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Abstract. We consider a mathematical model for the group size determination by the intra-
reactions, self-growth, ostracism and fission within a group, and by the inter-reactions,
immigration and fusion between two groups. In some group reactions, a conflict between
two groups occurs about the reaction to change the group size. We construct a mathemat-
ical model to consider such conflict, taking into account the inclusive fitness of members
in each group. In the conflict about the fusion between two groups, our analysis shows that
the smaller group wants to fuse, while the larger does not. Also the criterion to resolve
the conflict is discussed, and some numerical examples are given, too. It is concluded that,
depending on the deviation in the total cost paid for the conflict by counterparts, the group
reactions could result in a terminal group size different from that reached only by a sequence
of outsider’s immigrations into a group.

1. Introduction

Theoretical considerations for biological group formation have been attractive for
many researchers in biology and mathematical biology [19,26,28]. As an interest-
ing aggregation process related to biology, some mathematical models have been
constructed and analyzed with an analogy of physical aggregation processes (see [5,
8,12–14] and their references). Apart from those models, some mathematical con-
siderations based on individual fitness have been presented in a number of works.
One of such well-known mathematical considerations is game theoretic modelling
(for instance, [3,4]), of which some are related to foraging theory [7]. Another is
modelling with dynamic programming [17,21,22]. For an example of such model-
ling analysis, the optimal hunting group size of lions was discussed [6,25], taking
into account the physical condition of the hunter and the expected future energy
gain.

In such frameworks of mathematical modelling, the relatedness among indi-
viduals has not been taken into account, although it is indicated by the theory of
evolutionarily stable strategy (ESS) that the relatedness plays an important role in
determining the group size [23,24]. For examples of such theoretical arguments,

H. Seno: Department of Mathematical and Life Sciences, Graduate School of Science,
Hiroshima University, Higashi-hiroshima 739-8526, Japan. e-mail: seno@math.sci.
hiroshima-u.ac.jp

Key words or phrases: Group size – Inclusive fitness – Optimal choice – Conflict resolution
– Fusion – Fission



Group size determined by fusion and fission 71

see Caraco and Wolf [6], and Packer et al. [25] who discussed the hunting group
size of lions (for other examples in a different or more general context, see [9–11,
16,30,31]).

Assume that the mean fitness per individual within a group of n individuals
is given as a function of n, w(n), which increases for a range 1 ≤ n < nG, and
decreases for n ≥ nG. The size nG maximizes the mean fitness w(n) per individual
inside the group, and was called the optimal group size [6,16,25,30]. The optimal
group size nG is derived as the ESS for an insider of the group. On the other hand,
assuming that w(n) falls below w(1) when once the group size n exceeds a value
nS [i.e., w(n) ≥ w(1) for n ≤ nS, while w(n) < w(1) for n > nS], it is argued
that the optimal group size nG cannot be stable when solitary outsiders can freely
join the group; solitary outsiders are expected to join the group as long as joining
the group increases their own fitness, expanding the group size up to nS, at which
solitary outsiders no longer join the group and remain solitary, stopping group size
growth by a sequence of solitary outsider’s immigrations. Thus, nS was called the
stable group size by Sibly [29], and can be derived as the ESS for a solitary outsider
against the group.

Both of the above-mentioned potential ESSs are based on the direct fitness,
that is, on the fitness gained by each individual itself. However, the contribution
of the relatedness to the determination of group size would be one of the main
factors to be considered: a local population is considered where the mean degree
of genetic relatedness within the population is r . If the relatedness coefficient r

takes a non-zero value, i.e., if individuals have a significant relatedness, as is the
case for many examples of group forming, the inclusive fitness (IF; see [15]) should
be considered instead of the direct fitness. For example, Rodman [27] discussed
groups of relatives and suggested that the group size to maximize each member’s
IF value exceeds the associated size to maximize the direct fitness (also see [1,2]).

In this paper, with mathematical modelling based on the principle to increase
the IF, we discuss how the optimal group size is determined by the intra-reactions,
ostracism and fisson, and by the inter-reactions, immigration and fusion between
two groups. The aim of our analysis is not to consider how the change of group
size would occur but to derive some theoretical results about the criterion to change
the group size when it leads to an increase (or, at least, no decrease) of the IF of
members in a group.

2. Fitness function w(n)

In this section, we describe the characteristic nature of the direct fitness function
w(n) considered in this paper, which gives the fitness value per individual within a
group of n individuals. As in [16], we assume that the direct fitness function w(n)

has the following characteristics (see a numerical example in Fig. 1):

(i) There exists the unique group size nG (> 1) such that

w(n) ≤ w(nG) for any n.
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Fig. 1. A numerical example of the direct fitness function w(n) which gives the expected
fitness per member within a group of size n. As for those specific sizes indicated in figure,
see text. nG = 20, nS = 90, and nc = 13. In addition, Mf = 34, n∗

S = mf (1) + 1 = 69, and
M∗

f = 50 are for the case when r = 0 · 2 with kji = 1 for any i and j .

(ii) w(n) increases monotonically for n ≤ nG, whereas w(n) decreases monoton-
ically for n > nG:

w(n) < w(n + 1) for any n < nG;
w(n) > w(n + 1) for any n ≥ nG.

(iii) There exists the unique group size nS such that

w(n) ≥ w(1) for any n ≤ nS;
w(n) < w(1) for any n > nS.

3. Fusion

3.1. Relative inclusive fitness

We define the relative IF value �i(i + j) per member in the group G(i) of size i

when the group fuses with another group G(j) of size j :

�i(i + j) := �w(i + j, i) + r(i − 1)�w(i + j, i) + rj�w(i + j, j), (1)

where �w(i, j) = w(i) − w(j). �i(i + j) gives the change of IF value for a
member g in G(i) when G(i) fuses with G(j), relative to that when G(i) does not
fuse and remains with size i. The first term of (1) means the contribution of g’s
own fitness, the second does that of the other members’ fitness in the same group
G(i), and the third does that of members’ in the counter group G(j), weighted by
the relatedness r . Let us remark that �i(i) = 0. Indeed, �i(i) means the relative
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IF value per member in G(i) when the size is kept i, so that the IF itself does not
change.

Relatedness in this model is commonly given by r between members within
the same group as well as between individuals belonging to different groups. This
means that r corresponds to the relatedness averaged over the considered popula-
tion including all groups. We further assume that the optimality for group size is
governed only by the IF of an individual. If an individual could behave to afford the
higher fitness to the closer related individuals, such a behavior would be favored by
the natural selection. However, in our prototype model, we assume that such more
informative behavior does not exist, whereas every individuals behave according
to the mean relatedness given as a constant specified for the considered population.
In addition, the behavioral choice by any member in the same group is assumed to
be identical without any difference to maximize its IF value. As for a mathemat-
ically explicit introduction of qualitative difference between members in a group,
for instance, see [18]. To introduce the difference of relatedness among individuals
may be the next step of our modelling.

3.2. Maximal fusion-acceptable group size

Now we define the maximal fusion-acceptable group size mf (i) for the group of
size i by

mf (i) := max {j | �i(i + k) ≥ 0 for all k with 0 ≤ k ≤ j} . (2)

Hence, we have �i

(
i + [

mf (i) + 1
])

< 0. Group of size mf (i) is the largest
group with which G(i) wants the fusion. Since �i(i) = 0 for any i, we find that
mf (i) = 0 if and only if �i(i + 1) < 0. The group of such size i that mf (i) = 0
does not want to fuse with any other group. As for mf (i), we can find the following:

Proposition 1. The maximal fusion-acceptable group size mf (i) defined by (2)
uniquely exists. For each i < nc, mf (i) is non-increasing in terms of the related-
ness r , for each i > nc, non-decreasing, and mf (nc) = nc, where

nc := max {j | w(k) ≤ w(2k) for all k ≤ j} . (3)

For any fixed relatedness r , mf (i) is non-increasing in terms of i.

The specific size nc always exists well-defined as follows immediately from the
characteristics of the fitness function w. Moreover, we can easily find that 1 <

nc < nG, since w(1) < w(2) and w(nG) > w(2nG).
In Appendix A, we prove the unique existence of mf (i) for each i, making use

of the following specific sizes ni and Ni :

ni := max{j | w(k) ≤ w(i + k) for all k with 0 ≤ k ≤ j}; (4)

Ni := max{j | w(i) ≤ w(k) for all k with i ≤ k ≤ j} for i < nG. (5)

The uniqueness of Ni and ni can be easily seen from the characteristics of the
fitness function w. From the unimodality of w, Ni ≥ nG and i +ni ≥ nG. From the
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piecewise monotonicity of w, Ni and ni are non-increasing in terms of i. Moreover,
from definitions (4) and (5), N1 = nS, Nni

= i + ni , Nnc = 2nc, and nnc = nc.
In Appendix B, we give the proof of the relation that mf (nc) = nc, and some

other mathematical characteristics of mf (i), which are useful for our analysis. The
dependence of mf (i) on the relatedness r in Proposition 1 is proved in Appendix
C, and the dependence on the group size i is proved in Appendix D.

As for the specific case of i = 1, Higashi and Yamamura [16] discussed the
corresponding model and got the following result:

Proposition 2. There exists a specific group size Mf defined by

Mf := min
{
j | mf (j) = 0

}
, (6)

such that nS ≥ mf (1) + 1 ≥ Mf ≥ nG. As the relatedness r gets larger, Mf

becomes larger.

They called Mf (n∗
G in [16]) the IF-optimal group size, and mf (1)+ 1 (n∗

S in [16])
the IF-stable group size. Mf means the upper bound for the group size with which
the group could make a fusion: Any group of size beyond or equal to Mf never
wants to fuse with any other group, while every group of size below Mf wants to
fuse with some group. Since Higashi andYamamura [16] considered only the group
size determined by a series of solitary outsider’s immigrations into a group, Mf

means the size with which the group does not accept any solitary outsider’s immi-
gration, and mf (1) means the maximal group size with which a solitary outsider
wants to immigrate into the group. Thus, mf (1) + 1 means the minimal group size
with which a solitary outsider never wants to immigrate into the group. From the
characteristics of w, we can easily find that mf (1) ≥ nG − 1.

3.3. Conflict about the fusion

Next, we consider the existence of a conflict about the fusion between G(i) and
G(j). If mf (j) < i when G(i) wants the fusion, the conflict about the fusion is
likely to occur between these groups, because the condition mf (j) < i means that
�j(j + i) < 0, so that G(j) does not want the fusion. Therefore, if there exists
some i such that mf (mf (i)) < i, the conflict occurs for such a group G(i) at least
when it encounters a group of size mf (i). This is because G(i) wants to fuse with
the group G(mf (i)), while the condition mf (mf (i)) < i means that

�i(i + mf (i)) ≥ 0 > �mf (i)(mf (i) + i), (7)

so that G(mf (i)) does not want the fusion.
In contrast, if mf (j) ≥ i, the fusion can occur between them without con-

flict as far as G(i) wants the fusion, because the condition mf (j) ≥ i means that
�j(i+j) ≥ 0, so that G(j)does wants the fusion, too. Moreover, ifmf (mf (i)) ≥ i,
G(i) can make the fusion whenever it wants.

With mathematical arguments given in Appendix E, we obtain the following
proposition and corollary about the occurrence of conflict:
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Proposition 3. In the group fusion, if the relatedness between two groups is 1 or if
the larger group wants the fusion, so necessarily the smaller does. In contrast, if
the relatedness between two groups is not 1, a conflict about the fusion could occur
only when the group smaller than nc wants the fusion, while the larger than nc does
not.

Corollary 1. Fusion always occurs between two groups of size below nc, while it
never occurs between two groups of size beyond nc.

3.4. Resolution of the conflict

To resolve a conflict, a compromise is necessary between those two groups in the
conflict. Let us consider the conflict between G(i) and G(j) with i < nc < j .
From Proposition 3, G(i) wants to fuse with G(j), while G(j) does not with G(i).

Suppose that each member in G(i) has to pay a cost Dji for the conflict on
average over G(i), which in general depends on the group size i and the counter
group size j . Thus, the group G(i) has to pay the total cost iDji to counter G(j)

in the conflict. In the same way, G(j) has to pay the total cost jDij to reject the
group G(i). For mathematical convenience, we define here the ratio kji of the total
cost paid by G(j) to that by G(i) as follows:

kji := jDij

iDji

. (8)

Note that kij = 1/kji from this definition.
Along the argument similar to that in [16], for the case that G(j) wins the

conflict and succeeds in rejecting the fusion with G(i), the net increment of the IF
value of each member in G(j), relative to the IF value when G(j) yielded to G(i)

and let G(i) fuse with G(j), is given by

�j(j + i) := −�j(j + i) − Dij − r(j − 1)Dij − riDji (9)

= −�j(j + i) −
[

i

j
{1 + r(j − 1)} kji + ri

]
Dji. (10)

The first term of (9) means the increment of the IF value of each member in G(j),
caused by keeping the group size j , relative to the IF value after the fusion. The
second does the cost per member in G(j) about the conflict, and the third that of
the other members in the same group G(j), weighted by relatedness r . The last
term means the cost paid by members in the counter group G(i), weighted by the
relatedness r .

In contrast, the net increment of the IF value of each member in G(i) for the
case that G(i) wins the conflict and fuses with G(j), relative to the IF value when
G(i) yielded to G(j) and gave up the fusion, is given by

�i(i + j) := �i(i + j) − Dji − r(i − 1)Dji − rjDij (11)

= �i(i + j) − {
1 + r(i − 1) + rikji

}
Dji. (12)
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The first term of (11) means the increment of the IF value of each member in G(i),
caused by the fusion with G(j). Terms from the second to the fourth have the
meanings corresponding to those of (9).

As long as the conflict continues, relative IF values �j(j + i) and �i(i + j)

eventually decline toward zero because the cumulative cost must be increasing
monotonically in terms of the duration of conflict. At a moment, one of �j(j + i)

and �i(i + j) must become zero while the other stays still positive. Then, from
the viewpoint of the IF-optimal choice, the side with zero relative IF must yield
to the other side with a positive relative IF, because the relative IF value of the
former side would become negative if the conflict still continues. Therefore, it must
be the moment of conflict resolution. If �i(i + j) becomes zero while �j(j + i)

stays positive, then the fusion does not occur because G(i) gives it up. If �j(j + i)

becomes zero while �i(i + j) stays positive, then the larger group G(j) must yield
to the smaller G(i) and accept the fusion with it, increasing the group size by i.

From this argument, we define here the group size m∗
f (j) compromisingly

acceptable for G(j) in terms of the fusion. For each n ≤ m∗
f (j), values of Dnj

and Djn must satisfy that �j(j + n) = 0 and �n(n + j) ≥ 0 at the moment of
the conflict resolution. For n = m∗

f (j), values of Dnj and Djn must satisfy that
�j(j + n) > 0 and �n(n + j) = 0 at the moment of conflict resolution.

From (10) and (12), the condition that �j(j + i) = 0 or �i(i+j) = 0 gives the
relationship of Dji to the other parameters at the moment of conflict resolution. The
obtained relationship can be used to cancel out Dji in the non-negative condition,
�i(i + j) ≥ 0 or �j(j + i) > 0. In this way, we can lastly obtain the following
result:

Proposition 4. For the conflict resolution about the fusion between two groups of
size i and j , the fusion compromisingly occurs if and only if the following F(i, j)

is non-negative:

F(i, j) := [{1 + r(j − 1)} kji + rj
]
i�i(i + j)

+ [
1 + r(i − 1) + rikji

]
j�j (j + i), (13)

where kji is a positive constant defined by (8) at the moment of conflict resolution.

Note that signs of F(i, j) and F(j, i) coincide, because F(j, i) = kijF (i, j) with
kij = 1/kji > 0. We remark that, when both �i(i + j) and �j(j + i) are non-
negative, the sign of F(i, j) is correspondingly non-negative for any value of kji .
Hence, the occurrence of fusion determined by the sign of F(i, j) in the above
proposition includes also any consenting case without conflict.

From Proposition 4, we now get another definition of the group size m∗
f (i) com-

promisingly acceptable for G(i): F(i, j) ≥ 0 for all j with 1 ≤ j ≤ m∗
f (i) and

F(i, m∗
f (i) + 1) < 0. The existence of m∗

f (i) for each i can be easily proved since
F(i, 0) = 0, �i(i + j) < 0 and �j(i + j) < 0 for suffciently large j > nG. From
the definition of m∗

f (j), when the fusion between G(i) and G(j) with j ≤ m∗
f (i)

compromisingly occurs, it is necessarily satisfied that m∗
f (j) ≥ i. From Propo-

sition 4, related to the existence of m∗
f (i), some mathematical characteristics of
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m∗
f (i) can be obtained as shown in Appendix F. Moreover, the following corollary

of Proposition 4 can be obtained (Appendix G):

Corollary 2. As kji gets larger for any j , m∗
f (i) becomes larger for i < nc, and

smaller for i > nc.

This corollary indicates that, as the total cost paid by the larger group for the
conflict gets larger, the compromised fusion becomes more feasible, because m∗

f

({the larger group}) gets smaller.
Correspondingly to the specific group size Mf defined by (6), we can define

M∗
f := min

{
j | m∗

f (j) = 0
}

, (14)

which corresponds to n∗ in [16]. Making use of the mathematical characteristics
of m∗

f (i) in Appendix F, the non-increasing monotonicity of mf (i) and ni in terms
of i, the definition of Mf given by (6), nnS−1 = 1, and nnS = 0, we can easily
find that Mf ≤ M∗

f ≤ nS. Group of size beyond or equal to M∗
f never wants its

fusion consentingly or compromisingly with any other group, while the group of
size below M∗

f wants its fusion consentingly or compromisingly with some group.
We could obtain nothing general about the maximal group size composed by a

fusion, that is, about the nature of i +m∗
f (i). In this paper, it will be shown later by

a numerical example that the size i +m∗
f (i) can take its maximum for some i > 1:

With the fusion, the group size can become larger than n∗
S = 1+m∗

f (1), that is, than
the upper bound size determined by a series of solitary outsider’s immigrations.

4. Fission

In this section, we consider the fission of a group G(n) of size n into two subgroups
g(i) and g(n−i) of size i and n−i respectively. As a specific case, we may consider
a fission into g(1) and g(n − 1), which can be called the ostracism for a member
g(1).

According to the fission of a group G(n) into subgroups g(i) and g(n − i), the
relative IF value per member in the subgroup g(i) can be given by

�n(i) := �w(i, n) + r(i − 1)�w(i, n) + r(n − i)�w(n − i, n)

= −�i(i + [n − i]), (15)

where the function � is defined by (6). Only when both �n(i) and �n(n − i) are
non-negative, the fission into subgroups g(i) and g(n − i) occurs without conflict
between them. In contrast, if �n(i) < 0 ≤ �n(n− i) or if �n(i) ≥ 0 > �n(n− i),
a conflict about the fission occurs since one subgroup wants the fission and the
other does not.

Making use of the characteristics of the IF function � analyzed in the previous
section, from Proposition 3 and Corollary 1, we can obtain the followings:

Proposition 5. If the relatedness among members in the group of size n is 1, the
fission into two subgroups occurs whenever one of two subgroups wants the fission,
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while it never occurs whenever one does not want. If the relatedness is not 1, there
could occur such a conflict about the fission that the smaller subgroup less than nc
does not want the fission while the larger than nc wants.

Corollary 3. Group fission into two subgroups of size beyond nc always occurs,
while that into two subgroups of size below nc never occurs.

Thus, for any group of size not beyond nc, any fission never occurs.
From the relation between � and � in (15), we remark that, according to the

group fission, the maximal fusion-acceptable group size mf (i) + 1 gives the min-
imal size of the counter subgroup against the subgroup of size i. In other words,
the fission into two subgroups of size i and n − i never occurs if n < mf (i) + 1.
Moreover, the specific group size Mf defined by (6) gives the lower bound for the
group size with which a fission could occur: Any fission into two subgroups never
occurs for the group of size not beyond Mf .

As for the resolution of the conflict about a fission, we can obtain the following
result corresponding to Proposition 4:

Proposition 6. For the conflict resolution about a fission into subgroups g(i) and
g(n − i), the fission compromisingly occurs if and only if the following �(i; n) is
non-negative:

�(i; n) := [{1 + r(n − i − 1)} κi;n + r(n − i)
]
i�n(i)

+ [
1 + r(i − 1) + riκi;n

]
(n − i)�n(n − i), (16)

where κi;n is a positive constant which denotes the ratio of the total cost paid by
g(n − i) to that by g(i) at the moment of conflict resolution:

κi;n := (n − i)Cn−i;n
iCi;n

. (17)

From (15), we used the following relation to derive this proposition:

�(i; n) = − F(i, n − i)|kn−i,i=κi;n . (18)

As a counterpart of m∗
f (i), we can define the specific group size m∗

d(n) that
gives the maximal size of the larger subgroup fissioned from G(n). It is satisfied
that �(k; n) ≥ 0 for all k with 1 ≤ k ≤ m∗

d(n) and �(m∗
d(n) + 1; n) < 0. From

Proposition 5, we find that m∗
d(n) ≥ nc.

In our considerations about the fission, we have not mentioned how the size of
subgroup may be determined in the fission, or how each member belongs to one
of subgroups. Our model is to consider theoretically the contribution of the group
size to the change of the inclusive fitness of member, and hence we do not take into
account the process of fusion or fission. It may be another theoretical problem to
be considered.



Group size determined by fusion and fission 79

5. Numerical example

In this section, making use of the fitness function w(n) numerically given in Fig. 1,
some properties of the group size determined especially by the group fusion are
shown by numerical calculations.

For the numerical example of the fitness function w(n) in Fig. 1, we have
nG = 20, nS = 90, and nc = 13. Critical sizes Mf , n∗

S = mf (1) + 1, and M∗
f

depend on the relatedness r and the parameter kji . As indicated in Fig. 1, Mf = 34,
n∗

S = mf (1) + 1 = 69, and M∗
f = 50 are for the case when r = 0 · 2 with kji = 1

for any i and j . Indeed, for the case with kji = 1 for any i and j , we get the result
about the r-dependence of critical sizes Mf , n∗

S = mf (1) + 1, and M∗
f as shown

in Fig. 2. Figure 2 shows that M∗
f takes its unique maximum at a specific range

of relatedness r around 0·07. The terminal group size M∗
f is larger for an inter-

mediate range of relatedness than for the other, so that the higher relatedness does
not necessarily result in the larger group size. A similar result has been obtained
by [16] according to the group size determined by a series of solitary outsider’s
immigrations.

5.1. Conflict about the fusion without cost deviation

In this section, we consider the case when kji = 1 for any i and j . Total costs paid by
encountered groups in any conflict about the fusion are equal to each other. Conflict
about the fusion occurs between encountered two groups of the gray and the black
regions in Fig. 3. Groups of the gray region in Fig. 3 result in the compromised
fusion, while those of the black region result in the rejection of the fusion. It can
be seen from Figs. 3(a1, b1) that m∗

f (i) located on the boundary between the gray
and the black regions is non-increasing in terms of i. Moreover, from Figs. 3(a2,

Fig. 2. Dependence of the critical sizes on the relatedness r , obtained numerically for the
fitness function w(n) given in Fig. 1 with kji = 1 for any i and j .
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Fig. 3. Occurrence of the conflict about the fusion in case of kji = 1 for any i and j . (a)
r = 0; (b) r = 0·2. (a1) and (b1) are about sizes of encountered groups. (a2) and (b2) are
about the group size composed by the fusion, so the hatched region is nonsense. The gray
region is of the conflict to result in the compromised fusion, and the black region is of the
conflict to result in the rejection of fusion. For the pair of group sizes below the gray and the
black regions, the fusion occurs without conflict, while, beyond them, no group wants the
fusion.

b2), the group size composed by the fusion takes its minimum at i = nc, and its
maximum at i = 1 or i = M∗

f − 1. This holds for any relatedness r , as confirmed
by some numerical calculations. Hence, we conclude that the maximal group size
composed by the fusion is M∗

f . Further, we numerically find that m∗
f (i) is larger

for an intermediate value of the relatedness r as well as M∗
f .

By comparing (a) to (b) of Fig. 3, it is implied that the number of pairs of
group sizes to cause the conflict about the fusion is non-increasing in terms of the
relatedness r , and must be zero for r = 1. Indeed, this is numerically shown in case
of kji = 1 for any i and j as indicated in Fig. 4(a). However, Fig. 4(a) shows also
that the number of conflicts resulting in the compromised fusion is not necessarily
non-increasing but increasing for a sufficiently small relatedness. In contrast, the
percentage of the compromised fusions to the total conflicts appears to have a non-
monotone variation in terms of the relatedness as shown in Fig. 4(b), although its
overall tendency may be regarded as roughly increasing.
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Fig. 4. (a) Dependence of the total number of pairs of group sizes to cause the conflict about
the fusion, and that to cause the compromised fusion on the relatedness r . (b) Dependence of
the percentage of the compromised fusion to the total conflict on the relatedness r . Numerical
results with kji = 1 for any i and j .

5.2. Conflict about the fusion with a cost deviation

Next, let us consider a case when kji �= 1 and the total cost paid for the conflict
depends on whether the group wants the fusion or not. We assume the following
specific form of kji :

kji = hλ(i, j) :=





λ when i > j ;
1 when i = j ;

1/λ when i < j,

(19)

where the parameter λ denotes the degree of the advantage of the larger group with
regard to the total cost paid for the conflict about the fusion. The case when kji = 1
corresponds to that when λ = 1. Since we have shown in the previous section that
the larger group does not want the fusion in the conflict, λ can be regarded as the
degree of the advantage of the group which does not want the fusion in the conflict.
As λ gets larger, the advantage of the larger group becomes greater. If λ < 1, then
the smaller group in the conflict about the fusion has an advantage over the larger
counter group with regard to the total cost paid for the conflict.

In Fig. 5, conflicting pairs of group sizes are indicated by the gray and the black
regions for λ = 2 and λ = 10 respectively in case of r = 0. Since the occurrence of
the conflict does not depend on kji but on the relatedness r , the total area of the gray
and the black regions in Fig. 5(a) coincides with that in case of λ = 1 in Fig. 3(a).
However, the gray region for the compromised fusion significantly depends on the
value of λ.

As seen from Figs. 5(a1, b1), m∗
f (i) located on the boundary between the gray

and the black regions is non-increasing in terms of i as in Fig. 3 for λ = 1. In con-
trast, Figs. 5(a2, b2) indicate that the maximal group size composed by the fusion
is not necessarily monotone in terms of i. Further, it is not necessarily equal to M∗

f .
These results are different from those in case of λ = 1. Indeed, numerical results
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Fig. 5. Occurrence of the conflict about the fusion. In the case when kji = hλ(i, j) given
by (19). Relatedness r = 0. (a) λ = 2; (b) λ = 10. Meanings of regions in these figures are
the same as for Fig. 3.

shown in Fig. 6 clearly indicate that the maximal size is 2nc for a sufficiently small
relatedness r and a sufficiently large λ. Especially in case of r = 0, Fig. 6(b) shows
the case when the maximal size composed by the fusion becomes 2nc larger than
M∗

f for sufficiently large λ. For r smaller than about 0·01 and λ larger than about
2, M∗

f can become smaller than 2nc as indicated by the darkest region in Fig. 6(a).
Moreover, Fig. 6(a) shows that the maximal size composed by the fusion is

not necessarily monotone in terms of the relatedness r , and takes its maximum
for some r around 0·1. This is the same tendency as already mentioned for M∗

f in
Fig. 2. Only for λ � 1 when the smaller group has a sufficiently great advantage
over the larger counter group with regard to the total cost for the conflict about the
fusion, the maximal size composed by the fusion is monotonically non-increasing
in terms of the relatedness r , as indicated in Fig. 6(a). As for the λ-dependence,
the maximal size composed by the fusion is non-increasing in terms of λ as seen in
Fig. 6(a). Moreover, numerical calculations imply that m∗

f (i) for each group size i

is non-increasing in terms of λ, too.
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Fig. 6. Maximal group size composed by the fusion. (a) (r , λ)-dependence; (b) λ-dependence
of the maximal size in case of the relatedness r = 0.

Fig. 7. (r , λ)-dependence of (a) the total number of pairs of group sizes which result in the
compromised fusion; (b) the percentage of the compromised fusions to the total conflicts.

On the other hand, as shown in Fig. 7(a), the number of pairs of group sizes
which result in the compromised fusion appears monotonically non-increasing in
terms of the relatedness r for λ ≤ 1, while it takes its maximum with an intermedi-
ate value of the relatedness r for λ > 1. As for the percentage of the compromised
fusions to the total conflicts, the dependence on the relatedness r appears more
complicated. Roughly saying from Fig. 7(b), it appears non-increasing in terms of
r for λ < 1, while non-decreasing for λ > 1. This tendency clearly appears for
some sufficiently small or sufficiently large λ, whereas it is ambiguous for some λ

around 1.

6. Conclusion

We considered the group size determined by the intra-reactions (self-growth, ostra-
cism and fission) and by the inter-reactions between two groups (immigration and
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fusion). It was shown that, in group reactions, a conflict between two groups could
occur about the reaction, according to the increment of the inclusive fitness (IF)
of members in each group. We discussed the conflict resolution, too. A numerical
example explicitly showed some interesting natures of the size determined by such
group reactions.

It is implied that there exists a certain critical group size, nc in our model,
at which the behavioral choice taken by the group in the conflict changes. The
existence and the qualitative natures of the critical size nc are determined by the
qualitative characteristics of the direct fitness function w(n). Since we assumed
only the general qualitative characteristics of w(n) in our mathematical model,
those results in this paper would be applicable also for more concrete biological
arguments.

The group size composed by the fusion may exceed the critical size nc. When
both of encountered groups have the size smaller than or larger than nc, the conflict
about the group reaction cannot occur. If every group in a community grows up its
size and simultaneously comes to exceed the critical size, then any group does not
want the fusion. Eventually, within such a community, the conflict about the fusion
never occurs. However, even in such a case, the intra-group reactions, ostracism
and fission, may occur, and the peace could not be necessarily maintained.

Our numerical example indicated that, in the case when the cost paid for the
conflict significantly depends on whether the group wants the group reaction or
not, the consequence of conflict would show some non-trivial features. The con-
sequent group size can become larger by a group fusion than by a sequence of
solitary’s immigrations. This result implies that the group size dynamics could not
be decomposed into only some reactions between a group and an individual. The
group fusion (or fission) could not be necessarily treated as a series of solitary
outsider’s immigrations (or member’s ostracisms).

Further, it was shown that the maximal group size composed by some group
fusions takes its maximum for a relatively small positive relatedness. The larger
relatedness does not necessarily result in the greater group size. Even though it
might significantly depend on the characteristics of the direct fitness function, this
result about the relatedness dependence of the maximal group size would hold for
a wide family of direct fitness functions which satisfy the general assumptions in
our modelling.

From Propositions 4 and 6, and from the kji-dependence of m∗
f (i) in Corollary

2, we can prove that, for κi;n �= kn−i,i , it is likely that the fusion could occur between
subgroups fissioned from a group: Even if the fission into g(i) and g(n− i) occurs,
it is likely that the fusion between g(i) and g(n− i) could occur if the total cost paid
by the larger group for the fusion is larger than that for the fission, relative to the
total cost paid by the smaller group. Otherwise, the fusion between those fissioned
subgroups does not occur. We may say the former fission temporal or unstable.
From Corollaries 1 and 3, since the group fusion never occurs between two groups
of size beyond nc and so never does the group fission into two subgroups of size
below nc, such a temporal fission is likely to occur only into one subgroup of size
not beyond nc and the other of size not below nc. However, we may consider that the
actual fission would be never followed by such a fusion between two subgroups just
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after their fission. Indeed, the fusion between just fissioned two subgroups would
be consumptive to lose some energy due to the conflict about the fission. It does
not seem optimal as a behavioral choice, either.

It would be a natural extension of our modelling to consider the optimal behav-
ioral choice taking into account future possible fusions and fissions. Such an optimal
theory could be used to consider the maximization of the long term payoff. One way
to incorporate such a structure to maximize the long term payoff with a sequence of
behavioral choices would be a dynamic programming modelling [17,21,22]. It may
be one of the next steps of our study for the theory of group size determination. In
such a dynamic programming modelling, a criterion to estimate each single choice
of behavior is necessary, so that we expect that the modelling and the results in this
paper could contribute to such an advanced modelling.

Some statistical natures of group sizes within a community, for example, the
frequency distribution or the rank-size relation, may be discussed through the the-
ory of the optimal size with group reactions. It is expected that theoretical results
including those in this paper will contribute to some understanding about the group
size dynamics in nature.
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Appendix

A. Existence of mf (i)

In this appendix, we prove the existence of mf (i). If it exists, the uniqueness is
trivial from the definition in the main text. Since �i(i) = 0, we find that mf (i) = 0
if and only if �i(i + 1) < 0. Otherwise, mf (i) ≥ 1. Now, let us consider only the
case when �i(i + 1) ≥ 0.

At first, let us consider

�i(i + i) = {1 + r(i + i − 1)}�w(2i, i). (20)

We see that �i(i+i) ≥ 0 only when the difference �w(2i, i) = w(2i)−w(i) > 0.
From the characteristics of w and the definition of nc, w(2i) < w(i) for any i > nc,
while w(2i) ≥ w(i) for any i ≤ nc. Thus, if i ≤ nc, then �i(i + i) ≥ 0, and
otherwise �i(i + i) < 0. This means that there exists the value defined as mf (i)

less than i if i > nc. So let us focus the case when i ≤ nc.
For i ≤ nc and j = Ni + k − i with k ≥ 1,

�i(i + [Ni + k − i]) = {1 + r(i − 1)}�w(Ni + k, i)

+r(Ni + k − i)�w(Ni + k, Ni + k − i). (21)
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Since i ≤ nc and Nnc = 2nc ≤ Ni , we find that i ≤ Ni − i. From the definition of
Ni , w(Ni +k) < w(i) ≤ w(Ni). Therefore, �w(Ni +k, i) < 0. If Ni +k−i ≤ Ni ,
then also �w(Ni + k, Ni + k − i) < 0, because i ≤ Ni − i < Ni + k − i and
w(Ni +k − i) ≥ w(i) > w(Ni +1) > w(Ni +k) from the definition of Ni and the
decreasing monotonicity of w(n) for n ≥ nG. On the other hand, if Ni +k−i > Ni ,
then w(Ni + k − i) > w(Ni + k) from the decreasing monotonicity of w(n) for
n ≥ nG and the feature that Ni > nG. This shows that �w(Ni + k, Ni + k − i) is
negative again. Hence, the right side of (21) is negative for any k ≥ 1. This means
that �i(i + j) < 0 for any j > Ni − i (≥ i). Consequently there exists the value
defined as mf (i) less than Ni − i (≥ i) when i ≤ nc. These arguments prove the
existence of mf (i). ��

B. Mathematical characteristics of mf (i)

In this appendix, we prove some mathematical characteristics of mf (i), which
appear useful for mathematical considerations about our model. At first, from defi-
nitions of Ni and ni by (4) and (5), the following lemma can be easily obtained:

Lemma 1. nc ≤ ni for i < nc, while ni ≤ nc for i > nc.

Now we prove the following lemma about mathematical characteristics of mf (i):

Lemma 2. mf (i) satisfies the following conditions:

i) ni ≤ mf (i) < Ni − i for i ≤ nc;
ii) Ni − i ≤ mf (i) ≤ ni for i > nc and i < nG;

iii) mf (i) ≤ ni for i ≥ nG;
iv) mf (i)

∣∣
r=1 ≤ mf (i) ≤ mf (i)

∣∣
r=0 for i ≤ nc;

v) mf (i)
∣∣
r=0 ≤ mf (i) ≤ mf (i)

∣∣
r=1 for i > nc;

vi) mf (nc) = nc independently of r .

Proof of i). The upper bound for mf (i), that is, mf (i) ≤ Ni − i can be proved
directly from the proof for the (unique) existence of mf (i), given in Appendix A.
So let us focus the lower bound for mf (i). When i ≤ nc ≤ ni from Lemma 1, we
find that �i(i + j) ≥ 0 for any j ≤ ni . This is because, from the definition of ni

and the increasing monotonicity of w, w(i + j) ≥ w(j) ≥ w(i) when i ≤ j ≤ ni ,
and w(i + j) ≥ w(i) ≥ w(j) when j < i ≤ ni . As a result, mf (i) ≥ ni . ��
Proof of ii) and iii). When i > nc and j = ni + k with k ≥ 1,

�i(i + [ni + k]) = {1 + r(i − 1)}�w(i + [ni + k], i)

+r(ni + k)�w(i + [ni + k], ni + k). (22)

From the definition of ni , we can find that w(i + ni + 1) < w(ni) ≤ w(i + ni).
Since i+ni > nG, w(i+ni +k) ≤ w(i+ni +1) for k ≥ 1. In addition, for i < nG,
from Lemma 1, ni ≤ nc when i > nc, and i + ni = Nni

≥ Ni > nG from the
non-increasing nature of Ni in terms of i. Hence we find that w(ni + i) < w(i). For
i ≥ nG, the decreasing monotonicity of w leads to the inequality w(i + ni + k) <
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w(i). This argument shows that �w(i + [ni + k], i) < 0, subsequently the first
term of the right side of (22) is negative.

In the same way, from the piecewise monotonicity of w, if ni + k > nG, then
w(i + ni + k) ≤ w(ni + k). If ni ≤ ni + k ≤ nG, then w(ni) ≤ w(ni + k). Since
w(i +ni + k) ≤ w(ni) for k ≥ 1, we lastly find that �w(i + [ni + k], ni + k) < 0.
Thus, the right side of (22) is negative for any k ≥ 1. Therefore, mf (i) ≤ ni .

Next, when nc < i < nG and j = Ni − i − k + 1 (1 ≤ k ≤ Ni − i),

�i(i + [Ni − i + k + 1]) = {1 + r(i − 1)}�w(Ni − k + 1, i)

+r(Ni − k − i + 1)

×�w(Ni − k + 1, Ni − i − k + 1). (23)

Since 1 ≤ k ≤ Ni − i, we find that i + 1 ≤ Ni − k + 1 ≤ Ni . Thus, from the
definition of Ni , w(Ni − k +1) ≥ w(i). Since i > nc and Nnc = 2nc, and since Ni

is non-increasing in terms of i, we find that 2i ≥ Ni , that is, Ni − i ≤ i. Besides,
from the previous arguments, 1 ≤ Ni − k − i + 1 ≤ Ni − i. Hence, from the
increasing monotonicity of w, w(Ni − i − k + 1) ≤ w(i). Therefore, the right side
of (23) is non-negative for any k. This means that mf (i) ≥ Ni − i. ��
Proof of iv) and v). From (1), we can obtain the following equation:

�i(i + j) = (1 − r) [�i(i + j)]r=0 + r [�i(i + j)]r=1 . (24)

Since 0 ≤ r ≤ 1, this means that

[�i(i + j)]r=0 ≤ �i(i + j) ≤ [�i(i + j)]r=1

or

[�i(i + j)]r=0 ≥ �i(i + j) ≥ [�i(i + j)]r=1 .

Thus, from the definition, mf (i) exists between mf (i)
∣∣
r=1 and mf (i)

∣∣
r=0.

Next, since

[�i(i + j)]r=0 = w(i + j) − w(i), (25)

it is easily found from the definition of Ni that mf (i)
∣∣
r=0 = Ni − i for i < nG.

Besides, from the characteristics of w, [�i(i + j)]r=0 < 0 for any i ≥ nG. From
i) and ii), this argument proves iv) and v). ��
Proof of vi). Since Nnc −nc = nc and nnc = nc, from i), we find that mf (i) → nc
as i → nc. From the definition, nc is determined only by the nature of w, indepen-
dently of r . ��
C. r-dependence of mf (i)

Relations iv) and v) of Lemma 2 in Appendix B mean that, for mf (i) with 0<r <1,
[
�i(i + mf (i))

]
r=1 <

[
�i(i + mf (i))

]
r=0 for i ≤ nc;

[
�i(i + mf (i))

]
r=0 <

[
�i(i + mf (i))

]
r=1 for i > nc.

Thus, from (24) in Appendix B, as r becomes larger, �i(i + j) gets smaller for
i ≤ nc and larger for i > nc. This means that, in terms of r , mf (i) is non-increasing
for i ≤ nc and non-decreasing for i > nc. ��
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D. i-dependence of mf (i)

At first, as mentioned for (25) inAppendix B, mf (i)
∣∣
r=0 = Ni −i for i < nG. Since

Ni is non-increasing in terms of i, mf (i)
∣∣
r=0 is decreasing for i < nG. Moreover,

from (25), mf (i)
∣∣
r=0 = 0 for i ≥ nG. This argument shows that mf (i)

∣∣
r=0 is

non-increasing in terms of i.
On the other hand, in order to consider the i-dependence of mf (i)

∣∣
r=1 for a

fixed relatedness r , let us see the following relation:

�i(i + j) − �j(i + j) = −(1 − r){w(i) − w(j)} (26)

as easily obtained from the definition of �. In case of r = 1, the above relation
leads to the equation

[�i(i + j)]r=1 = [
�j(i + j)

]
r=1 . (27)

The relation (27) especially indicates that the signs of both sides of (27) coincides
with each other: When the sign is negative, it means that, if mf (i)

∣
∣
r=1 < j , then

mf (i)
∣∣
r=1 < i and vice versa for two groups of size i and j . In contrast, when

the sign is non-negative, it means that, if mf (i)
∣∣
r=1 ≥ j , then mf (j)

∣∣
r=1 ≥ i and

vice versa.
Now, suppose that there exists some group size i such that mf (i)

∣∣
r=1 <

mf (i + 1)
∣∣
r=1. Then, there must exist a group size j such that mf (i)

∣∣
r=1 <

j ≤ mf (i + 1)
∣∣
r=1. The first inequality gives the relation mf (j)

∣∣
r=1 < i, while

the second does mf (j)
∣∣
r=1 ≥ i + 1. This is contradictory. Consequently, there

cannot exist any group size i such that mf (i)
∣∣
r=1 < mf (i + 1)

∣∣
r=1. This proves

that mf (i)
∣∣
r=1 is non-increasing in terms of i.

Since both mf (i)
∣∣
r=0 and mf (i)

∣∣
r=1 are non-increasing in terms of i, and

since mf (i) corresponds to the sign change of the function �, if the right side
of (24) in Appendix B for i = p with a fixed r changes its sign at j = q, then
that for i = p + 1 changes its sign at j not beyond q. This means that mf (i) is
non-increasing in terms of i with any fixed relatedness r . ��

E. Proof of Proposition 3 and Corollary 1

To prove Proposition 3 and Corollary 1, we use the following lemmas:

Lemma 3. If w(i) ≤ w(j), then �i(i + j) ≥ �j(i + j). The equality holds only
when r = 1 or w(i) = w(j).

Lemma 4. w(mf (i)) ≥ w(i) for i ≤ nc, and w(mf (i)) < w(i) for i > nc.

From the relation (26) in Appendix D, the proof of Lemma 3 is clear. So we
give here only the proof of Lemma 4. From Lemmas 1 and 2 in Appendix B,
when i < nc, it is satisfied that i < nc ≤ ni ≤ mf (i) < Ni . From the defi-
nition (4) of Ni , w(j) ≥ w(i) for any j ≤ Ni . Thus, w(mf (i)) ≥ w(i). When
i > nc, it is satisfied that mf (i) ≤ ni ≤ nc < i. Hence, from the increasing
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monotonicity of w, w(mf (i)) ≤ w(ni). The definition of ni gives the following
inequality: w(ni) ≤ w(i + ni). If i ≤ nG, then, from the increasing monotonicity
of w, w(ni) < w(i). If i > nG, then, from the decreasing monotonicity of w,
w(i) > w(i + ni). Lastly, w(ni) < w(i) for i > ni . Therefore, w(mf (i)) < w(i).
��
Proof of Proposition 3 and Corollary 1. Lemmas 3 and 4 show that, if r �= 1,

�i(i + mf (i)) ≥ �mf (i)(mf (i) + i) for any i < nc;
0 ≤ �i(i + mf (i)) < �mf (i)(mf (i) + i) for any i > nc.

Therefore, mf (mf (i)) < i for some i < nc ≤ mf (i), while mf (mf (i)) ≥ i for
any i > nc ≥ mf (i). This means the following: Between two groups of size i and
j such that i < nc < j , if the larger group of size j wants the fusion, the smaller
of size i does. In the conflict about the fusion, the smaller of size i wants the fusion
and the larger of size j does not.

Let us consider the fusion between two groups of size i and j such that i ≤ j <

nc. From Lemmas 1 and 2 in Appendix B, since nc ≤ mf (i) and nc ≤ mf (j) so
that j < mf (i) and i < mf (j), the fusion occurs without any conflict. On the other
hand, in case of two groups of size i and j such that nc < i ≤ j , from Lemmas 3
and 4, since nc ≥ mf (i) and nc ≥ mf (j) so that j > mf (i) and i > mf (j), both
two groups do not want the fusion. In the case when i < j ≤ nc or nc ≤ i < j ,
the same argument can be applied. Therefore, taking into account viii) of Lemma
2 in Appendix B, it is lastly proved that the conflict could occur only between two
groups of size i and j such that i < nc < j .

If the relatedness r = 1, Lemma 3 indicates that �i(i + j) = �j(i + j) for
any i and j , so that �i(i +mf (i)) = �mf (i)(mf (i)+ i) for any i. This means that
mf (mf (i)) = i for any i. Hence, whenever one group wants the fusion, so does
the other. Consequently, when r = 1, the conflict about the fusion never occurs.
When w(i) = w(j), �i(i +j) = �j(i +j). Thus, the conflict cannot occur, either.
These arguments prove Proposition 3 and Corollary 1. ��

F. Mathematical characteristics of m∗
f (i)

In this appendix, we prove the following lemma related to the existence of m∗
f (i):

Lemma 5.

ni ≤ m∗
f (i) ≤ mf (i) for i < nc;

mf (i) ≤ m∗
f (i) ≤ ni for i > nc;

m∗
f (nc) = nc.

Let us begin with the conflict about the fusion between two groups of size i and j

such that i < nc < j . From Proposition 3, since the smaller group wants the fusion
while the larger does not, the compromised fusion can be realized by the larger
group’s yielding to the smaller and accepting the fusion. Otherwise, the smaller
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group yields to the larger and gives up the fusion. The former resolution of con-
flict means that the maximal group size compromisingly acceptable for the larger
group is greater than the selfishly acceptable size: m∗

f (j) ≥ mf (j). On the other
hand, the latter means that the maximal group size compromisingly acceptable for
the smaller group is less than the selfishly acceptable one: m∗

f (i) ≤ mf (i). In the
case when i = nc, since mf (nc) = nc (Lemma 2 in Appendix B), we find that
m∗

f (nc) = mf (nc) = nc.
Next, we prove that ni ≤ m∗

f (i) for i < nc and that m∗
f (i) ≤ ni for i ≥ nc. For

a group of size i < nc, we find that i < nc ≤ ni ≤ mf (i) from Lemmas 1 and 2
in Appendix B. Thus, �i(i + n) ≥ 0 for any n ≤ ni . Now, consider the relative IF
value �n(i + n) for n ≤ ni . From the definition of ni , we find that �w(i + n, n)

is non-negative for any n ≤ ni . From i) of Lemma 2 in Appendix B, we find that
i < i +n ≤ i +ni ≤ Ni . Hence, w(i +n) ≥ w(i) from the definition of Ni . Lastly,
�n(n+ i) ≥ 0 for any n ≤ ni . Since both �i(i+n) and �n(n+ i) are non-negative
for any n ≤ ni , we find that F(i, j) ≥ 0 for any j ≤ ni , so that nc ≤ ni ≤ m∗

f (i).
In case of i ≥ nc, from the definition of ni and the characteristics of w, we

find that w(i + n) < w(n) for any n ≥ ni + 1. Since i ≥ ni from Lemma 1 in
Appendix B, i + n > i + ni = Nni

≥ Ni for i < nG. Thus, from the definition of
ni , w(i + n) < w(i) for i ≤ nG. For i > nG, the decreasing monotonicity of w

leads to the inequality w(i + n) < w(i). Therefore, �n(i + n) is negative for any
n ≥ ni + 1, and simultaneously �i(i + n) < 0. This means that F(i, j) < 0 for
any j > ni , so that m∗

f (i) ≤ ni ≤ nc.
Since nnc = nc and mf (nc) = nc (Lemma 2 in Appendix B), we can find that

m∗
f (nc) = nc. ��

G. Proof of Corollary 2

Let define the following function �(i, j) independent of both kij and kji :

�(i, j) := rj
[
�i(i + j) + �j(i + j)

] + (1 − r)�i(i + j). (28)

Then, F(i, j) defined by (13) can be expressed as

F(i, j) = i�(i, j)kji + j�(j, i). (29)

When j ≤ m∗
f (i), we have F(i, j) ≥ 0 from Proposition 4.At first, in the case when

i < nc < j ≤ m∗
f (i), we know that m∗

f (i) ≤ mf (i) from Lemma 1 in Appendix
B and Lemma 5 in Appendix F. Hence, j ≤ mf (i) and thus �i(i + j) ≥ 0. Now,
if �j(i + j) ≥ 0, then �(i, j) ≥ 0. In contrast, when �j(i + j) < 0, consider the
following inequality:

�(i, j) ≥ rj
[
�i(i + j) + �j(i + j)

]
. (30)

If �(i, j) < 0, the right side of (30) is negative, so eventually �(j, i) < 0. This
implies that F(i, j) < 0. Since this is contradictory to F(i, j) ≥ 0, it is con-
cluded that �(i, j) ≥ 0. Hence, in the case when i < nc < j ≤ m∗

f (i), F(i, j) is
non-decreasing as kji gets larger. This means that m∗

f (i) in this case is non-decreas-
ing as kji gets larger.
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Next, let us consider the case when m∗
f (i) < nc < i. In this case, from Lemma

1 in Appendix B and Lemma 5 in Appendix F, it is assured that mf (i) ≤ m∗
f (i) <

nc < i. Since we are interested in the case of the conflict about the fusion, let us con-
sider only the case when mf (i) < j , so that mf (i) < j ≤ m∗

f (i) < nc < i. In this
case, we have �i(i+j) < 0. If �j(i+j) ≤ 0 in this case, we obtain a contradictory
result such that F(i, j) < 0. Hence, �j(i + j) > 0. Let us now turn to F(j, i).
Along the same line of argument, it can be shown that �(j, i) ≥ 0, so that F(j, i)

is non-decreasing as kij gets larger. Since kij = 1/kji , F(j, i) is non-increasing
as kji gets larger. Since F(j, i) has the same sign as F(i, j), this result shows that
m∗

f (i) is non-increasing as kji gets larger when mf (i) < j ≤ m∗
f (i) < nc < i. ��
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