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Abstract 

We consider the disturbance-controlled persistence of plant population with a transition matrix modelling, and discuss the 
contribution of ecological disturbance to the population persistence. The considered population is assumed to be the species 
subordinate about the competition for its persistence, so that it goes extinct in the environment without ecological 
disturbance. Our mathematical results indicates such a possibility that the ecological disturbance with an appropriate period 
assures the persistence of such species of plant. © 1997 Elsevier Science B.V. All rights reserved 
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1. Introduct ion 

In some cases of plants, the persistence of population considerably depends on some kind of ecological 
disturbance, for example, fire, flood, typhoon (for instance, see Silvertown and Doust, 1993). Such disturbances 
damage many plant species seriously for their persistence. However, in contrast, in the case of some species, the 
disturbance could provide them with the chance to persist, especially in case of plant species subordinate about 
the competition for resources in the habitat. An aster A. kantoensis is considered as such a plant species. It is 
recognized today as one of the species facing extinction. It inhabits the riverbank, and has been utilizing the 
spatial disturbance by the flood in order to persist. The population can be regarded as subordinate about the 
competition for resources. This is because, the more other plant species invade into habitat, the population size 
decreases and tends to reach extinction. For its persistence, it is essential to have the chance for recruitment in 
the space caused by some ecological disturbance. Besides, the seeds are considered not to have the capacity of 
dormancy and can germinate only in the following season. Recent reconstructions of riverbanks are eliminating 
the chance of flood, that is, possibility of ecological disturbance. So the chance of persistence for such 
subordinate species of plants becomes rare. As in the case of the aster A. kantoensis, in some cases of such 
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subordinate species, without some appropriate ecological disturbance, the population would reach extinction due 
to inter-specific and/or intra-specific competition and the other environmental factors decreasing the favorabil- 
ity of habitat, for example, the fertility (for instance, see Pickett and White, 1985). 

For plant population, the transition matrix modelling is well-known to describe the structured population, for 
example, with seed, rosette, and flower classes (Charlesworth, 1980). A variety of mathematical models with the 
transition matrix, introduced some biologically considerable factors, for instance, density effects or temporally 
environmental variation, have been analyzed to study the population dynamics of plant populations (Leslie, 
1945; Leslie, 1948; Pielou, 1969; Charlesworth, 1980; Caswell, 1990; Silvertown and Doust, 1993). 

In this paper, we consider the disturbance-controlled persistence of monocarpic plant population with a basic 
transition matrix modelling, and discuss the contribution of ecological disturbance to the population persistence. 
Like an aster A. kantoensis mentioned above, the considered population is assumed to reach extinction in the 
environment without ecological disturbance, due to the competition or the exhaustion of resources for its 
persistence. However, it is assumed to have the capacity to grow immediately in the habitat after the ecological 
disturbance which renews the environment in it. In our mathematical modelling, the disturbance is assumed to 
occur temporally in a period. The period corresponds to the frequency of disturbance, and the population 
persistence considerably depends on the period. Our results indicate that the ecological disturbance with an 
appropriately intermediate period could work profitably for the persistence of such subordinate species of plant. 

2. Model 

2.1. General system 

We consider the model for the dynamics of plant population which has the population structure of three life 
stages: seed, rosette, and flower. The colony of the considered population is assumed to be isolated, so that we 
do not consider any population supply from the outside of the colony, and the population dynamics is closed 
within the considered colony. 

Let S t denote the population density of seeds, R t that of rosettes, and F t that of flowers, at time t. The 
population structure at time t can be described with the vector B t = (S t, R t, F y .  The time unit is now assumed 
to be appropriately set to correspond to the growing steps. 

The following matrix L t describes the general dynamics of population structure between t and t + 1: 

'/ t 0 asf ass 

t t t I L , =  ar, arr arf (1) 
! 

0 atyr atffJ 

where the element at/j corresponds to the transition probability with which the subpopulation of stage j at time t 
transits to stage i at time t + 1: atss is the probability that seed does not germinate at time t and remains to 

t is the probability that t is the probability that seed germinates and grows up to rosette at t + 1; arr t + l ;  a n 
rosette remains as rosette to t + 1; a~r is the probability that rosette at t blooms at t + 1; a~ is the probability 

t that flower at time t becomes rosette at t + 1; a~f is the probability that flower at t blooms again at t + 1; asf 
gives the density of seeds supplied by the unit population density of flowers at t. As a special feature of our 
modelling, each element a~j is now assumed to be temporally variable, which might be due to some 
environmental change due to the increasing competition or the resource exhaustion, etc. 

By multiplying L t to Bt, we can get Bt+ t which gives the population structure at time t + 1: 

B t +  I = Lt × Bt. (2) 
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From Eq. (2) with B 0 which represents the population structure at the initial time t = 0, we obtain 

t - I  

B t -- k~=O Lk B o. (3) 

2.2. Modelling for monocarpic plant 

t = 0, t = 0, and t = 0 of the general model mentioned above, because In this paper, it is assumed that as~ are aff 
we consider the monocarpic plant which has no seed bank, and whose flower at time t cannot return to the 
rosette stage, neither bloom again. In our modelling for monocarpic perennial plant, we consider the following 
transition matrix Lt: 

0 0 

L , =  b ( t )  a ( t )  

0 o - ( t ) ( l - a ( t ) )  
) 0 , (4) 

0 

where a(t) means the ratio of rosettes at time t to remain as rosettes at t + 1, and 1 - a(t) does the ratio of 
rosettes at t to bloom at t + 1. o-(t) means the probability of the success in seedling, and o-(t)(1 - a(t)) gives 
the ratio of such rosettes as to bloom and succeed in seedling at t. On the other hand, in modelling for the 
monocarpic annual plants, for which only seeds can remain to the next breeding season, we assume that a = 0 
for any t in Eq. (4): 

0 0 

Lt= b(t) 0 o ) o . (5) 
0 

In this paper, we analytically consider the case of monocarpic annual plant, which is governed by the 
dynamics of population structure given by Eq. (5). Besides, making use of some numerical calculations for the 
system given by Eq. (4), we try to discuss the effect of perennation with a(t)= a (constant)> 0 on the 
population persistence. 

2.3. Modelling for disturbance effect 

We assume that an ecological disturbance occurs just after seedling. With the disturbance, the considered 
habitat is renewed to the initial environmental condition, and then seeds can take the maximum advantage to 
encroach and take root there to make a new colony. It is assumed that only a portion of seeds remains in the 
habitat and both rosettes and flowers are completely eliminated after the disturbance. In our modelling, we 
introduce the disturbance effect with the disturbance matrix F defined by 

o / 
F = 0 0 , (6) 

0 0 

where 0 < y < 1. y corresponds to the survival probability for seed under the disturbance. So Y can be regarded 
as to mean the strength of disturbance. The smaller value of y means the more damaging disturbance. If the 
disturbance occurs at time t, the population structure is then changed to 
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Simultaneously, every temporally variable parameters are reset to the initial state the same as for t = 0. That 
is, the environment is recovered to the initial condition by the disturbance. In our modelling, therefore, the 
population structure at t + 1 after the disturbance at t is given by L o E B  t, and at the next by L~LoFB t. The 
following scheme shows the progress of the survived monocarpic perennial population structure after the 
disturbance: 

(i) --o -o -* R" -o R" -o "'" (8) 
~F' ~F" F "  

2.4. Modelling fo r  decreasing environmental favorabil i ty 

We consider the monocarpic plants which take roots so dense that the intraspecific competition tends to 
strengthen its effect step by step. Since we assume the ecologically subordinate species of plants, the survival 
rate and the reproductive capability of considered plant population would decrease step by step. This is because 
inter-specific and intra-specific competitions and the other environmental changes to decrease the favorability of 
habitat would work over each of life stages of the considered plant. For example, the decreasing soil fertility of 
habitat causes the decrease of the survival rate and the reproductive capability. 

As a basic modelling for such effect of decreasing environmental favorability, each element of Lt,  that is alj., 
is assumed to depend on time t such that alj = ctaij, where ai~ and c(c  < 1) are positive constants. The larger c 
indicates the slower decrease, and the smaller does the faster. The parameter c may be regarded as to mean the 
strength of decrease of environmental favorability for the considered population. Or it may be regarded as to 
mean the sensitivity of the considered population to the decreasing environmental favorability, The smaller c 
indicates the higher sensitivity, so that the population is more strongly affected by it and decreases faster. 

In this paper, we consider the following five types of environmental effect: 

Type A: b(t) = 

Type B: b( t )  = 

Type C: b(t )  = 

Type D: b(t )  =- 

Type E: b( t )  = 

c 'b ,  i f ( t )  = cto -, S(  t)  = ctS; 

b, o ' ( t )  = or, S ( t )  = ctS; 

c tb ,  o ' ( t )  = ~r, 7S(t) =- 7S; 

b, ~ ( t )  = c ~ ,  ~ ( t )  - rS; 

c tb ,  o - ( t )  = cb ' ,  S ( t )  = S, 

where c, b, o- (0 < c, b, o-< 1) ,  and S are positive constants. In Type A, the survival rate of individuals at 
every stage decreases step by step. In Type B, the decreasing fertility of habitat affects only the capability of 
seedling. In Type C, the probability of successful germination decreases due to the environmental effect 
specified for seeds. In Type D, the probability of successful seedling decreases, for instance, due to the reducing 
fertility of habitat. In Type E, the capability of seedling is not affected from such decreasing environmental 
favorability, whereas the effect works on those individuals after germination, for example, due to the 
competition for resources including space and light. 

3. Analysis 

3.1. Persistence o f  monocarpic annual plant  population 

At first, we consider the condition for the persistence of monocarpic annual plant population, especially 
focusing on the population size of seeds. As the initial state, we consider the situation just after an ecological 
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disturbance: B 0 = (S 0, 0, 0) r. The seed population St at time t without any disturbance up to t can be obtained 
from Eqs. (3) and (5) (see Appendix A): 

n - I  

$3,- -  S0 I--I S(3rn + 2 ) t r ( 3 m  + 1 ) b ( 3 m ) ,  $3,_ 1 = $3,_2 = 0 ( n  = 1 , 2 , 3  . . . .  ) .  (9)  
m ~ 0  

In the case when every parameter is temporally constant: t r ( t )  = tr,  b(t)  = b, and S(t)  = S, the form of S t is 
given by $3, = (obS)nSo,  $3,_ l = $3,-~_= 0(n = 1, 2 , . . .  ). Thus, if o-bS < 1, $3~ monotonically decreases as 
n gets larger, and lim,_.~ S t = 0. If o b S >  1, SaN infinitely increases as n ~ ~. So the population can persist 

3 0 0 0 0  . . , . , , . 

3 5 0 0 0  

2 0 0 0 0  

S l  1 5 0 0 0  

1 0 0 0 0  

5 0 0 0  

O -  
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3 0 0 0 0  
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1 0 0 0 0  
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Fig.  1. T e m p o r a l  var ia t ion  o f  seed  popula t ion S ~ in case  o f  T y p e  C wi thou t  a n y  d i s tu rbance ,  b = 0.5; o- = 0.6; S = 100; S o = 100; c = 0.6. 

(a )  a = 0: (b )  a = 0.3,  0.5,  0.7. In case  o f ( a ) ,  on ly  the t ime  s teps  such as  t = 3k  ( k  = 0, 1, 2, • • • ) can  h a v e  pos i t ive  popula t ion ,  w h e r e a s  

the o thers  necessa r i ly  zero.  
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when and only when o-bS>_ 1. We can also get the same result by the eigenvalue analysis for the transition 
matrix L t with constant parameters (Appendix B). 

With Type A of environmental effect, from Eq. (9), S t turns out as follows: 

$3" = c 3,(3,- ,) /2 ( o- bS)"  S o , $3, +l = $3, +2 = 0( n = 0, 1,2 . . . .  ) ,  (10) 

and then lira t_.= S t = 0 because c < 1. Also with the other types of environmental effect, we can obtain the 
similar forms of S t (Appendix C). It is remarked that $3,+1 = $3,+2 = 0 for any n > 0, and limt.~® St= 0, 
independently of the type of environmental effect (see Appendix B). In the environment without any 
disturbance, the considered plant population must reach extinction (see Fig. 1). This is the result by decreasing 
environmental favorability mentioned above as one factor of our modelling. It is remarked that this is valid even 
when (r bS > 1, because the effect of decreasing environmental favorability grows rapidly as time passes (see 
Appendix C). The effect is indeed exponential with the order of square of time. When o- bS is sufficiently larger 
than 1, $3, increases in the early and keeps on decreasing in the latter after a critical time. 

In this paper, we consider the ecological disturbance which periodically occurs with period T (>  1). Since 
the seed population becomes y S  r just after the first disturbance at time T and the environment is then renewed, 
we can consider that, if y S  r >_ S o, the population can persist. In case of our annual plant population, since 
$3,+1 = $ 3 , + 2 = 0  for n = 0 ,  1, 2 . . . . .  if the disturbance has the period T = 3 k - 1  or T = 3 k - 2  ( k =  1, 
2 . . . .  ), the population is completely extinguished by the disturbance. So, in this model, we focus on the case 
when T = 3k (k = 1, 2 . . . .  ). This condition is necessary for the persistence of the considered annual population. 

In the case of Type A, the necessary and sufficient condition for TS3, > S o is obtained as follows (for cases 
of the other types of environmental effect, see Appendix D): 

log (rbS 9n - 3 log y 
- - > _ - - + - - .  (11) 

log c 2 n log c 

The qualitative nature of S t is similar among those models with different types of environmental effect 
(Appendix D). The difference among them is just for the constant value of coefficients. So the conditions for the 
disturbance-controlled persistence for them have the qualitatively similar nature, corresponding to Eq. (11). 
From those results given in Appendix D, we can easily find that the most severe condition for the 
disturbance-controlled persistence is for Type A. Besides, for the disturbance period T > 6, the order among 

(a) 
/~ .::::i:iiiii 

./::::::::::::::::::::::::::::::::::::::: 

....   !iiiii ;i::iiiiii i!i::i!i::!iiii: 
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, -- lo~ob~ 

lo9 c 

log c leg c 

Fig. 2. Parameter region g2 for TS r >_ S o. (a) y < 1; (b, c) 3' = 1. The configuration (c) corresponds to the case of Type B with 3' = 1, and 
(b) to the others. The boundary of 12 had the asymptote ~o. Forms of w and (A* ,  T * )  for each type of environmental effect are given in 
Appendix D. 
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Fig. 3. Pa rame te r  dependence  o f  the temporal  variat ion S t o f  monoca rp ic  annual  plant  in case o f  Type  C with the d is turbance  which  has the 

parameters  3' = 0.2 and T = 15. b = 0.5; o" = 0.6; S = 50; S O = 100. 

those types of environmental effect from severe to moderate in terms of the condition for persistence is given as 
follows: A > E > B > D > C. For Type A, every stage is affected by decreasing environmental favorability, and 
for Type E, two of them, seed and rosette stages are. For types B, D, and C, only one stage of them is affected. 
This result shows that the effect of decreasing environmental favorability is more severe for the flower stage 
than for the rosette one, and for the rosette one than for the seed one. 

Commonly for every type of environmental effect, as for the result of the qualitative nature, it is shown that, 
for a sufficiently long period of disturbance, that is, for sufficiently large n, the population persistence is 
essentially determined by the strength of the decrease of environmental favorability, whereas the strength of 
disturbance has little importance for the persistence. 

As seen from Fig. 2, if the plant population has the character satisfying - log o- bS/ log c < 3.4", then S t < S O 
for any t, and the population becomes extinct independently of whether the disturbance occurs or not. The 
critical value A* is determined by the strength of disturbance, log y / log  c (as for A* for each type of 
environmental effect, see Appendix D). A* means the least quality necessary for the disturbance-controlled 
persistence of the considered population. For the population with - log o- bS/ log c > A*, it has the possibility 
to persist by the disturbance with some appropriately intermediate period T in a finite range. Especially, A* is 
the lowest value for - l o g  o-bS/log c in order for the plant population to persist by a temporally periodical 
disturbance with periods around T *, where T * is uniquely determined also by log 3'/log c (for each type of 
environmental effect, see Appendix D). When 3' :~ 1 and T < T*,  the smaller T is, the less the possibility of 
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Fig. 4. Pa ramete r  b o u n d a r y  for  the populat ion persistence.  Numer ica l  ca lcula t ions  for  cases  when a = 0, a = 0.1, a = 0.5, and a = 0.85. The 

other  parameters  are b = 0.5,  o" = 0.6,  S = 100, and 3' = 0.2. For  the paramete r  set in the region o f  lef thand side o f  each  boundary ,  the 

popula t ion  reaches  extinct ion.  In the case  o f  a = 0, only  the d i s tu rbance  period T = 3k(k = 1, 2, • • • ) can  make  the populat ion persist. 



2 1 4  H. Giho, H. Seno /Ecological Modelling 94 (1997) 207-219 

population persistence. When T > T* or T* < 1, the larger T is, the less the possibility is (see Fig. 2(a)). In 
case of T = 1, when the seed population is not affected by the disturbance, the population can persist only under 
such a disturbance as with sufficiently small periods (Fig. 2(b, c)). Numerical results in Fig. 3 shows the 
dependence of the population persistence on the parameter value of - l o g  tr bS/ log  c under the disturbance 
with T = 0.2 and T =  15. Only the population with a sufficiently large value of - l o g  ( rbS/ log  c can persist 
and grow after a number of generations. 
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Fig .  5. P a r a m e t e r  d e p e n d e n c e  o f  the  l o w e s t  v a l u e  o f  the  p a r a m e t e r  - l og  (r  b S / l o g  c to  m a k e  the  p o p u l a t i o n  pe r s i s t  in c a s e  o f  T y p e  A.  T h e  

l o w e s t  v a l u e s  a r e  r e s p e c t i v e l y  p lo t t ed  f o r  s u c h  t ime  s teps  as  (a )  t = 3 k ;  (b )  t = 3 k  - 1; (c)  t = 3 k  - 2 ( k  = 1, 2 , .  • • ). N u m e r i c a l  c a l c u l a t i o n s  

a re  c a r r i e d  o u t  w i t h  b = 0 .5 ;  o- = 0 .6 ;  S = 100; 3, = 0 .2 ,  0 .4 ,  0 .6 ,  0 .8 ,  1.0. F o r  the  l a rge r  T ,  the  c u r v e  b e c o m e s  l o w e r .  
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3.2. Contribution of  perennation to population persistence 

As for the contribution of  perennation to the disturbance-controlled plant population, we examine it with 
some numerical calculations for our model given by Eq. (4) with a(t) = a (constant) > 0. Fig. 4 gives the 
numerical result about the parameter boundary for the population persistence, corresponding to the result given 
by Fig. 2 in case of  a = 0. In case of  a > 0, since the seed production can occur at every time step, there is the 
possibility of persistence under the disturbance with period T = 3k - 1 or T = 3k - 2 (k = 1, 2 . . . .  ), differently 
from the case of  a = 0. Numerical calculations in Fig. 4 indicate that the parameter boundary for T = 3k (k = 1, 
2 . . . .  ) in the case of a > 0 always locates on the righthand side of  that in the case of  a = 0. Hence, the 
population with a = 0 (annual) has higher persistence than one with a > 0 (perennial) for the disturbance with 
period T = 3 k (k = 1, 2 . . . .  ). 

Furthermore, as indicated by Fig. 5 with numerical results in case of  Type A, the lowest value of  the 
parameter - l o g  ~rbS/ log  c to make the plant population persist depends significantly on the perennation 
parameter a. Those numerical calculations show that the lowest of  the lowest values over every period of  t is 
taken for the case of  T =  3k. Indeed the curves in Fig. 5(a) are located lower than those in Fig. 5(b, c) 
respectively for each y. Since the lowest value of  the parameter - l o g  tr bS / log  c means the lowest quality 
required for the disturbance-controlled persistence of population, this result indicates that the disturbance with 
period T = 3 k could work best for the population persistence. 

On the other hand, the lowest value of  the parameter - log o -bS/ log  c for T =  3k (see Fig. 5(a)) increases as 
a becomes larger, while those for T = 3 k -  1 and T =  3 k -  2 (Fig. 5(b, c)) take the lowest values for some 
intermediate perennation rate a (0 < a < 1). Therefore, for the disturbance with period T = 3k - 1 or T =  3k - 2, 
the population with an intermediate perennation rate a can be regarded as the most persistent. However, as 
already mentioned above, the lowest value of the parameter - l o g  tr bS/ log  c over every period of  T is taken 
for the case of  T = 3k. So the lowest quality for the disturbance-controlled persistence is determined as a whole 
by the lowest value of  the parameter - l o g  ~ b S / l o g  c for the case of  T =  3k, and it is monotonically 
increasing in terms of  the perennation rate a as shown by Fig. 5(a). Lastly, the lowest quality for the 
disturbance-controlled persistence is the lowest as a whole in the case of  a = 0, that is, for the monocarpic 
annual plant population. 

Since the seed population at time t = 3k - 1 and t = 3k - 2 is zero when a = 0, the lowest value of  the 
parameter - l o g  o-bS/log c for the population persistence under the disturbance with period T =  3 k -  1 and 
T = 3k - 2 tends to increase to positively infinite as a becomes zero, numerically shown in Fig. 5(b, c). In the 
case when a = 1, there is no flower population to produce the seed, so that the population must reach extinction. 
Hence, the lowest value of  the parameter - log tr bS / log  c goes positively infinite also as a approaches 1, 
shown in Fig. 5. 

4. Discussion 

In this paper, with a transition matrix model, we consider the plant population, which is subordinate in terms 
of the persistence and must tend to reach extinction in the environment without any ecological disturbance. 
Especially, we focus on the effect of  the period of  ecological disturbance which periodically occurs. For 
examples of  such periodical or quasi-periodical occurrence of  ecological disturbance, we could consider 
typhoons, floods, fires or some tidal effects. Related to the life cycle of  population, the ecological disturbance 
must have considerable effect on the population persistence (Silvertown and Doust, 1993). The main scope of  
our mathematical work is to demonstrate how such an effect is related to the population persistence. 

With one of  the well-known transition matrix modellings (Leslie, 1945; Leslie, 1948; Pielou, 1969; 
Charlesworth, 1980; Caswell, 1990), we can analytically and numerically derive the condition for the 
persistence of  the monocarpic plant population under the temporally periodical disturbance. In our modelling, 
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we assume that the effect of temporally environmental changes, including growing specific competitions and 
resource exhaustion, is reflected in the temporal variation of parameters characterizing the population dynamics. 
The temporal variation of parameters is assumed to lead the population to its terminal extinction. This means 
that the considered population is subordinate with the low tolerance to the successive environmental changes. 
Under such assumptions, we introduce the temporally periodical disturbance to our model. The considered 
disturbance is the temporally periodical process in which the disturbance eliminates rosette and flower 
populations, and picks up a portion of seed population. Every temporally variable parameters are renewed to the 
initial condition just after the disturbance. 

It is shown that the necessary conditions exist for the period of disturbance so as to increase the population 
size. Only the disturbance with some appropriate intermediate period could work well for the persistence of 
population. Such disturbance-controlled persistence could be realized only for the population with relatively 
satisfactory potential of reproduction. As shown by the results Figs. 2, 4 and 5, there exists the critical value for 
the parameter - l o g  trbS/log c. Populations with the parameter less than the critical cannot persist even with 
any disturbance. Only for the population with the parameter beyond it, does there exist such a finite range of the 
period of disturbance as to make it persist. Since, as the parameter c gets smaller, the parameter - log o" bS/ log c 
becomes smaller, this result indicates that, if the decrease of environmental favorability is too effective for the 
considered population, the disturbance-controlled persistence cannot be realized. Furthermore, those figures 
indicate that, for populations with sufficiently large parameter values of - l o g  o-bS/log c, the population 
becomes extinct only if the period of disturbance is sufficiently long. In contrast, for populations with small 
parameter values of - l o g  trbS/log c, the disturbance with sufficiently short periods also comes to nothing for 
the persistence. 

As for the contribution of the perennation to the disturbance-controlled population persistence, from 
numerical calculations as shown in Fig. 5, it is shown that the lowest quality required for the disturbance-con- 
trolled population persistence is determined by the lowest quality in case of the disturbance period T = 3k, and 
is monotonically increasing in terms of the perennation rate a. So, the lowest quality A* for the disturbance- 
controlled population persistence becomes the lowest when a -- 0, that is, in case of the monocarpic annual 
plant population. This result indicates that the disturbance-controlled persistence is more feasible for the annual 
plant than for the perennial. On the other hand, since the monocarpic annual plant population includes positive 
seed population only at time t = 3k, if the disturbance happens to occur at time t = 3k - 1 or t = 3 k -  2 with 
no seed population, the population must face extinction. By this reason, the population most persistent over a 
large number of generations might be expected to have a perennation character, especially with an intermediate 
perennation rate. Therefore, along this argument, it is conjectured that the intermediate perennation rate a would 
exist, or the flowering rate 1 -  a, optimal for the disturbance-controlled population persistence. It is also 
remarked in Fig. 5 that the perennation with too large a rate a works badly for the population persistence. 

Although our modelling is one of the most basic and simplified ones, we expect that our modelling 
considerations will give some intuitive or perspective views to consider the contribution of ecological 
disturbance to the persistence of some subordinate plant populations. 

Appendix A 

In this appendix, we show the way to obtain the general form of S t for the monocarpic annual plant. We 
denote 

t ( x t ( k ) y , ( k ) z , ( k )  } 
H t i  = , * * , 

i=t  - k  , , • 
(A.1) 
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where the first row is given by (xt(k), y,(k), zt(k)), and 0 <_ k < t. From Eq. (3), it is easily proved that 

S t = Sox ̀ _ , ( t -  1). (A.2) 

By multiplying L,_~k + I) to Eq. (A.1) from the right, we can get the following recurrence relations: 

xt (k  + l ) = b ( t - ( k  + l ) ) y , ( k )  

y t ( k+  1) = o ' ( t - -  ( k +  1)) zt(k)  

z,(k + 1) = S ( t -  (k  + l ) ) x t ( k  ) 

Hence, the recurrence relation for x~(k) is obtained as follows: 

x , (k  + 3) = S ( t -  (k  + 1 ) ) o - ( t -  (k  + 2 ) ) b ( t -  (k + 3)) x , (k ) .  (A.3) 

From x~(0) = 0, xt(1) = 0, and xt(2) = S ( t ) o ( t -  1 ) b ( t -  2), we can obtain the following general form with 
the mathematical reduction: 

k 

x t (3k+ 2) = I-I s ( t -  3 m ) o - ( t -  3 m -  1 ) b ( t -  3 m -  2),  xt(3k ) = x , ( 3 k  + 1) = 0 ( k =  0,1,2 . . . .  ) 
m = 0  

(A.4) 

From Eqs. (A.2) and (A.4), the result Eq. (9) is obtained. 

Appendix B 

In this appendix,we consider the condition for the persistence of monocarpic perennial plant when b(t) = b, 
a(t) = a, or, and S( t )= S, by the eigenvalue analysis for the transition matrix L~ = L which is now time 
independent. The condition for the monocarpic annual plant is included in the condition derived below as a 
specific case with a = 0. 

Let P(A) denote the characteristic polynomial for L, which is explicitly obtained as follows: 

p ( A )  = _ a A :  - ( 1  - a )  (B.1) 

The necessary and sufficient condition for lim t _~ ~ S t = 0 is that the absolute values of all eigenvalues are 
less than 1. It can easily be found that among the roots of P(A) = 0, one is real and the other two complex. We 
denote a is the real root, /3 and /3 are the conjugate complex ones. The condition for ct < 1 is that 
P( I )  = 1 - a -  (1 - a ) o ' b S >  O, that is, tTbS < 1. Moreover, from the relation between roots and coefficients 
about the equation P(A) = 0, we can get the followings: 

t ~ + i 3 + ~ = a ,  c t ( / 3 + f l ) + / 3 ~ = 0 ,  o t f l f l= (1 -a )o -bTS.  (B.2) 

From these relations, it can be easily proven that 11312= a ( c t -  a), and c~> 0. Hence, the condition for 
1/31<1 is that a 2 - a a < l .  Now, the domain of positive c~ for a 2 - a a - l < O  is (0, a * ) ,  where 

a * = (a + ~ + 4 ) / 2 .  Since a * > 1, the condition for 1131 < 1 is that a < min{1,a *} = 1. 
Lastly, the condition that the absolute values of all eigenvalues are less that 1 is that o-bS < 1. 
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Appendix C 

In this appendix, from Eq. (9), first we show the list of  the general form of S3n(n = 0, 1, 2 . . . .  ) for each type 
of environmental effect: 

S3n 
Type A c3n(3n- 1)/2(0. bS)"S 0 

Type B c"(3" + l)/2 ( tr bS)"S o 

Type C c 3n(n- l)/2( o" bS)nSo 
Type D c "(3"- l ) /2(crbS)nSo 

Type E c n(3  n - 2)( O" bS) nS o 

Independently of  the type of  environmental effect, 

S3.+l = $3.+2 = 0 (n  = 0,1,2 . . . .  ).  

As for the asymptotic behaviour of  S t as t ~ ~, for instance, in case of  Type B, since 

S3n = ( c 1/2(3n+ l)o-b~ ) "So. 

(c.1) 

(c.2) 
$3. becomes smaller than S o for n more than the critical real value n* such that 

c t/2(3"" + 1)o'bS = 1, (C.3) 

that gives 

21n o-bS 
3n* 1. (C.4)  

In c 

There exists a positive value • such that 

C 1/2(3n+ l)tr b S  ~ • < 1 (C.5) 

for any n > n*,  and 

$3. < • "S  o. (C.6) 

The right hand side of  Eq. (C.6) converges to zero as n ~ o% so S3n does. Therefore, limt_~ ~ S t = 0. Also 
for the other types of  environmental effect, it can be proven in the same way that lira t _. =S t = 0. 

Appendix D 

In this appendix, we consider the necessary and sufficient conditions for yS3, , > S o. For instance, in case of  
Type A, the condition TS3n >_ S O is equivalent to 

yc3. (3 . - , ) /2(  o 'bS)"  _> 1. (D.1)  

This leads to the following: 

3 
log y + -~ n(3n - 1)log c + n log tr bS _> 0. (D.2) 
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From (D.2), since logc < 0, we can get the condition (11). For the other types of enviromental effect, the 
corresponding conditions can be respectively derived in the same way as given in the following table: 

3"53n ~ S 0 

t log o'bS 9n - 3 log 3' 
Type A - -  > -  + - -  

log c 2 n log c 

log o-bS 3n + 1 log 3' 
Type B - -  > -  + - -  

log c 2 n log c 

log o-bS 3n - 3 log 3' 
Type C - -  > - -  + - -  

log c 2 n log c 

log o-bS 3n - 1 log 3' 
Type D - -  > - -  + -  

log c 2 n log c 

log o- bS log 3' 
Type E - -  > 3 n -  2 + - -  

log c n log c 

Besides, we give the explicit forms of the asymptote to and the point ( A*, T * ) indicated in Fig. 1. They are 
easily derived from the conditions for 3'$3n > S 0, which have been obtained above. 

to (A*, T*) 

2log o-bS ~ 3 ~ l o g 3 '  + 1 (3¢2- log 3' v~- ) 
Type A T = 3 log c log c 2 ' log c 

2log o-bS ~/ 1 / log3 '  1 (~f~ log 3" + _ x/6 ) 
Type B T = log c log c 2 ' log c 

2 log ¢ log 3' 3 ¢ ,fiog 3" 
Type C T = log c + 3 (¢-6 log c 2 '  V log c ) 

2log orbs V/ 1 V ~ I : : ~  
Type D T -  log c + 1 (vr6 logl°g 3,c 2 '  V~ ) 

log trbS ~ ~/  - -  + 2 (2v~- 2, v~- log 3' ) 
Type E T = log c log c 
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