (3):

P(ts − 0) = N

1 + U0
P0
e−βts

; U (ts − 0) = N − P(ts − 0). (8)

With a set of non-dimensionally transformed variables and parameters u := U/N , p :=
P/N , v := V /N , w0 := W0/N , w+ := W+/N , τ := βt , τs := βts , a0 := α0/β,
a+ := α+/β, and c := σ/β, the system (4) becomes the following non-dimensionalized
system for τ > τs (i.e. t > ts):

du

dτ
= −pu − (1 + ε)vu − a0w0u − a+w+u;

dp

dτ
= pu + (1 + ε)vu − a0w0 p − a+w+ p;

dv

dτ
= ba0w0 p + ba+w+ p − cv;

dw0

dτ
= a0w0u + a+w+u;

dw+
dτ

= (1 − b)a0w0 p + (1 − b)a+w+ p + cv,

(9)

with u(τ ) + p(τ ) + v(τ) + w0(τ ) + w+(τ ) = 1 for any τ > τs , and from (6) and (8), the
initial condition

(u(τs + 0), p(τs + 0), v(τs + 0), w0(τs + 0), w+(τs + 0))

= ((1 − θ)u(τs − 0), (1 − θ)p(τs − 0), bθ p(τs − 0), θu(τs − 0), (1 − b)θ p(τs − 0)),
(10)

where

p(τs − 0) = 1

1 + U0
P0
e−τs

; u(τs − 0) = 1 − p(τs − 0). (11)

4 Terminal state

The system (9) has three equilibrium states: (u∗, p∗, v∗, w∗
0, w

∗+) = (1, 0, 0, 0, 0),
(0, 1, 0, 0, 0), and (0, 0, 0, w∗

0 , 1 − w∗
0). By the standard local stability analysis, it can be

easily shown that the first two equilibrium states are always unstable. In Appendix 1, we
show that the system necessarily converges to the third equilibrium state as indicated by the
numerical calculations given in Fig. 3. Thus, the terminal state of the information spread in
our model is characterized by the terminal population size w∗

0 of non-misinformed people,
or alternatively the size w∗+ of misinformed people.

The introduction of rejoinder is to correct the misinformation. However, it is far more
important to ensure that as many people as possible escape from being misinformed in the
first place. This makes prevention our ultimate goal so that the value ofw∗

0 at the equilibrium
state is a critical estimator of the efficiency of rejoinder introduction. The smaller w∗

0 is, the
more unfavorable it is owing to the aim for rejoinder introduction.
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Fig. 3 Temporal variation showing the primary stage for the spread of the misleading information as repre-
sented by (11) and the interaction stage after the rejoinder is introduced at τ = τs represented by the system
(9) with (10). a τs = 8.0; b τs = 12.0. Commonly, p(0) = 0.0001, u(0) = 1 − p(0), θ = 0.1, ε = 0.05,
a0 = 2.00, a+ = 1.10, b = 0.33, c = 0.30

5 Instantaneous response to the rejoinder introduction

In this section, we consider the response of the misled population just after the rejoinder
introduction at τ = τs . Inmany cases involving the newsmedia, the efficiency of an operation
taken against a wrong information is likely to be estimated/criticized by a relatively short-
term response following the introduction of such an action. However, we will show later
that such short-term response could not be an appropriate index to estimate the efficiency of
rejoinder introduction in our model.

For dp(τ )/dτ < 0 at τ → τs + 0 such that p(τ ) declines immediately after the rejoinder
is introduced, we can get the following necessary and sufficient condition from (9):

p(τs + 0)[u(τs + 0) − a0w0(τs + 0) − a+w+(τs + 0)] + (1 + ε)v(τs + 0)u(τs + 0) < 0.

From the initial condition (10) with (11), this condition can be rewritten as follows:

1

θ
− 1

θc
< a+(1 − b)

P0
U0

(
eτs − 1

)
, (12)

where

θc := 1

a+(1 − b) P0
U0

+ a0 + (1 − b) − εb
. (13)

If 0 < θc ≤ θ , the inequality (12) holds independently of τs , so that the introduction of the
rejoinder is highly efficient to immediately reduce the size of themisinformed subpopulation.
When 0 < θ < θc, the misled population size increases or decreases depending on τs (see
Fig. 4a-2). If θc < 0, that is, if

a+(1 − b)
P0
U0

+ a0 < εb − (1 − b),

such that ε or b is sufficiently large, there are sufficiently many misled people to actively
spread the misleading information after knowing the complete one. In such a situation, the
population size of misled individuals still increases after the introduction of the rejoinder
independently of θ , if the rejoinder is introduced before the following critical moment τc,
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that is, when τs < τc (Figs. 3a and 4a-1):

τc := ln

∣
∣
∣
∣1 + 1

a+(1 − b)

θc − 1

θc

U0

P0

∣
∣
∣
∣ . (14)

It is interesting that for sufficiently small τs in such a case, themisledpopulation size increases,
no matter how small. That is, no matter how early the rejoinder is introduced and no matter
how large the portion of people who get the correct information at that moment, the misled
population size continues to increase even after rejoinder introduction.

Figure4b-1,2 shows the dependence of the instantaneous response on parameters ε and
b, where εc := a0 − 1/θ and

bc := 1 −
1
θ

− a0

1 + a+ P0
U0

eτs
. (15)

These results clearly imply that human psychological and sociological tendencies like
skepticism or deliberate negligence towards the corrective information would contribute
significantly to the instantaneous social response.

6 Efficiency of rejoinder introduction on the terminal state

The numerical calculation as shown in Fig. 5 indicates the existence of a specific range of τs
for which a pronounced switch over of the value of w∗

0 can be observed. Such a prominent
range could not be identified for the dependence of the value of w∗

0 on any other parameter,
though the value ofw∗

0 depends on the other parameters in amuchmoremoderate manner. As
we can intuitively expect from themeanings of the parameters, the value ofw∗

0 monotonically
increases in terms of θ , while it monotonically decreases in terms of b and ε (see numerical
results given in Fig. 6).

This result implies that the aim of keeping people away from being misinformed is sig-
nificantly achieved when the rejoinder is introduced earlier than a certain critical period.
Otherwise, when the rejoinder is launched later, it has little or no impact in suppressing the
population of misinformed people. The critical period for the moment of rejoinder intro-
duction depends on the other parameters as numerically shown in Fig. 6a–c, though the
dependence appears rather weak. This implies that the moment of rejoinder introduction
itself is the most relevant factor which affects the extent to which misinformation spreads.

Our result conjectures that introducing the rejoinder after a critical period leads to little
effect on the terminal population size of non-misinformed people. In contrast, introducing it
earlier than the critical period may result in a rather large terminal population size of non-
misinformed people. Releasing the rejoinder within the critical period, that is, the specific
critical range of τs , the terminal population size of non-misinformed people is sensitively
determined by the actual moment, so that the earlier introduction of rejoinder can result in
significantly larger terminal population size of non-misinformed people.

7 Concluding remarks

The model proposed by Liu et al. [43] shows that when there is increased spread of truth-
rumor, the propagation of false-rumor can be obliterated; it was also seen that the false-rumor
and the truth-rumor can coexist for long given certain circumstances. To some extent, these
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Fig. 4 Parameter dependence of the instantaneous response to the introduction of rejoinder, based on the
inequality (12): a-1 θc < 0 or θc ≥ 1; a-2 0 < θc < 1; b-1 a0θ < 1; b-2 a0θ ≥ 1. The shaded parts are
regions of decrease while the unshaded parts are regions of instantaneous increase of the misled population
size just after the introduction of rejoinder

findings tend to agree with the results from our model since the introduction of a rejoinder
can accelerate the elimination of misleading information. Feria et al. [16] established the
importance of the early introduction of truth by relevant spreaders to make it endemic in
a population. This seems to correspond with the early rejoinder introduction in our model,
with similar effect. The instantaneous response of the population dynamics just after the
rejoinder introduction does not match up to the consequence of interaction between pieces of
information as shownbyFigs. 4 and 6.Although the earlier introduction of rejoinder can result
in the more preferable consequence of saving people from beingmisinformed in the long run,
it tends to cause such an instantaneous response that the misled people still increase after the
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Fig. 5 Dependence of the equilibrium value w∗
0 on the moment of rejoinder introduction τs . A numerical

result with θ = 0.10, b = 0.33, ε = 0.05, p(0) = 0.0001, u(0) = 1 − p(0), a0 = 2.00, a+ = 1.10, and
c = 0.30. w∗+ is given by 1 − w∗

0

rejoinder is introduced. This implies that the short-term response to rejoinder introduction
would not be an appropriate index about its efficiency eventually.

The rejoinder model has some similarities with the classical Kermack-McKendrick SIR
model about the population dynamics of transmissible diseases. For instance, the population
sizes of non-knowers (U ), knowers and transmitters of the misleading piece of information
(P ,V ), knowers and transmitters of the complete information (W0,W+) in the rejoindermodel
correspond respectively with the population sizes of susceptibles (S), infectives (I ), removed
(R) in the SIR model. The population size W0 can be considered, for example, as those who
are shielded from infection through vaccination whileW+ are like those who develop natural
immunity having been previously infected. Though the two models are similar in structure,
they are different in dynamics. This is demonstrated by the fact that the population size R
in the SIR model has no effect on the population sizes S and I with respect to the epidemic
dynamics. However, in the rejoinder model, the population sizesW0, W+ have direct impact
on the population sizes U , P and V .

Our model shows the effect of mass action that better estimates interactions on the Internet
in comparison with earlier rumor models which are more biased towards network theory.
This is because people are not necessarily connected following the traditional theory of
networks [7]. On social media platforms, there are lots of misleading information about
governmental and non-governmental organizations. Sometimes, there are also misleading
information from such institutions in form of propaganda [36]. So, it has become imperative
to be able to tell apart correct and wrong information. It has been widely agreed that the
problems of misinformation and disinformation can be mitigated by promoting information
literacy through multidisciplinary collaborations (see [37, 38, 63]).

Since the acceptance or neglect of a piece of information can be regarded as dependent
on the decision-making of each person in the population, the individual heterogeneity could
significantly determine the nature of the dynamics of information spread. Granovetter [24,
25] presented awell-known novel idea, calledGranovetter’s threshold model, to theoretically
consider the process of spreading information. This has been applied to a variety of areas
like diffusion of innovation, public protests, migration, voting, market trends, international
relations, and information spread [4, 11, 27, 31, 33, 39, 59].
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Fig. 6 Contour plot of the dependence ofw∗
0 on a (τs , θ ) with b = 0.33 and ε = 0.05; b (τs , b) with θ = 0.10

and ε = 0.05; c (τs , ε) with θ = 0.10 and b = 0.33; d (ε, b) with θ = 0.10 and τs = 5. Numerically drawn
commonly with p(0) = 0.0001, u(0) = 1 − p(0), a0 = 2.00, a+ = 1.10, and c = 0.30

He regards information spread as a collective behavior under certain circumstances where
people have to make one of two distinct choices such that the merit or demerit in each
choice depends on the number of individuals who decide for or against it. When the number
of individuals who have taken the decision reaches a threshold, the advantages of taking
the decision begin to outweigh the disadvantages for a given individual. Granovetter and
Soong [26] showed the importance of threshold modeling as lying in the not-so-simple
connection between individual choices and overall steady results. TheGranovetter’s threshold
model was, originally, not a mathematical model but a conceptual model.

Various mathematical and computational approaches abound in literature for studying
collective behaviors with an extension of Granovetter’s idea. Castellano et al. [6] highlighted
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the relevance of statistical physics to other areas of learning apart from physics. Assuming a
network that is random and non-finite with weak connections, Whitney [64] tried to under-
stand diffusion (of information or innovation) on a network using generating functions. The
theory proposed is based on a threshold rule which ensures that a node only changes state
after a fraction of nearby nodes, surpassing a particular limit, have previously flipped over.
Akhmetzhanov et al. [1] extensively applied the Granovetter’s idea for a network of indi-
viduals in a square lattice with each one having a state and a specified threshold for change
in behavior. A utility-psychological threshold model based on the Granovetter’s threshold
model was introduced by [42]. The critical shift in phase of group behavior is studied by
taking into account rational utility and psychological thresholds under the influence of space
and intensity of social network [60, 61, 65]. We find other interesting approaches and meth-
ods in [18–20, 45, 48, 51, 52, 56, 57, 66]. Although most of the previous models described
the conceptual process in Granovetter’s threshold model, and they may not be regarded as
reasonable population dynamics models for temporal variation of the number or frequency of
acceptors of a matter spreading in a population, Dansu and Seno [10] revisited Granovetter’s
idea of collective behavior, and refined themathematical modeling to derive amathematically
accurate and reasonable population dynamics model with an ordinary differential equation
which gives the temporal variation of the number or frequency of individuals who have
accepted an information spreading in a population. The analytical results on their model
showed that the distribution of heterogeneous individuality in a population determines the
success or failure of the spread of a piece of information in a population, as conceptually
discussed by Granovetter [24, 25].

As implied by those previous works, it is necessary to have a reasonable population
dynamics model to discuss the nature of temporal change in social situations with temporal
variations in their subpopulation sizes regarding a spreading matter in a population. In the
future, we hope to extend our model to accommodate human heterogeneity in the handling
of information.

Funding EJD was supported by the Japanese Government (Monbukagakusho: MEXT) Scholarship Number
170805. HS was supported in part by the JSPS KAKENHI Grant Number 18K03407.

Appendix

Convergence to the equilibrium state

Since u(τs +0) > 0 andw0(τs +0) > 0 from the initial condition assumed in our model, and
since dw0/dτ > 0 for any τ ∈ (τs,∞), we have w0(τ ) > 0 for any τ > τs . This argument
can also be applied for w+, so that w+(τ ) > 0 for any τ > τs . As long as u is positive for
(9) and any of p, w0 and w+ is also positive, du/dτ is always negative. This is contrary if
u → u∗ > 0, as such, u → 0. So, as u → 0, the right hand side of dp/dτ must become
negative since the first term becomes significantly small compared to the other terms, for
sufficiently large τ > τs . It is now clear that p decreases such that p → 0 and v → 0. From
this analysis, we have (u, p, v, w0, w+) → (0, 0, 0, w∗

0, w
∗+) as the convergence state.

Since u + p + v + w0 + w+ = 1 for any τ > τs , the convergence as τ → ∞ means
that w0 and w+ converge to some positive values w∗

0 and w∗+ such that w∗
0 + w∗+ = 1. The

convergent value w∗
0 or w∗+ depends on the initial condition at τ = τs + 0, which we could

not determine analytically.
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As an extremal mathematical supposition, if u(τs − 0) = 1 and p(τs − 0) = 0, then
u(τs + 0) ≤ 1 and p(τs + 0) = 0 so dp/dτ = 0 and p(τ ) = 0 for any τ > τs at
the interaction stage. This means that dw+/dτ = 0 for any τ > τs at this stage since
w+(τ ) = w+(τs + 0) = 0 for any τ > τs , so w∗+ = 0 and w∗

0 = 1. On the other hand, if we
assume the extremum situation where u(τs − 0) = 0 and p(τs − 0) = 1, then u(τs + 0) = 0
and p(τs + 0) ≤ 1 since du/dτ = 0 and u(τ ) = 0 for any τ > τs at the interaction stage.
This means that dw0/dτ = 0 for any τ > τs at this stage since w0(τ ) = w0(τs + 0) = 0 for
any τ > τs so w∗

0 = 0. Overall, w∗
0 ∈ (0, 1].
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