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Mark Granovetter promoted the threshold model of social behavior in which the acceptance value of an action is
determined by the proportion of a population that already accepted it. The model is about an individual embracing
an idea once a sufficient number of people embrace it. In this paper, we propose a mathematically accurate
population dynamics model based on Granovetter’s idea for the spread of information in a population. Individual
threshold values with respect to the acceptance of a piece of information are distributed throughout the population
ranging from low (easily accepts information) to high (hardly accepts). Results from the mathematical analysis on
our model show that critical values exist for initial knower population size, mean and variance of threshold values.
These critical values are about the drastic difference in the proportion of the population that end up knowing the
information, depending on respective features of the population according to the information spread.
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1. Introduction

Granovetter [1] developed the models of collective behavior for circumstances where people have to make one of
two clearly different choices such that the merit or demerit of each choice depends on the number of individuals who
decide for or against it. When this number of individuals (which constitute a threshold) is reached, the advantages of
taking the decision begin to outweigh the disadvantages for a given individual. For instance, a radical who is capable of
single-handedly starting a riot can be said to have a threshold of 0% as they are able to riot even if nobody else toes that
line. On the other hand, a conservative might have a threshold close to 100% depending on their level of reluctance to
join a riot. The principle of threshold is analogous to credulity and vulnerability in the spread of rumors and diseases
respectively. For some background work on this idea, see [2, 3].

Granovetter & Soong [4] emphasized the reality of complex heterogeneity in collective behavior as opposed to the
earlier simplifying assumptions of homogeneous individuality and mixing in the adoption and spread of ideas. They
showed the importance of threshold models as lying in the not-so-simple connection between individual choices and
overall steady results. The work also refers to the importance of bandwagon effect in which people adopt a new concept
because a given number of people are into it and a snob effect in which some people drop the idea once a certain
number of people sign up. In this case, there are two threshold values: one minimum inspiring the bandwagon and one
maximum leading to snobbish behavior.

As a sociological concept, the Granovetter model has some similarities with the idea of behavioral contagion in
psychology and the cultural phenomenon of bandwagon effect. In order to make sense of the concept of social
influence, Dodds & Watts [5] reasoned that it can be viewed as a result of making decisions based on a series of binary
possibilities. These threshold models find application in areas like diffusion of innovation, public protests, migration,
voting, market trends, international relations and information spread (see [6–10]).

Various mathematical and computational approaches abound in literature for studying collective behavior.
Castellano et al. [11] highlights the relevance of statistical physics to other areas of learning apart from physics. The
application of concepts in the field to the study of collective behavior in social systems was seen to be fast emerging.
Assuming a network that is random and non-finite with weak connections, Whitney [12] tried to understand diffusion
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(of information or innovation) on the network using generating functions. The theory proposed is based on a threshold
rule which ensures that a node only changes state after a fraction of nearby nodes, surpassing a particular limit, have
previously flipped over. Akhmetzhanov et al. [13] extended the Granovetter model to consider a network of individuals
in a square lattice with each one having a state and a specified threshold for change in behavior. A utility-psychological
threshold model based on the Granovetter’s threshold model was introduced by Li & Tang [14]. They studied the
critical shift in phase of group behavior by taking into account rational utility and psychological thresholds under the
influence of space and intensity of social network. We find other interesting methods in [15–23].

Previous models [1, 4, 6, 14, 24] described the conceptual process of what is called Granovetter’s threshold model
which, however, cannot be regarded as a population dynamics model for the temporal variation of the number/
proportion of ‘‘information knowers.’’ In this paper, we construct a mathematically accurate population dynamics
model with reasonable assumptions which correspond with the assumptions for Granovetter’s threshold model. The
derived model is described by a novel formulation which needs to be mathematically investigated in terms of the nature
of the population dynamics governed by it. Our analyses on the population dynamics model show that its mathematical
features are qualitatively analogous to those from previous models, whereas their results could not be regarded as ones
derived for the temporal variation of population dynamics.

A reasonable population dynamics model for the Granovetter’s threshold model is worth deriving because it could
become a basic model for theoretical consideration in a variety of information spread contexts. It is necessary to have
a reasonable population dynamics model in order to discuss the nature of temporal change in social situations with
temporal variations in their subpopulation sizes. So, our model is expected to provide a basic population dynamics
model for such a problem.

2. Modeling the Population Dynamics of Information Spread

2.1 Assumptions

We have the following underlying assumptions for our modeling with some appropriate generalization of
Granovetter’s idea [1–3]:
(1) There is a piece of information spreading within a population with a given strength of social recognition effect Q.

The social recognition effect represents the acceptability/attractiveness of the information;
(2) The strength of social recognition effect Q increases with the proportion/frequency P of knowers of the

information because an increasing number of people are embracing it;
(3) Each individual has a threshold value � according to the strength of social recognition effect Q. It determines

whether the information is accepted or ignored by that individual;
(4) The threshold value �, which characterizes each individual, is constant independently of time and social situation.

This means that each person’s attitude towards the information is fixed over time no matter what happens;
(5) Every information knower contributes to the social recognition effect at any time t. The contribution could appear

as the transmission of the information to others;
(6) Information knowers never return to being non-knowers. That is, there is no forgetfulness.

The assumptions 5 and 6 mean that we consider the population dynamics in a time scale in which the information is
maintained in the population and remains in circulation subject to the social recognition effect.

2.2 Mathematical setup

Let us assume the strength of social recognition effect Q ¼ QðPÞ as a function of the frequency P of knowers in the
population. It is non-decreasing in terms of P, with Qð0Þ ¼ 0 and QðPÞ � 0 for P � 0. The threshold value � according
to Q specifies the individual independently of time:

� � Q! The individual may accept the information;

� > Q! The individual ignores the information:

�

The value of � is generally defined on ð�1;1Þ. Persons with negative threshold values always satisfy the first rule
thereby being prone to the possibility of accepting the information. For mathematical convenience, let us define the
set of threshold values �ðPÞ satisfying � � QðPÞ as �ðPÞ :¼ f� j � � QðPÞg and the complementary set of �ðPÞ as
�ðPÞ :¼ f� j � > QðPÞg.

Now, we consider the cumulative distribution function (CDF) FðxÞ of the threshold value � in the population such
that

FðxÞ ¼
Z x

�1
f ð�Þd�

where f ð�Þ is the frequency distribution function (FDF) of the threshold value � in the population, such that f ð�Þ��
with sufficiently small �� > 0 corresponds to the frequency of individuals with the threshold in the range ½�; �þ���
within the population. The value FðxÞ means the frequency of individuals with the threshold value � not beyond x

within the population. The functions F and f are assumed to satisfy the following conditions:
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. F and f are independent of time t;

. f ð�Þ is non-negative and integrable for any � 2 R;

. FðxÞ is non-negative, non-decreasing, and continuous for any x 2 R;

. limx!1 FðxÞ ¼
R1
�1 f ð�Þd� ¼ 1 and limx!�1 FðxÞ ¼ 0;

. lim�!1 f ð�Þ ¼ 0 and lim�!�1 f ð�Þ ¼ 0.
The frequency of knowers PðtÞ in the population at time t is described as

PðtÞ ¼
Z 1
�1

pð�; tÞd�;

where pð�; tÞ is the FDF of knower’s threshold value � at time t in the population, such that pð�; tÞ�� with sufficiently
small �� > 0 corresponds to the frequency of knowers with the threshold in the range ½�; �þ��� at time t in the
population. For mathematical convention, we define the frequency of non-knowers UðtÞ ¼ 1� PðtÞ in the population at
time t as

UðtÞ ¼
Z 1
�1

uð�; tÞd�;

where uð�; tÞ ¼ f ð�Þ � pð�; tÞ means the FDF of non-knowers’ threshold values � at t.
The transition probability that the non-knower with the threshold value � gets the information and changes to a

knower in ½t; t þ�t� with sufficiently small �t > 0 is now denoted by Bð�;PÞ�t. In our modeling, Bð�;PÞ is defined
by

Bð�;PÞ ¼
BðPÞ; � 2 �ðPÞ;
0; � 2 �ðPÞ,

�
ð2:1Þ

where BðPÞ is the coefficient of information acceptance for the non-knower with the threshold value of �ðPÞ with
Bð0Þ ¼ 0, BðPÞ > 0 for P 2 ½0; 1�.

2.3 Temporal change of the non-knower and knower frequencies

From the above setup, we can immediately get the following equation

uð�; t þ�tÞ��� uð�; tÞ�� ¼ �Bð�;PðtÞÞ�t � uð�; tÞ��; ð2:2Þ

where the left side corresponds to the change of the frequency of non-knowers during ½t; t þ�t� with sufficiently small
�t > 0 and the threshold value in the range ½�; �þ��� with sufficiently small ��. It means the number of non-knowers
becoming knowers by accepting the information is equal to the right hand side given the expected reduction of the non-
knower frequency by the transition probability defined above.

From the equation ð2.2Þ, we can derive the following equations as �t! 0:

@uð�; tÞ
@t
¼ �Bð�;PðtÞÞuð�; tÞ:

Therefore, integrating both sides in terms of � over R, we have

d

dt

Z 1
�1

uð�; tÞd� ¼
dUðtÞ
dt
¼ �

Z 1
�1

Bð�;PðtÞÞuð�; tÞd� ¼ �BðPðtÞÞ
Z

�ðPðtÞÞ
uð�; tÞd�;

where we use the transition probability defined by ð2.1Þ. We have the following equation for the temporal change of the
knower frequency PðtÞ:

dPðtÞ
dt
¼ �

dUðtÞ
dt
¼ BðPðtÞÞ

Z
�ðPðtÞÞ

uð�; tÞd�: ð2:3Þ

2.4 Initial condition for the population dynamics

For the initial condition at t ¼ 0, we assume a portion of knowers within the population who play the role of initial
transmitters of information. These initial knowers are given independently of their threshold values without bothering
about how they become knowers. We give the initial distribution of the knower frequency by pð�; 0Þ�� ¼ �ð�Þ f ð�Þ��,
where �ð�Þ determines the ratio of initial knowers in the subpopulation with the threshold value � such that
0 � �ð�Þ � 1. Since pð�; 0Þ��þ uð�; 0Þ�� ¼ f ð�Þ��, we have the following equation: uð�; 0Þ�� ¼ f1� �ð�Þg f ð�Þ��.
Hence, we have

Pð0Þ ¼
Z 1
�1

�ð�Þ f ð�Þd�; Uð0Þ ¼
Z 1
�1
f1� �ð�Þg f ð�Þd� ¼ 1� Pð0Þ: ð2:4Þ
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2.5 Non-knower frequency of �ðPÞ

There are non-knowers who have threshold values beyond the value of Q at time t. Their frequency is given by

UðtÞ �
Z

�ðPðtÞÞ
uð�; tÞd� ¼

Z
�ðPðtÞÞ

uð�; tÞd�: ð2:5Þ

Since PðtÞ is non-decreasing in time and QðPÞ is non-decreasing in terms of P, we note that the set �ðPðtÞÞ identifies all
non-knowers who have not experienced any moment at which the value of QðPðtÞÞ is more than the threshold value
until time t. Therefore, the non-knowers belonging to the above integral is only those who remain at the non-knower
state from the initial time to time t. That is, uð�; tÞ ¼ uð�; 0Þ for � 2 �ðPðtÞÞ so thatZ

�ðPðtÞÞ
uð�; tÞd� ¼

Z
�ðPðtÞÞ

uð�; 0Þd� ¼
Z

�ðPðtÞÞ
f1� �ð�Þg f ð�Þd�: ð2:6Þ

2.6 Closed equation for the knower frequency

From ð2.3Þ, ð2.5Þ and ð2.6Þ in the preceding modeling arguments, we have

dPðtÞ
dt
¼ BðPðtÞÞ

Z
�ðPðtÞÞ

uð�; tÞd� ¼ BðPðtÞÞ UðtÞ �
Z

�ðPðtÞÞ
uð�; tÞd�

� �

¼ BðPðtÞÞ UðtÞ �
Z

�ðPðtÞÞ
f1� �ð�Þg f ð�Þd�

� �
¼ BðPðtÞÞ 1� PðtÞ �

Z
�ðPðtÞÞ
f1� �ð�Þg f ð�Þd�

� �
: ð2:7Þ

The equation is closed in terms of PðtÞ and it can be regarded as an autonomous ordinary differential equation to
describe the temporal change of knower frequency within the population. To guarantee the reasonableness of ð2.7Þ, we
have the following theorem:

Theorem 2.1. For any Pð0Þ such that 0 � Pð0Þ � 1, it is true that Pð0Þ � PðtÞ � 1 for any t > 0.

Proof. If P ¼ 0, then Bð0Þ ¼ 0 and we have j
R
�ð0Þf1� �ð�Þg f ð�Þd�j <1, so from ð2.7Þ, dPðtÞ

dt
jP¼0 ¼ 0. As such, P � 0

is a solution for ð2.7Þ. From the uniqueness of solution for ð2.7Þ, if Pð0Þ ¼ 0, then PðtÞ ¼ 0 for all t > 0. If Pð0Þ > 0,
then PðtÞ > 0 for all t > 0 since PðtÞ is non decreasing in time. More so,

dPðtÞ
dt

����
P¼1

¼ �Bð1Þ
Z

�ð1Þ
f1� �ð�Þg f ð�Þd� � 0:

Further, we formally have

dPðtÞ
dt

����
P>1

¼ BðPÞ 1� P�
Z

�ðPÞ
f1� �ð�Þg f ð�Þd�

� �
< 0:

Therefore, it is mathematically impossible that P goes beyond 1 in any finite time from the initial value Pð0Þ � 1.
Besides, for Pð0Þ > 0, we have

dPðtÞ
dt

����
t¼0

¼ BðPð0ÞÞ 1� Pð0Þ �
Z

�ðPð0ÞÞ
f1� �ð�Þg f ð�Þd�

� �

¼ BðPð0ÞÞ 1�
Z 1
�1

�ð�Þ f ð�Þd��
Z

�ðPð0ÞÞ
f1� �ð�Þg f ð�Þd�

� �

¼ BðPð0ÞÞ 1�
Z

�ðPð0ÞÞ
�ð�Þ f ð�Þd��

Z
�ðPð0ÞÞ

f ð�Þd�
� �

> BðPð0ÞÞ 1�
Z

�ðPð0ÞÞ
f ð�Þd��

Z
�ðPð0ÞÞ

f ð�Þd�
� �

¼ BðPð0ÞÞ 1�
Z 1
�1

f ð�Þd�
� �

¼ 0;

so that P must increase at t ¼ 0, and PðtÞ > Pð0Þ for all t > 0 with Pð0Þ > 0. These results establish the invariance of
PðtÞ such that Pð0Þ � PðtÞ � 1 for all t > 0. �

The formula of the above equation depends on the limit limP!1 QðPÞ which is now formally equal to supP QðPÞ
because the function of QðPÞ is assumed to be non-decreasing in terms of P. If limP!1 QðPÞ <1, that is, if Qð1Þ is a
finite value, the set �ðPÞ becomes empty for a certain value of P ¼ Pc � 1, when f ð�Þ ¼ 0 for any � > �m with a finite
value �m, and QðPcÞ � �m. In such a case, the integral in ð2.7Þ necessarily becomes zero for any � � QðPcÞ because
f ð�Þ ¼ 0. Therefore, in this case, we can express ð2.7Þ as

dPðtÞ
dt
¼ BðPðtÞÞGðPðtÞÞ; ð2:8Þ
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where

GðPÞ ¼ 1� P�
Z �m

QðPÞ
f1� �ð�Þg f ð�Þd�; QðPÞ < �m;

1� P; QðPÞ � �m:

8<
: ð2:9Þ

2.7 A simple setup for the initial knowers and the strength of social recognition effect

In the subsequent sections, we shall mathematically analyze our population dynamics model for information spread,
introducing some specific distributions of threshold value in the population. For mathematical simplicity, we assume
that the initial knowers are chosen at random with probability �0 (0 < �0 < 1) independent of each individual’s
threshold value so that �ð�Þ ¼ �0. Then, from ð2.4Þ, we have Pð0Þ ¼ �0.

In addition, let us consider the strength of social recognition effect proportional to the frequency of knowers within
the population. That is, we introduce QðPÞ ¼ �P with a positive constant �. This formula of QðPÞ is the simplest one
satisfying the mathematical features given in Sect. 2.2. The parameter � reflects the sensitivity of the society to the
spread of information. As � gets larger, the society is more sensitive to the spread of information.

3. The Case of Everywhere Positive Distribution

In this section, we consider the model with f ð�Þ > 0 for any � 2 R such that the equation ð2.7Þ becomes

dPðtÞ
dt
¼ �PðtÞGðPðtÞÞ; ð3:1Þ

where

GðPÞ :¼ 1� P� ð1� �0Þ
Z 1
�P

f ð�Þd�: ð3:2Þ

3.1 Existence of equilibrium states

As for the equilibrium state P ¼ P� > 0 where dPðtÞ=dt ¼ 0, we have GðP�Þ ¼ 0. The function GðPÞ defined by ð3.2Þ
is continuous, and we have

Gð�0Þ ¼ ð1� �0Þ 1�
Z 1
�P

f ð�Þd�
� �

> 0; Gð1Þ ¼ �ð1� �0Þ
Z 1
�

f ð�Þd� < 0:

So, there is at least one value of P ¼ P� such that �0 < P� < 1. Hence, we have the following theorem:

Theorem 3.1. There is at least one equilibrium state P ¼ P� for ð3.1Þ with ð3.2Þ such that �0 < P� < 1.

From the idea of standard local stability analysis, we can obtain the following result for the equilibrium state
P ¼ P� 2 ð�0; 1Þ.

Theorem 3.2. The equilibrium state P ¼ P� for ð3.1Þ with ð3.2Þ such that �0 < P� < 1 is locally asymptotically
stable if ð1� �0Þ� f ð�P�Þ < 1.

Proof. From ð3.1Þ with ð3.2Þ, we have LðPÞ :¼ dP=dt ¼ �PGðPÞ such that P� is locally asymptotically stable if
dL=dPjP¼P� < 0. Now,

dLðPÞ
dP

����
P¼P�
¼ �GðP�Þ þ �P�

dGðPÞ
dP

����
P¼P�
¼ �P�

dGðPÞ
dP

����
P¼P�

:

dLðPÞ
dP
jP¼P� < 0 implies that dGðPÞ

dP
jP¼P� < 0 since P� > 0. So, we have

dGðPÞ
dP
¼ �1� ð1� �0Þ

d

dP

Z 1
�P

f ð�Þd� ¼ �1þ ð1� �0Þ� f ð�PÞ

such that dGðPÞ
dP
jP¼P� < 0 results to ð1� �0Þ� f ð�P�Þ < 1. This completes the proof for the establishment of sufficient

condition for local stability. �

From this theorem, we see that even when a subunity equilibrium state exists, it may be unstable. In the following
sections, we investigate the detail of the dynamical nature of the model ð3.1Þ with ð3.2Þ according to a given formula of
the distribution f ð�Þ everywhere positive for � 2 R.

3.2 A specific distribution

We consider the threshold distribution defined as
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f ð�Þ ¼
1

�
ffiffiffi
2
p exp �

ffiffiffi
2
p j�� �j

�

� �
¼

1

�
ffiffiffi
2
p exp

ffiffiffi
2
p j�� �j

�

� �
; � < �;

1

�
ffiffiffi
2
p exp �

ffiffiffi
2
p j�� �j

�

� �
; � � �,

8>>><
>>>:

ð3:3Þ

with mean � and variance �2 (Fig. 1). Following Theorem 3.1, there is at least one equilibrium state P ¼ P� such that
0 < P� < 1. In terms of ð3.2Þ, we now have

GðPÞ ¼
�0 � Pþ

1

2
ð1� �0Þ exp

ffiffiffi
2
p �

�
P�

�

�

� �� �
; P <

�

�
;

1� P�
1

2
ð1� �0Þ exp �

ffiffiffi
2
p �

�
P�

�

�

� �� �
; P �

�

�
.

8>>><
>>>:

ð3:4Þ

GðPÞ is continuous in ½0; 1� as seen in Fig. 2 since

lim

P! �
��0

GðPÞ ¼ lim

P! �
�þ0

GðPÞ ¼ G
�

�

� �
¼

1

2
ð1þ �0Þ �

�

�
: ð3:5Þ

Fig. 1. A specific distribution function f ð�Þ of the threshold value � for the social recognition effect given by ð3.3Þ.

Fig. 2. Four possible cases of the graph of ð3.4Þ corresponding to the conditions given as ð3.6Þ–ð3.11Þ. In each figure, hi; ji
represents the pair of numbers of non-trivial equilibrium states i and j in the intervals ð�0; �=�Þ and ½�=�; 1� respectively for the
model ð3.1Þ with ð3.3Þ. Intersections of GðPÞ and the horizontal axis denoted by P�S;P

�
M ;P

�
L are the non-trivial equilibrium states

for the model ð3.1Þ with ð3.3Þ.
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Existence of equilibrium states

The symbol hi; ji in Fig. 2 represents the respective numbers of formal non-trivial equilibrium states in each of the
intervals ð�0; �=�Þ and ½�=�; 1�. The total number of non-trivial equilibrium states in the complete interval ð�0; 1� is
given by iþ j. We can get the following necessary and sufficient conditions for hi; ji based on the conditions obtained
in Appendix A.

. For h0; 1i, we have either of

�

�
<

1ffiffiffi
2
p ð1� �0Þ and

�

�
< �0 þ

�

�
ffiffiffi
2
p 1þ ln

1� �0ffiffiffi
2
p � ln

�

�

� �
or ð3:6Þ

�

�
�

1ffiffiffi
2
p ð1� �0Þ and

�

�
<

1

2
ð1þ �0Þ: ð3:7Þ

. For h2; 1i, we have

�

�
<

1ffiffiffi
2
p ð1� �0Þ and �0 þ

�

�
ffiffiffi
2
p 1þ ln

1� �0ffiffiffi
2
p � ln

�

�

� �
<
�

�
<

1

2
ð1þ �0Þ: ð3:8Þ

. For h1; 2i, we have

�

�
<

1ffiffiffi
2
p ð1� �0Þ and

1

2
ð1þ �0Þ <

�

�
< 1�

�

�
ffiffiffi
2
p 1þ ln

1� �0ffiffiffi
2
p � ln

�

�

� �
: ð3:9Þ

. For h1; 0i, we have either of

�

�
<

1ffiffiffi
2
p ð1� �0Þ and

�

�
> 1�

�

�
ffiffiffi
2
p 1þ ln

1� �0ffiffiffi
2
p � ln

�

�

� �
or ð3:10Þ

�

�
�

1ffiffiffi
2
p ð1� �0Þ and

�

�
>

1

2
ð1þ �0Þ: ð3:11Þ

Stability of equilibrium states

Based on Theorem 3.2, we can obtain the sufficient condition for local asymptotic stability of the equilibrium state
P ¼ P� for the model ð3.1Þ with ð3.3Þ. For P� < �=�, it is locally asymptotically stable if

P� < Pc� :¼
�

�
�

�

�
ffiffiffi
2
p ln

�

�
ffiffiffi
2
p ð1� �0Þ;

and for P� � �=�, P ¼ P� is locally asymptotically stable if

P� > Pcþ :¼
�

�
þ

�

�
ffiffiffi
2
p ln

�

�
ffiffiffi
2
p ð1� �0Þ:

Furthermore, we can consider the global stability making use of the sign of ð3.1Þ determined by that of GðPÞ. As shown
in Fig. 2, we have non-trivial equilibrium states h0; 1i, h2; 1i, h1; 2i and h1; 0i in the intervals ð0; �=�Þ and ½�=�; 1�
respectively. While the local stability of each equilibrium state can be obtained by applying Theorem 3.2, we can get
the following result about the global stability based on the sign of GðPÞ shown in Fig. 2.

Theorem 3.3. When there is only one equilibrium state in the whole interval ð�0; 1�, it is always globally
asymptotically stable. On the other hand, when there are three formal equilibrium states, the smallest and the largest
are locally asymptotically stable while the middle one is unstable.

Parameter dependence of the equilibrium value

With respect to �=� as the bifurcation parameter of P�, we have the critical value �c=� for a sufficiently small
frequency of the initial knowers Pð0Þ ¼ �0 as seen in Fig. 3 which shows there is a critical mean threshold value �c for
the population. Since PðtÞ monotonically increases with time, a mean threshold value below �c makes the system
converge to the larger asymptotically stable equilibrium state while any one above �c makes the system converge to
the smaller asymptotically stable equilibrium state. This is understandable since the mean threshold value measures
the acceptability/attractiveness of the information to the people. The proportion of knowers becomes drastically small
when the community has a high mean threshold value thereby making the information highly unacceptable or ignored.
A low mean threshold value indicates that the information is readily welcome in the society.

We have the critical value �c=� in Fig. 4 with �=� as the bifurcation parameter of P�. When such a critical variance
exists, at a variance below it the system converges to the smaller equilibrium state. A variance above the critical
variance drives the system to the larger equilibrium state. For sufficiently large mean of the threshold value, the
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reluctance of individuals to accept the information leads to the smaller equilibrium proportion of knowers [Figs. 4(c)
and 4(d)]. In contrast, sufficiently small mean threshold value leads to the larger equilibrium proportion of knowers
[Fig. 4(a)]. This implies that the larger proportion of knowers at the equilibrium state can be reached with sufficiently
large proportion of individuals who have relatively small threshold values to accept the information, that is, relatively
high gullibility for the information.

It should be noted that the equilibrium value P� necessarily depends on the initial value Pð0Þ ¼ �0, as seen in Fig. 5.
The equilibrium state is uniquely determined by the initial condition. The bifurcation branches of P� given in Fig. 6
with parameter �0 are obtained by first solving GðPÞ ¼ 0 for �0. Then �c appears as the critical value for some small
value of �. In case of Figs. 6(b) and 6(c), the system necessarily converges to the smaller equilibrium state for the initial
value Pð0Þ ¼ �0 below the critical value �c while it goes to the larger equilibrium state for the initial value beyond the
critical value �c. As a whole, we see that the proportion of knowers gets large for a sufficiently large proportion of
initial knowers while it becomes small for too small proportion of initial knowers.

Fig. 3. Bifurcation diagram for P� with parameter �=� according to the model ð3.1Þ with ð3.3Þ. (a) Pð0Þ ¼ 0:10, (b) Pð0Þ ¼ 0:50,
(c) Pð0Þ ¼ 0:75, (d) Pð0Þ ¼ 0:90. Commonly, �=� ¼ 0:14. �c=� is the critical value for �=�. For �=� � �c=�, the frequency of
knowers P necessarily approaches the equilibrium state P� of the lowest branch. The critical value increases with the initial
proportion of knowers.

Fig. 4. Bifurcation diagram for P� with parameter �=� according to the model ð3.1Þ with ð3.3Þ. (a) �=� ¼ 0:25, (b) �=� ¼ 0:55,
(c) �=� ¼ 0:75, (d) �=� ¼ 1:50. Commonly, Pð0Þ ¼ �0 ¼ 0:30. In (b), for �=� � �c=�, the frequency of knowers P necessarily
approaches the equilibrium state P� of the lowest branch. Also in (c), it necessarily approaches that of the lowest branch.

Fig. 5. Temporal variation of PðtÞ given by the model ð3.1Þ with ð3.3Þ for different initial values Pð0Þ ¼ �0. Commonly, � ¼ 0:011,
�=� ¼ 0:14 and �=� ¼ 0:50. A slight difference in the initial proportion of knowers may cause a drastic difference on the
consequence of information spread within the population.
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Further, we can find the following result about the equilibrium value of P:

Theorem 3.4. The system converges to the equilibrium state at which the equilibrium value of P is greater than �=�
only in the case of h0; 1i. In any other case, the equilibrium value of P is necessarily smaller than �=�.

The proof of this theorem is found in Appendix B. Figure 7 shows that P converges to the smallest equilibrium state
P�S when the mean threshold value is sufficiently large. For small mean threshold value, P converges to the largest
equilibrium state P�L. Further, as we have seen, the criticality of the mean threshold value can appear only for
sufficiently small variance (see also Figs. 3 and 4). Figure 8 numerically shows such criticality about the initial value
(�0), the mean threshold value (�=�) and the variance (�=�). It is implied that the consequence of information spread
may significantly depend on the characteristics of a society and its relation to the spread of information represented by
the parameters �, �, and �. More so, it may significantly depend on how the information begins spreading; for example,
an idea may be propagated starting with a campaign strategy.

3.3 Normal distribution

As a typical choice of the everywhere positive distribution of thresholds, we may consider the normal distribution

f ð�Þ ¼
1

�
ffiffiffiffiffiffi
2�
p exp �

1

2

�� ��

�

 !2
2
4

3
5 ð3:12Þ

where � is the standard deviation and �� is the mean. As demonstrated by the numerical results in Fig. 9 in comparison
with 8, the model ð3.1Þ with normal distribution ð3.12Þ has the same qualitative nature as the previous specific model
with ð3.3Þ. It is hard to make a detailed mathematical analysis on the model with the normal distribution ð3.12Þ as we
did for the model with the previous specific everywhere positive distribution ð3.3Þ. Numerics about the model with the
normal distribution ð3.12Þ imply that its principal nature is qualitatively the same as the previous model with the
specific distribution ð3.3Þ. We conjecture that the model with the everywhere positive distribution could have the same
qualitative nature as the previous model as long as the distribution is unimodal. Actually, we will find a similar nature
for a unimodal compact support distribution in a later section.

Fig. 6. Bifurcation diagram for P� with the initial value Pð0Þ ¼ �0 according to the model ð3.1Þ with ð3.3Þ. (a) 0 < �=� < ��=�,
(b) 1=2 < �=� < 1� ��=�, (c) �=� ¼ 1� ��=�, (d) 1� ��=� < �=� < 1. Commonly, ��=� :¼ ð�=�

ffiffiffi
2
p
Þð1þ lnð�=�

ffiffiffi
2
p
ÞÞ and

�=� ¼ 0:14. �c is the critical value for �0. For �0 � �c, the frequency of knowers P necessarily approaches P� of the lowest
branch.

Fig. 7. Dependence of the equilibrium value P� on ð�0; �=�Þ with �=� ¼ 0:14 and on ð�=�; �=�Þ with �0 ¼ 0:3 for the model ð3.1Þ
with ð3.3Þ. Commonly, � ¼ 1:0.
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3.4 Monotonically decreasing distribution

In the previous section, we considered the continuous frequency distribution f ð�Þ defined on R, where there exists
some members belonging to any threshold range ½�1; �2� 	 R. In this section, we consider the model ð3.1Þ with ð3.2Þ
according to another frequency distribution f ð�Þ defined on Rþ ¼ ½0;1Þ which is monotonically decreasing in terms
of �:

Fig. 8. Numerically obtained convergence of P for the model ð3.1Þ with ð3.3Þ and parameter (a) �0 with �=� ¼ 0:55 and
�=� ¼ 0:14, (b) �=� with �0 ¼ 0:3 and �=� ¼ 0:14, (c-1) �=� with �0 ¼ 0:3 and �=� ¼ 0:55, (c-2) �=� with �0 ¼ 0:3 and
�=� ¼ 0:75. Commonly, � ¼ 1:0.

Fig. 9. Numerically obtained convergence of P for the model ð3.1Þ with the normal distribution ð3.12Þ and parameter (a) �0 with
�=� ¼ 0:55 and �=� ¼ 0:14, (b) �=� with �0 ¼ 0:3 and �=� ¼ 0:14, (c-1) �=� with �0 ¼ 0:3 and �=� ¼ 0:55, (c-2) �=� with
�0 ¼ 0:3 and �=� ¼ 0:75. Commonly, � ¼ 1:0. Compare with Fig. 8 for the model ð3.1Þ with ð3.3Þ.
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f ð�Þ ¼
0; � < 0;

hð�Þ; � � 0;

�
ð3:13Þ

where the function hð�Þ is monotonically decreasing in terms of �, and non-negative for any � 2 Rþ, satisfying that
sup

Rþ
hð�Þ <1,

R1
0

hð�Þ d� ¼ 1, and hðxÞ ! 0 as x!1.
For the model ð3.1Þ with ð3.2Þ according to ð3.13Þ, we can obtain the following general result which indicates that

there is no bistable case for this model:

Theorem 3.5. For the model ð3.1Þ with ð3.2Þ according to the monotonically decreasing frequency distribution ð3.13Þ
on Rþ, there always exists a globally asymptotical equilibrium state P� 2 ð�0; 1� such that P! P� as t!1 for any
parameter values.

Proof. We have G0ðPÞ ¼ �1þ ð1� �0Þ� f ð�PÞ for ð3.2Þ. Since the function f ðxÞ is monotonically decreasing for
x 2 Rþ, the sign of G0ðPÞ is always negative or changes only once from positive to negative as P increases. Besides, we
have

Gð�0Þ ¼ ð1� �0Þ 1�
Z 1
��0

f ð�Þ d�
� 	

> 0 and Gð1Þ ¼ �ð1� �0Þ
Z 1
�

f ð�Þ d� � 0:

Hence, from the sign of G0ðPÞ, we can find that the equation GðPÞ ¼ 0 has a unique positive root P� 2 ð�0; 1�, and that
GðPÞ > 0 for P < P� and GðPÞ < 0 for P > P�. Since dP=dt > 0 for P < P� and dP=dt < 0 for P > P�, we
consequently get the theorem. �

4. The Case of Compact Support Distribution

In this section, we consider the compact support distribution f ð�Þ such that f ð�Þ ¼ 0 for � 2 ð�1; 0� [ ½�m;1Þ. With
the setup for �ð�Þ and QðPÞ in Sect. 2.7, the equation ð2.8Þ is given with ð2.9Þ which now becomes

GðPÞ ¼
1� P� ð1� �0Þ

Z �m

�P

f ð�Þ d� for P <
�m

�
;

1� P for P �
�m

�
.

8>><
>>: ð4:1Þ

4.1 Uniform distribution

In this section, we consider the model ð4.1Þ with the uniform distribution of � with f ð�Þ given as

f ð�Þ ¼

0; � < 0;

1

2�
; 0 � � � 2�;

0; � > 2�,

8>>><
>>>:

ð4:2Þ

where � is the mean threshold value (Fig. 10). For f ð�Þ given by ð4.2Þ, the equation ð2.9Þ is given with

GðPÞ ¼
�0 � 1�

�

2�
ð1� �0Þ

� 	
P; P �

2�

�
;

1� P; P >
2�

�
:

8>>><
>>>:

ð4:3Þ

0

Fig. 10. The uniform frequency distribution function f ð�Þ of the threshold value � for the social recognition effect given by ð4.2Þ.
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The equilibrium state in the interval ð0; 2�=�� is determined by GðPÞ ¼ 0 such that

P ¼ P� ¼
�0

1� �

2�
ð1� �0Þ

; ð4:4Þ

while the equilibrium state in the interval ð2�=�; 1� is determined by GðPÞ :¼ 1� P ¼ 0 and it is P ¼ P� ¼ 1.
Then we obtain the following theorem:

Theorem 4.1. The equation ð2.8Þ with ð4.3Þ has a unique equilibrium state which is globally asymptotically stable.
When 2�=� > 1, the equilibrium state ð4.4Þ exists and is globally asymptotically stable. When 2�=� � 1, P ¼ P� ¼ 1 is
globally asymptotically stable.

Proof. When 2�=� > 1, the equilibrium state ð4.4Þ is always positive and less than 1. Since Gð0Þ ¼ �0 ¼ Pð0Þ < P�

and GðPÞ > 0 for any P < P�, it is easy to find that P� is globally asymptotically stable. It is clear that there is no other
equilibrium state in ½0; 1� when 2�=� > 1, since P > 2�=� cannot occur for any P 2 ½0; 1�. When 2�=� � 1, the
equilibrium state ð4.4Þ is non existent since it goes out of the range ð0; 2�=��. As such the equilibrium state is in
½2�=�; 1�. GðPÞ is positive for P 2 ð0; 2�=�� and so is GðPÞ for P 2 ð2�=�; 1Þ. Thus, PðtÞ is monotonically increasing
with time. Given that 2�=� � 1 and that PðtÞ is monotonically increasing with an upper bound P ¼ 1, then we have the
equilibrium state P ¼ P� ¼ 1 which is globally asymptotically stable. Overall, we have a unique global equilibrium
state for the system ð2.8Þ with ð4.3Þ depending on 2�=�. �

The �=�-dependence of the equilibrium state P� is shown in Fig. 11. We find that the larger �=� leads to the smaller
equilibrium state P�. That is, a large mean threshold value or a weak sensitivity of society to the spread of a piece of
information results in its less propagation. When 2�=� > 1, the portion 1� �=ð2�Þ of the population has threshold value
beyond Qð1Þ ¼ � which is the maximal strength of social recognition effect, and they never accept the information.
Thus, for �=� > 1, the equilibrium state P� must be less than one and decreasing in terms of �=� as shown in Fig. 2.
This may be due to a high level of education or the perceived lack of trustworthiness of the source of information. On
the other hand, when �=� � 1=2, a relatively large number of individuals get to know the information in the long run
due to their low threshold values of acceptance. This may be a result of gullibility on the part of the population or the
reliability of the source.

4.2 Monotonically decreasing distribution

In this section, we consider the model ð2.8Þ with ð2.9Þ according to the following compact support frequency
distribution f ð�Þ which is monotonically decreasing in terms of �:

f ð�Þ ¼
0; � < 0;

hð�Þ; 0 � � < �m;

0; � � �m;

8><
>: ð4:5Þ

where the function hð�Þ is monotonically decreasing in terms of � and positive for any � 2 ½0; �mÞ, satisfying the
conditions that sup½0;�mÞ hð�Þ <1 and

R �m
0

hð�Þ d� ¼ 1.
For the model ð2.8Þ with ð2.9Þ according to ð4.5Þ, we can obtain the following general result:

Theorem 4.2. For the model ð2.8Þ with ð2.9Þ according to the monotonically decreasing compact support frequency
distribution ð4.5Þ, there always exists a globally asymptotical equilibrium state P� 2 ð�0; 1� such that P! P� as
t!1 for any parameter values.

Proof. We have G0ðPÞ ¼ �1þ ð1� �0Þ�hð�PÞ for ð2.9Þ in terms of P < �m=�. Since the function hðxÞ is monotonically
decreasing for x 2 ½0; �mÞ, the sign of G0ðPÞ is always negative or changes only once from positive to negative as P

increases. Besides, we have

Fig. 11. �=�-dependence of the globally asymptotically stable equilibrium state P� for the model ð2.8Þ with ð4.3Þ in the case of the
uniformly distributed threshold value � given by the frequency distribution function ð4.2Þ.
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Gð�0Þ ¼ ð1� �0Þ 1�
Z �m

��0

f ð�Þ d�
� 	

> 0; Gð1Þ ¼ �ð1� �0Þ
Z �m

�

f ð�Þ d� � 0;

and Gð�m=�Þ ¼ 1� �m=� as formal equations. Hence, from the sign of G0ðPÞ for P 2 ð�0;min½1; �m=��Þ, we can find
that the equation GðPÞ ¼ 0 has a unique positive root P� 2 ð�0;min½1; �m=���, and that GðPÞ > 0 for P < P� and
GðPÞ < 0 for P > P�. Since dP=dt > 0 for P < P� and dP=dt < 0 for P > P�, we consequently get the theorem. �

Therefore, there is no bistable case for this model. As a result, Theorem 4.2 could be regarded as correspondent to
Theorem 3.5 in Sect. 3.4 for the model ð3.1Þ with ð3.2Þ according to the monotonically decreasing continuous
frequency distribution ð3.13Þ on Rþ.

4.3 Linearly increasing distribution

In this section, we consider the compact support linearly increasing distributions with a compact support ½0; �m� for
the frequency distribution f ð�Þ of the threshold value � for the social recognition effect (Fig. 12):

f ð�Þ ¼

0; � < 0;

2

�m

�

�m
; 0 � � < �m;

0; � � �m;

8>>><
>>>:

ð4:6Þ

where �m is a positive constant. For this distribution, the mean threshold value � and variance �2 are given as 2�m=3 and
�2m=18 respectively.

For the increasing linear distribution f ð�Þ given by ð4.6Þ, we can obtain the following result [Fig. 13(a)]:

Lemma 4.3. With respect to the existence of equilibrium states in ð�0; 1� for the equation ð2.8Þ with ð2.9Þ according to
the increasing linear distribution ð4.6Þ, there are the following three cases:

(i) There are only two different equilibrium states in ð�0; �m=�Þ in addition to P� ¼ 1 if and only if the following
condition is satisfied: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�0ð1� �0Þ
p

<
�m

�
< 1 and �0 <

1

2
:

(ii) There is only one equilibrium state in ð�0; 1Þ if and only if �m=� > 1.
(iii) When any of these conditions (i) and (ii) is unsatisfied, there is no equilibrium state other than P� ¼ 1.

Proof. For �P 2 ½0; �mÞ, the function GðPÞ given by ð3.2Þ with ð4.6Þ has two zeros if and only if ð�m=�Þ2 �
4�0ð1� �0Þ > 0 because it is a quadratic function of P. Therefore, the equation GðPÞ ¼ 0 has at most two roots in
ð�0;min½�m=�; 1�Þ. Given that �m=� < 1 and the equation has two roots in ð�0; �m=�Þ, then ð2.8Þ with ð2.9Þ has three
equilibrium states; that is, these two roots and P� ¼ 1. Since Gð�0Þ > 0, Gð�m=�Þ ¼ 1� �m=�, and Gð1Þ ¼
ð1� �0Þfð�=�mÞ2 � 1g > 0 for �m=� < 1, we can find the condition for the number of roots of the equation GðPÞ ¼ 0 in
ð�0;min½�m=�; 1�Þ. This results in the lemma. It can be proven that there is no case where there is only one root for the
equation GðPÞ ¼ 0 in ð�0; �m=�Þ when �m=� < 1. �

As a consequence of the analysis on the sign of GðPÞ for the cases in Lemma 4.3, we can obtain the following
theorem about the convergence of P as t!1:

Theorem 4.4. For the model ð2.8Þ with ð2.9Þ based on ð4.6Þ, a bistable situation occurs if and only if the condition (i)
in Lemma 4.3 is satisfied.

Fig. 12. The compact support linearly increasing frequency distributions f ð�Þ of the threshold value � for the social recognition
effect given by ð4.6Þ.
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The numerically drawn example of the bifurcation diagram for P� with the initial value Pð0Þ ¼ �0 in Fig. 13(b-1)
clearly shows the existence of such a bistable situation. In contrast, Fig. 13(b-2) shows a case of (ii) in Lemma 4.3,
which does not have any bistable situation with the parameter values belonging to Region II in Fig. 13(a). As indicated
by Fig. 13(a), a bistable situation appears only when �0 < 1=2 and �m=� < 1.

4.4 A specific unimodal distribution

Next, we consider the following specific unimodal distribution (Fig. 14):

f ð�Þ ¼

0; � < 0;

ð�þ 1Þð2�þ 1Þ
��m

�

�m

� ��
1�

�

�m

� ��� �
; 0 � � < �m;

0; � � �m;

8>>>><
>>>>:

ð4:7Þ

where �m and � are positive constants. The mean threshold value � and variance �2 are given as ð2�þ 1Þ�m=ð2�þ 2Þ
and ð2�þ 1Þð5�þ 7Þ�2m=fð�þ 3Þð2�þ 2Þ2ð2�þ 3Þg respectively. For this distribution f ð�Þ, the equation ð2.8Þ is given
with

GðPÞ ¼
�0 � Pþ

2�þ 1

�
ð1� �0Þ

�P

�m

� �2�þ1

�
�þ 1

�
ð1� �0Þ

�P

�m

� �2�þ1

; P <
�m

�
;

1� P; P �
�m

�
:

8>><
>>: ð4:8Þ

By studying the nature of the function GðPÞ, we can get the following result:

Lemma 4.5. With respect to the existence of equilibrium states in ð�0; 1� for the equation ð2.8Þ with ð4.8Þ, we have the
following four cases:

(i) There are only three different equilibrium states in ð�0; 1Þ if and only if the following condition is satisfied:

1 �
�m

�
<
ð1� �0Þð2�þ 1Þð�þ 1Þ

4�
; GðPc�ÞGðPcþÞ < 0 and Pcþ < 1;

where

Fig. 13. (a) ð�m=�; �0Þ-dependence of the existence of positive equilibrium states P� 2 ð�0; 1�; (b-1, 2) Bifurcation diagram for P�

with the initial value Pð0Þ ¼ �0 for the model ð2.8Þ with ð2.9Þ according to the increasing linear distribution ð4.6Þ. Numerically
drawn with (b-1) �m=� ¼ 0:8; (b-2) �m=� ¼ 1:05. In (a), Regions I, II, and III, correspond to (i), (ii), and (iii) of Lemma 4.3
respectively.

Fig. 14. The unimodal compact support frequency distribution f ð�Þ of the threshold value � for the social recognition effect given
by ð4.7Þ.
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Pc
 :¼
�m

2�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4�

ð1� �0Þð2�þ 1Þð�þ 1Þ
�m

�

s" #1=�

: ð4:9Þ

(ii) There are only two different equilibrium states in ð�0; 1Þ in addition to P� ¼ 1 if and only if

�m

�
< min 1;

ð1� �0Þð2�þ 1Þð�þ 1Þ
4�

� �
and GðPc�ÞGðPcþÞ < 0;

(iii) There is only one equilibrium state in ð�0; 1Þ if and only if

1 �
�m

�
<
ð1� �0Þð2�þ 1Þð�þ 1Þ

4�
;

and GðPc�ÞGðPcþÞ < 0 with Pcþ > 1 or GðPc�ÞGðPcþÞ � 0.
(iv) When any of these conditions (i), (ii) and (iii) is unsatisfied, there is no equilibrium state other than P� ¼ 1.

Proof. It is easily found that the function GðPÞ defined for P 2 ð0; �m=�Þ by ð4.8Þ has two extremal points at P ¼ Pc

defined by ð4.9Þ if and only if

�m

�
<
ð1� �0Þð2�þ 1Þð�þ 1Þ

4�
; ð4:10Þ

and the shape of the curve of the function GðPÞ defined for P 2 ð0; �m=�Þ becomes similar with that of ð3.4Þ in Sect. 3.2.
When the condition ð4.10Þ is not satisfied, the function GðPÞ defined for P 2 ð0; �m=�Þ is monotonically decreasing
in terms of P. Since the root of GðPÞ ¼ 0 in ð�0; 1� could give an equilibrium state for the equation ð2.8Þ with ð4.8Þ, we
must distinguish two cases where �m=� > 1 and �m=� < 1. Taking account of Gð�m=�Þ ¼ 1� �m=�, Gð1Þ � 0, and
�0 < Pc� < Pcþ < �m=� for any � with respect to the function GðPÞ defined for P 2 ð0; �m=�Þ, we can find the
conditions given in the lemma about how many roots exist for GðPÞ ¼ 0 in ð�0;min½1; �m=��Þ. �

Making use of Lemma 4.5, we can derive the result shown in Fig. 15 about the ð�m=�; �0Þ-dependence of the
existence of positive equilibrium states P� 2 ð�0; 1� for the equation ð2.8Þ with ð4.8Þ. The cusp point on the boundary
between Regions II and III is given as

�m

�
¼ xc :¼

ð2�þ 1Þð�þ 1Þ
4�½1þ �=2ð�þ1Þ=��

; �0 ¼ �c :¼
�

1þ �=2ð�þ1Þ=� : ð4:11Þ

This is because the cusp point is so critical that Pc� ¼ Pcþ ¼ 2�1=��m=�. The critical value xc is monotonically
decreasing in terms of � with xc! 1 as �!1 while �c is monotonically increasing in terms of � with �c! 2 as
�!1. If �0 > �c or �m=� > xc, the equation ð2.8Þ with ð4.8Þ necessarily has a unique equilibrium state less than or
equal to one, independently of the other parameters including � and �0.

Consequently, from the analysis on the number of equilibrium states in ð�0; 1Þ for the equation ð2.8Þ with ð4.8Þ and
the shape of the curve of the function GðPÞ for P 2 ð�0; 1Þ and Lemma 4.5, we can get the following result on the
convergence of P as t!1:

Theorem 4.6. For the model ð2.8Þ with ð4.8Þ, a bistable situation occurs if and only if the condition (i) or (ii) in
Lemma 4.5 is satisfied.

Fig. 15. ð�m=�; �0Þ-dependence of the existence of positive equilibrium states P� 2 ð�0; 1� for the equation ð2.8Þ with ð4.8Þ by the
unimodal compact support frequency distribution ð4.7Þ. Numerically drawn with the condition given in Lemma 4.5 for (a)
� ¼ 0:5; (b) � ¼ 1:0; (c) � ¼ 2:0. Regions I, II, III, and IV correspond to (i), (ii), (iii), and (iv) of Lemma 4.5 respectively.
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Such a bistable situation must occur in a certain range of initial value �0 as indicated by Fig. 15. As already mentioned
above, it is necessary for the appearance of such a bistable situation that �0 < �c and �m=� < xc where �c and xc are
defined by ð4.11Þ. Although the �-dependence is non-trivial, the numerical calculations in Fig. 15 imply that the
parameter region for the formal bistable situation of Regions I and II becomes wider as � gets larger while the existence
and spatial configuration appear qualitatively same. As a result, such a bistable situation about the equilibrium states for
the equation ð2.8Þ with ð4.8Þ becomes less observable for smaller �. This tendency can be illustrated by the numerically
drawn bifurcation diagrams for P� in Fig. 16 too.

In conclusion, the results obtained in Sects. 3 and 4 imply that the unimodality of the frequency distribution could
induce a bistable situation such that P converges to a small equilibrium value P� from an initial value Pð0Þ ¼ �0 less
than a critical value while it converges to a distinctly different large equilibrium value P� from an initial value greater
than the critical value. In such a situation, the difference in the number of initial knowers may result in a significantly
large difference in the final number of knowers in the population. In other words, the proportion of initial knowers
determines the success of information spread within the population.

5. Discussion

The model with compact support uniform distribution tends to correspond to Granovetter’s conceptual model. The
behavior of the system is determined by the critical value of the mean threshold value � as indicated by Fig. 11. The
model with everywhere positive distribution shows that the proportion of the population that ends up knowing an
information largely depends on the strength of social recognition effect. A very large value of this effect on the
population leads to the circulation of the information among a large proportion of the population in the long run.
Conversely, a lower proportion of the population will end up knowing the information if the strength of the social
recognition effect on the population is relatively small.

From the model with a specific distribution, the most important parameters are �0, � and �. The proportion of initial

Fig. 16. Bifurcation diagrams for P� with the initial value Pð0Þ ¼ �0 according to the model ð2.8Þ with ð4.8Þ. Dotted curves indicate
unstable equilibria. Numerically drawn with (a-�) � ¼ 0:5; (b-�) � ¼ 1:0; (c-�) � ¼ 2:0, and (�-1) �m=� ¼ 0:8; (�-2)
�m=� ¼ 1:05; (�-3) �m=� ¼ 1:2. For (a-1) and (a-2), the range of �0 is very close to zero.
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knowers �0 represents those who have the task to carry out an initial operation to circulate a certain piece of information
within a population. From our model, it is worthy of note that the final level of spread of a piece of information depends
largely on the specific value of the initial proportion of knowers even when there is apparent bistability of equilibrium
states.

Coincidentally, this proportion corresponds with the initial condition for our model. As such, it is both a parameter
and an initial value from which the proportion of knowers continue to increase since we do not consider forgetfulness
on the part of knowers. The initial proportion of knowers depends on the nature and situation of the piece of
information. For instance, a single person can begin to spread a rumor; a syndicate may initiate a fake news; a new idea
can begin with a pilot group within a population (e.g., the use of masks in preventing epidemics); top security secrets
are known by very few people; and information from the mass media can be known initially by a large proportion of a
population.

The mean threshold value of a population’s social recognition effect, given as �, characterizes how a community
reacts to a specific kind of information. It is a kind of peak/mode behavior that is representative of the community. A
large mean threshold indicates that a society is closed or conservative towards a particular kind of information, e.g., old
people’s attitude towards a hip hop concert. On the other hand, a small threshold mean shows that a society freely
transmits a given piece of information. The standard deviation, �, is a measure of the degree of scattering or variance of
threshold values within the population. A small variance shows that the threshold values are similar among people
while a large one implies that the threshold values highly vary within the population. In our analyses, � and � describe
the heterogeneity of the threshold values of individuals in the community.

For each of the parameters, there are critical values which determine whether a substantial proportion of the
population gets to know the the piece of information or whether it is confined to an insignificant proportion.

The ordinary differential equation of P describing the threshold model is special for the reason that it explicitly
depends on the initial value Pð0Þ. This means that the temporal variation of proportion of knowers P explicitly depends
on the initial condition. As such, the equilibrium state of the system is determined by the given initial value so that the
equilibrium state varies for different initial values as seen in Figs. 5, 8(a), 9(a), 13(b-1), and 16.

The results show that each of the model parameters (initial value, mean threshold value for social response and
standard deviation/variance) have critical values which determine the equilibrium state to which the system converges.
However, the effect of variance is not as significant as that of the other two. From Figs. 8 and 9, it is seen that the
proportion of knowers increases in terms of initial knowers and decreases in terms of mean threshold value of the social
recognition effect. On the other hand, the effect of variance depends on the mean threshold value. For a relatively small
mean threshold value, the proportion of knowers drastically increase once a critical variance is exceeded. A decrease
of the proportion of knowers is then seen for large values of variance. For relatively large mean threshold value, the
proportion of knowers rises continuously and peaks moderately.

Although we considered a model with a specific everywhere positive distribution, the normal distribution is the most
popular. Even though the specific distribution may seem rather special, our numerical results imply that the results
mathematically obtained from the model could be regarded as qualitatively the same as the results for the model with
normal distribution. The model with normal distribution is difficult to analyze mathematically but we could carry out a
detailed mathematical analysis on the model with the specific distribution. This is the reason why we analyzed the
model with such a distribution.

We showed that the monotonically decreasing distribution of thresholds could not cause any bistable situation while
bistability is possible for the unimodal distribution. In reality, the most observable distribution would be unimodal so
that such a bistable situation could exist for a spread of information.

On the other hand, for a distribution with multiple peaks, the population dynamics about such an information spread
could show some different features. However, that consideration is out of the scope of this paper. Although such a
model would be certainly interesting from the mathematical point of view, it must be constructed with some reasonable
assumptions. We may consider such a model in the future.

From the results discussed, it may be possible to control the initial proportion of knowers in order to achieve a
desired purpose regarding the spread of information. On the other hand, individual threshold values and their
distribution within a population can hardly be controlled. Such a control may only be possible under special conditions.

The analyses show that people can be stubborn in accepting a piece of information until a critical threshold value is
reached. When the mean threshold value falls below the critical mean threshold value, there is a drastic increase in the
frequency of knowers of the information due to an increasing level of sociability/acceptability. This scenario is
commonly seen in the way people respond to most innovative ideas. Individuals always tend to resist potential changes
to their ways of life but over time, with persistent awareness, they embrace change and the new idea becomes well
circulated within their population.

Considering the importance of individual threshold values in accepting and diffusing information, the distribution of
threshold values in a population is critical. We only chose to analyze the compact support and everywhere positive
distributions of threshold values due to the fact that they are mathematically tractable. A more practical distribution
is the normal distribution which is mathematically less tractable. Some numerical calculations with the normal
distribution showed qualitatively similar results with the ones given in our analyses. Although it is likely that a specific
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distribution of threshold values causes some characteristic differences in the details of the analytical results, we think
that our findings show the most principal nature of the model proposed in this paper. For example, if we consider the
possibility of forgetting the obtained information in our modeling, this could lead to some new and interesting
theoretical insights on the spread of information or some other matters transmissible in a society.
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Appendix A: The Existence of Non-trivial Equilibrium State for ð3.1Þ with ð3.2Þ According

to ð3.3Þ

Suppose there is an equilibrium state P� 2 ð�0; �=�Þ, it must satisfy GðPÞ ¼ 0. We can easily see that Gð�0Þ > 0.
When �

� <
1ffiffi
2
p ð1� �0Þ, the function GðPÞ is concave in terms of P with minimum point

P ¼ Pc� :¼
�

�
�

�

�
ffiffiffi
2
p ln

�

�
ffiffiffi
2
p ð1� �0Þ ðA:1Þ

so that GðPc�Þ ¼ �0 þ �
�
ffiffi
2
p ½1þ ln �

�
ffiffi
2
p ð1� �0Þ� � �

�. On the other hand, GðPÞ is monotonically decreasing when

�
� �

1ffiffi
2
p ð1� �0Þ. GðPc�Þ ¼ 0 results to �c

� ¼ �0 þ
�
�
ffiffi
2
p ½1þ ln �

�
ffiffi
2
p ð1� �0Þ�.

The equilibrium state P� � �=�, if any exists, has to satisfy GðPÞ ¼ 0. We see that Gð�0Þ > 0 and
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Gð1Þ ¼ �
1

2
ð1� �0Þ exp �

ffiffiffi
2
p �

�
1�

�

�

� �� �
< 0:

When �
� <

1ffiffi
2
p ð1� �0Þ, the function GðPÞ is convex in terms of P with maximum point at

P ¼ Pcþ :¼
�

�
þ

�

�
ffiffiffi
2
p ln

�

�
ffiffiffi
2
p ð1� �0Þ ðA:2Þ

and GðPcþÞ ¼ 1� �
�
ffiffi
2
p ½1þ ln �

�
ffiffi
2
p ð1� �0Þ� � �

�. On the other hand, GðPÞ is monotonically decreasing when �
� �

1ffiffi
2
p ð1� �0Þ.

From Fig. 2, we have the following conditions for the existence of hi; ji, where i and j are the numbers of equilibrium
states in the intervals ð�0; �=�Þ and ½�=�; 1� respectively. When �

� <
1ffiffi
2
p ð1� �0Þ,

. h0; 1i: GðPc�Þ > 0.

. h2; 1i: GðPc�Þ < 0 and Gð ��Þ > 0.

. h1; 2i: Gð ��Þ < 0 and GðPcþÞ > 0.

. h1; 0i: GðPcþÞ < 0.

When �
� �

1ffiffi
2
p ð1� �0Þ,

. h0; 1i: Gð ��Þ > 0.

. h1; 0i: Gð ��Þ < 0.

These equilibrium states agree with Theorem 3.1.

Appendix B: Proof for Theorem 3.4

For the case of h1; 2i, the second condition for its existence is given as expressed in the second part of ð3.9Þ. Since
�0 < ð1þ �0Þ=2 for any �0 2 ð0; 1Þ, this condition requires that �0 < �=�. This means that the case of h1; 2i is only valid
for the initial value satisfying that �0 < �=�.

Next, for the case of h2; 1i, the second condition for its existence is expressed in the second part of ð3.8Þ. From the
first condition for its existence, we have

ln
1� �0ffiffiffi

2
p � ln

�

�
> 0;

so that the second condition for its existence requires that �0 < �=� similar to the previous case. Therefore, the case of
h2; 1i is also only valid for the initial value satisfying that �0 < �=�. Further, the first inequality of the second condition
in ð3.8Þ can be rewritten to be

�0 þ
�

�
ffiffiffi
2
p < Pc�:

Hence we find the other necessary condition for the case of h2; 1i that �0 < Pc�. Now, since Gð�0Þ ¼ GðPð0ÞÞ > 0,
we can find that the value of P necessarily converges to the smallest equilibrium state P�S given by the smaller root
of GðPÞ ¼ 0 in both cases of h1; 2i and h2; 1i.

In the case of h1; 2i from Fig. 2, it is clear that P must converge to it since Pð0Þ ¼ �0 < �=� as shown in the above
argument. Similarly, for the case of h2; 1i in Fig. 2, since Pð0Þ ¼ �0 < Pc� as shown in the above argument, it is clear
that P must converge to the smallest equilibrium state.
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