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Abstract

Shell of the adult hermit crab has some important roles for its fitness. In the same time, the shell size often limits the body growth of its
owner. To grow the body size larger, the individual must change the shell to another larger shell. If the individual cannot get another
larger one, the individual has to suppress the body size growth as the occupied shell size allows. Growth suppression would result in the
lower fitness. With a simple mathematical model, we consider the criterion about whether the individual should try to change the shell or
not in order to get the higher fitness. We show that the optimality of a shell change behavior has a relation with the body size and the
season length for the shell change. They also affect the optimal timing for the shell change. It is implied that the probability of the success
in a shell change and the cost for the shell change behavior do not affect the optimal timing for the shell change at all but significantly do

the optimality of the behavioral choice.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

About 800 species of hermit crabs carry empty snail
shells as their shelter (Hazlett, 1981; Kuhlmann, 1992;
Angel, 2000; Rotjan et al., 2004). In general, the hermit
crab grows up to adult after the period of zoea floating in
seawater like planktons. Zoea period is 2-5 weeks for the
species of the shallow sea. Although the adults are
terrestrial, they move to sea for hatching eggs. After
several molts in the zoea period, the individual seeks a
shell. Only such individual that succeeds in getting its shell
can grow up to adult and can increase the body size after
several shell changes (Reese, 1962; Hazlett, 1981; Rotjan et
al., 2004).

Some species show the reproductive activity throughout
year, and the others do only in some specific months. For
example, Calcinus laevimanus in Hawaii shows a reproduc-
tive behavior throughout year except for the period from
November to February, while Clibanarius zebra inhabiting
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in the same region breeds almost just in August (Reese,
1963).

How could the hermit crab get a new shell? We can
observe two types of behavior. The first is to obtain a shell
just after the snail dies, that is, a vacant shell. In general,
such a shell after the snail’s death is buried, destroyed and
swept away by waves. Even though a hermit crab can
encounter such a shell, it may not meet its requirement.
The second is to obtain a shell which another crab has, that
is a ritualizing behavior. Attacker hermit crab rocks,
shakes, and rapps the defender. When the defender gives
up its shell, the attacker quickly gets into the defender’s
shell, and at the same time the ejected defender gets into the
attacker’s one. In a sense, two crabs exchange the shells
from each other (Hazlett, 1981).

A merit to carry the shell is the defense against predators
(Hazlett, 1981; Kuhlmann, 1992; Angel, 2000; Rotjan et
al., 2004). When a predator comes near, the hermit crab
pulls its body into the shell and covers the shell with its
claw. Individual with a small shell is much likely subjected
to the predation, for instance, by fish (Hazlett, 1981). The
shell contributes to the tolerance against some physical
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stresses, too (Reese, 1969). In some cases, hermit crabs die
for the desiccation or the change of osmotic stress. Species
inhabiting in the high intertidal region utilizes the shell to
retain sufficient water in it (Bertness, 1981b).

Another merit of the shell is to increase the reproductive
success. For female, the shell is to guard its eggs. Some
decapod crustacea have difficulty to move with keeping
own eggs under the abdomen, whereas the shell is beneficial
for the egg protection against predation and physical
stresses. As for the reproduction success, the larger shell
makes it easier for male to grip the female and guard her
from the other males. In the case when male hermit crabs
contend for a female, the male with the larger shell could
get advantage against the other with the smaller.

On the other hand, the hermit crab has some disadvan-
tages due to keeping the shell. Carrying it requires the cost,
although it is beneficial for its survival. Actually, the
oxygen consumption by Coenobita compressus without
shell is estimated to be 67% of that with a shell (Herreid
and Full, 1986).

Besides, even when an individual seeks a new shell, it could
not always get an appropriate one. Even when the shell
becomes damaged or unsuitable for growing the body size, it
is in general not easy to find and obtain an appropriate
another one. Indeed, the shell selection of hermit crab usually
occurs after a lengthy period of investigation (Neil and
Elwood, 1986; Brown et al., 1993; Coté et al., 1998;
Benvenuto and Gherardi, 2001). It is suggested that some
individuals should have to restrict the growth of body size
even when there would be enough food to grow up the body
size (Markham, 1968; Childress, 1972; Bach et al., 1976;
Fotheringham, 1976; Bertness, 1981a; Floeter et al., 2000).

The shell size could limit the reproductive success
(Childress, 1972; Bertness, 1981a, b; Hazlett, 1989; Hazlett
and Baron, 1989; Elwood et al., 1995; Coté et al., 1998;
Floeter et al., 2000). For female, the shell size determines
the total amount of eggs that could be kept in the shell. For
male, the smaller individual with the smaller shell could get
the less opportunity for successful mating than the larger
one could (Childress, 1972; Bach et al., 1976; Fothering-
ham, 1976, 1980; Bertness, 1981a). For several tropical
species, it is observed that berried females are with
inadequate shell (Bertness, 1981a, b).

The shell is closely related to the survival and the
reproductive success of hermit crab. From the viewpoint of
the survival or/and the reproductive success, what is the
best timing for the shell change? What condition is required
for the case that the individual could expect the greater
advantage from the suppression of body size growth
without changing the shell than from the body size growth
with changing the shell? In this paper, we will consider
these problems with a mathematical modeling, focusing
how the strategy to get the maximal reproductive success
depends on the body size and the season length for a shell
change. As far as we could have known, our work would be
a pioneer one with a mathematical model about these
problems.

2. Assumptions
2.1. Body size

Body size of hermit crab is a function of time. If an
individual could use the larger shell, the body size grows up
to the larger size as long as the occupied shell could allow.

2.2. Shell change

We assume that the individual could take such a
behavior as to change the shell to the larger one except in
the breeding season. That is, the individual can choose the
behavior of the shell change only in the period between two
subsequent breeding seasons, say, the inter-breeding season.
Furthermore, it is assumed that the individual could
change the shell only once in each inter-breeding season.
In our modeling, the length of inter-breeding season is
given by a constant 7. In reality, the cycle of hermit crab’s
shell changes is not well known (Gilchrist, 2003). However,
in this paper, according to the shell change, we focus on the
hermit crab’s behavioral choice to maximize the expected
reproductive success, that is, on the decision about whether
the individual chooses the behavior to seek and change its
shell to a new one or not, which is assumed to correlate
positively to the reproductive success. In this reason, we
assume that the purpose of the behavioral choice about the
shell change is to maximize the reproductive success in the
subsequent breeding season. So we construct our model
with the above-mentioned inter-breeding season, although
its given constant length 7' is a mathematical simplification
in our modeling.

When an individual with body size x tries to change the
shell to another larger one, the probability that the
individual succeeds in getting a larger shell is assumed to
be given by ¢. For mathematical simplification and
clarification of our arguments, we assume that the
probability ¢ is constant independently of the body size,
although it may generally a function of body size x. Thus,
the probability that the individual fails to get the larger
shell is given by 1 — ¢. We ignore the handling time for the
shell change in our modeling. So, a shell change is assumed
to occur at a moment in the inter-breeding season if it is
successful.

2.3. Energy reserve

For our mathematical modeling, we define the energy
reserve of individual. The energy reserve changes due to the
energy input and output by feeding and homeostasis etc.,
which in general depend on the body size. We assume that
the greater energy reserve at the beginning of the breeding
season promises the greater reproductive success in the
breeding season. Since the behavioral choice in the inter-
breeding season can significantly affect the energy reserve,
the individual should choose the behavior to make the
energy reserve as much as possible at the beginning of the
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subsequent breeding season. So we consider the optimality
of the behavioral choice with regard to the maximization of
the energy reserve at the beginning of the next breeding
season, that is, the terminal energy reserve at the end of the
considered inter-breeding season.

When an individual with body size x tries to change the
shell, the individual is assumed to have to pay an energy
cost m for the behavior to seek an appropriately larger
shell, independently of the consequence of the behavior,
that is, whether the individual succeeds in getting the larger
shell or not. The energy cost m includes, for instance, an
energy consumption to search an appropriate shell. In
addition, we may consider an increase of the predation risk
during the shell searching behavior, too. In this paper, we
assume that the energy cost m is constant independently of
the body size as well as the probability ¢ is.

3. Modeling

Suppose that the body size grows up from x to x 4+ dx in
a time interval [z, ¢ + At]. Meantime, the energy reserve of
the individual changes by E(x + 0x, t + At) — E(x, t), where
E(x, ) denotes the energy reserve at time ¢ and body size x.
On the other hand, we assume that the net accumulated
energy uptake u(x) until the body size becomes x has such a
unimodal nature that it monotonically increases for the
body size less than a critical value and decreases for the
body size more than it. The decrease of net accumulated
energy uptake could be regarded as due to the high energy
requirement for the homeostasis with the large body size.
In our model, we use the following parabolic function for
u(x):
u(x) = —b(x — ¢)* + const., (1)

where b and c¢ are positive constants.

The change of the energy reserve in [¢, ¢ + Af] can be now
given by
E(x+ 0x,t+ At) — E(x, 1) = u(x + 0x) — u(x). 2)
With 6x — 0 and Az — 0, we can obtain the following

partial differential equation for the energy reserve E(x, ) at
time ¢ and body size x:

OE(x,7) OE(x,1) du(x)
Gx) o4 20 2 S G, 3
where G(x) is the growth function for the body size
dx(?)
G(x) =——. 4
() =3 @

In our model, we assume that the body size grows in a
logistic manner:

k
1+ (k/xg — e’
where x( is the initial body size at t+ =0, and r is the
intrinsic rate of body size growth. The carrying capacity k

is now translated to mean the maximal body size allowed
by the occupied shell size.

x(1) = x(t; x0, k) =

)

We assume that, if an individual succeeds in its shell
change, the individual gets a new shell larger than the
previous one, so that the carrying capacity for the body size
changes from k to k + Ak after the shell change. In this
model, we assume that the increment Ak of carrying
capacity is a constant regardless of the previous or the new
shell size. Besides, we assume that the intrinsic growth rate
r is constant independently of the body size x and the shell
change behavior. When the individual fails in changing the
shell, the body size growth is limited by the same carrying
capacity k.

From Egs. (1) and (3), we can get E(x, t) as the following
function E(x):

E(x,1) = E(x) = E(x0,0) + b(xo — ¢)* — b(x — ¢)*. (6)

At first, we consider the case when the individual does not
try to change the shell through the inter-breeding season.
The terminal energy reserve Eyychange at t = T in this case is

Eunc/mng(’(x()) = E(Xu)a (7)
where X, is the following terminal body size at t = T (see
Fig. 1):

k

X = x(T5x0, k) = 1+ (k/xg— De"T"

(®)

Next, we consider the case when the individual tries to
change the shell at time ¢ = 7 (0<t< 7). If the shell change
fails, the terminal energy reserve at time ¢ = 7 is given by
E(X,) — m, where the positive constant m means the energy
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Fig. 1. Temporal variations of the body size and the energy reserve.
Illustrative explanation. The solid curve shows the case when the
individual tries and succeeds in a shell change at ¢t = 7.
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cost to seek a new shell. In this case, the terminal body size
at t = T is given by Eq. (8) because the failure of the shell
change makes the individual keep the occupied shell and
the body size unchange. On the other hand, if the
individual succeeds in the shell change at ¢t =7, we can
get the energy reserve E(X;) at t = T, given by

E(X) = E(X,) —m+b(X, — ¢f = b(X. - ¢), ©)
where the terminal body size X; at t = T is given by

X = X(T = x(z; x0, k), k + AK)
— k + ok
T 1+ [(k + 0k)/x(t; x0, k)] — 1)e—rT—0)"

This case is assumed to occur with probability ¢. The size
X, is larger than X, given by Eq. (8) because the successful
shell change serves the increase of carrying capacity by Ak
(see Fig. 1). Besides, we note that X, is monotonically
decreasing in terms of v with X.—g = x(T; xo, k + Ak)>
Xeer = X,

Lastly, we can obtain the expected terminal energy
reserve  Epange(xo,7) at t=1T in the case when the
individual with the initial body size xqy at t =0 tries to
change the shell at t =7 (0<t<T)

Echange(xo, ) =(1—-p{EWX,) —m}+ o{EX,) —m
+b(X, = ¢ = b(X: = )). (11)

(10)

Now, we consider the expected advantage by the shell
change behavior. It can be estimated by the energy
increment AE(xo, T) = Ecpange(X0, T) — Eunchange(X0) expected
in case of choosing the shell change behavior at time 7
(0<t<T), compared to the case without choosing it

AE(x0,7) = —m + o{b(X,, — ¢}’ — b(X. — ¢)’}. (12)

If AE(x, 1) is positive, the expected energy gain is larger by
choosing the shell change behavior than by keeping the
occupied shell. In such case, the choice of the shell change
behavior in the inter-breeding season is expected to result
in the larger energy reserve at the beginning of the
subsequent breeding season, that could eventually serve
the greater reproductive success in the breeding season.

It should be remarked that, in our modeling, the
behavioral choice is assumed to depend not on the actual
energy gain obtained in case of the successful shell change
but on the expected energy gain when the individual would
choose the behavior to seek the larger shell. Hence, even
when AFE(x(,71)<0, it is likely that the successful shell
change could give a sufficiently large energy gain. In such a
case, the probability of the successful shell change is so
small that the energy gain with the shell change behavior is
expected to result in much small.

4. Timing for the shell change

Let us consider the timing t = t* (0<7t*<T) for a shell
change, which maximizes Ecjange(X0, 7). Since X is mono-
tonically decreasing in terms of 7, we can find from Egs.

(11) and (12) that t* =0 if
X.—o<ec. (13)

With this condition, E jnge(X0,7) is monotonically decreas-
ing in terms of t (0<t<T). In contrast, we have t* = T if

X,>c. (14)

Then Ecpange(X0,7) is monotonically increasing in terms
of .

If and only if
Xu<ce<X.o, (15)

we have ™ = 1,,, such that 0 <7,,<T. From Eq. (11), we
can explicitly obtain the expression of 7,, as follows:

T, = T [(k+Ak){l_ (i_l)erT} B 1]
r c xo k

1 k

—In—+T

+r nAk+

1 k I 1
=-In|l —— Ak)| — — - T

r n{ Ak(k+ k)(Xu c)}—i_

1 Tk 1 1
_rln{1+e Ak(k+Ak)(c—XT=0>} (16)

In this case, Ecpange(x0,7) has the unique maximal
extremum at T = 1,,.

From Eq. (16), we can find that, as T gets larger,
(T — 1,n)/ T gets smaller (Fig. 2(b)). This means that, as the
length of the inter-breeding season gets longer, the optimal
timing of a shell change behavior tends to be relatively later
within the inter-breeding season.

5. Optimality of the shell change behavior

If and only if AE(x,7)>0, the choice of the shell change
behavior at t = T makes sense in order to expect the greater
terminal energy reserve at t = T'. In case of AE(xy,7)>0,
we call the shell change behavior optimal. The optimal
timing v = 74y (0< 1, <T) for a shell change is to
maximize Ejange(xo, T) With AE(xg,7)>0.

When 7 =T with Eq. (14), we can easily find that
AE(xg, T) = —m<0. Thus, if Eq. (14) is satisfied, the shell
change behavior is not optimal. Thus, from the viewpoint
of the optimal shell change, it never occurs at the end of
inter-breeding season.

For © = 1, given by Eq. (16), the necessary and sufficient
condition for AE(xo,7,,)>0 is given by

Xy
V7

with = (1 /bcz)(m/<p)<l. Therefore, with the condition
(15) for * = 1,,, the necessary and sufficient condition for
Topt = T 1S given by

<c (17)

u

1 <c<X.—o (18)

S
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Fig. 2. Dependence of t* on (a) the carrying capacity k and (b) the length
of the inter-breeding season 7. Numerical calculation with 7" = 200.0 for
(a), k =9.0 for (b). Commonly r = 0.02; ¢ = 10.0; xo = 5.0; Ak = 1.5.

with f<1. When t,,; = 7., if the shell change is successful,
from Egs. (10) and (16), the terminal body size X, at the
end of inter-breeding season is given by X,—,, = c.

For 7 =0, from Eq. (12), the condition for AE(x(,0)>0
is given by

2 2
(1—ﬁ) - (1—XT=°> > (19)
c 4

With the condition (13) for * = 0, we can get the following
condition for t,, = 0, that is the case when a shell change
at the beginning of inter-breeding season is optimal:

X\
cll— <l—> -l <X.—0<c,

c

X,,gc(l — \/B) (20)

When 1,,; = 0, if the shell change is successful, the terminal
body size X, is given by Eq. (10) with t =0, that is,
Xo—o = X(T; x0, k + Ak).

These results indicate that, if the shell change behavior is
optimal, the condition that <1 is necessary. In case of
p =1, the shell change behavior is never optimal.

6. Discussion
6.1. Length of the inter-breeding season

For our model, in Fig. 3, we numerically show the
parameter region for the optimal shell change behavior. In
the case when the shell change behavior is optimal for a
given initial body size, the optimal timing for the shell
change behavior significantly depends on the length of the
inter-breeding season (see also Fig. 2(b)). When f is
sufficiently small, that is, when the shell change is
sufficiently easy with small m and large ¢, the shell change
behavior is optimal for any inter-breeding season longer
than a critical value (Fig. 3(a)). In contrast, for sufficiently
large f5, the shell change behavior cannot be optimal.

If the occupied shell and the body size are sufficiently
small, as in case of Fig. 3(d), the shell change behavior is
optimal except for when the inter-breeding season is
sufficiently short.

In case of Fig. 3(b) or (c), the shell change behavior
could be optimal only for an intermediate length of the
inter-breeding season. For sufficiently short or sufficiently
long inter-breeding season, it cannot be optimal. As a
consequence, for sufficiently short inter-breeding season,
the shell change behavior cannot be optimal. Further, from
Figs. 2(b) and 3(a, b), we find that, as the inter-breeding
season gets longer, the optimal timing for the shell change
behavior tends to be relatively later.

In conclusion, the length of the breeding season could
affect the optimality of a shell change behavior. Only with
an intermediate length of the breeding season, the shell
change behavior would be optimal. As the breeding season
is longer, the individual would show the shell change
behavior relatively earlier in the inter-breeding season. In
other words, in an environment with long breeding season,
the individual would show the shell change behavior
relatively early in the inter-breeding season. In a harder
environment with short breeding season, the individual
would not show the shell change behavior and suppress the
body size growth.

6.2. Initial body size

In our model, the initial body size means the body size at
the beginning of inter-breeding season. So it becomes
greater year by year. As indicated in Fig. 3, we could find
some cases with an upper limit of the initial body size for
which the shell change behavior could be optimal. If the
initial body size is larger than the upper limit, the
increment of the net energy uptake following the body
size growth is so low while the energy consumption is so
large that the individual could not compensate the cost for
the shell change behavior until the end of inter-breeding
season, or that the expected terminal energy reserve
becomes too small to compensate the cost due to
sufficiently small probability ¢, or that the individual
cannot get a sufficient large increase of the terminal energy
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Fig. 3. (x¢, T')-dependence of the optimal behavioral choice. Numerical calculations for Egs. (18) and (20). (a) f = 0.02 with k = 8.0; (b) f = 0.041 with
k = 8.0; (c) p = 0.06 with k = 8.0; (d) f = 0.041 with k = 7.0. Commonly, r = 0.02; ¢ = 10.0; Ak = 2.2. The dark region is for 7,,, = 0, and the light dark
one for 7,,, = 1,y. The case of (a) is when k/(1 — \/[7)<c<k + Ak, while those of (b) and (c) are when k/(1 — \/B)<c<k + Ak. The case of (d) is when

k+Ak<ec.

reserve with the shell change due to too short inter-
breeding season.

In contrast, as shown in Fig. 3, the shell change behavior
is not optimal for the individual with sufficiently small
initial body size, either. This implies that the shell change
behavior is not optimal for the individual in the earlier
stage of the body size growth. The individual would begin
the shell change behavior after its body size grows
sufficiently large.

Further, we can show that, when a shell change behavior
is optimal for a length of the inter-breeding season, the
optimal timing for the shell change behavior becomes
relatively later in the inter-breeding season as the body size
gets larger (see Fig. 2(a)).

6.3. Body size growth

We illustrate some examples of the history of the body
size growth in our model, making use of numerical
calculations (Fig. 4). Since the body size grows fundamen-
tally in a logistic manner, it asymptotically approaches its
saturated value, the carrying capacity determined by the
occupied shell size, as shown in Fig. 4(a). If the shell is
successfully changed to an appropriately larger one, the
growth rate is changed with the shell change, so that the
growth curve of the body size shows a cuspidal point at
the moment of the shell change, indicated by upward
arrows in Fig. 4. The shell change occurs in the period
with an intermediate body size, while it does not with
sufficiently small or large body size.

As indicated in Fig. 4(b), the energy reserve is mono-
tonically increasing in time except for the moment of the

shell change if no cost is charged in the breeding season. In
contrast, as shown in Fig. 4(c), if a cost is charged in the
breeding season, for instance, due to some breeding
activity, the energy reserve goes decreasing as the body
size is near the saturated value. As the growth rate of the
body size gets sufficiently small, the increase of the energy
reserve with the body size growth cannot cover its decrease
due to the cost in the breeding season. This might be
translated as an appearance of the aging.

Generally, the younger individual corresponds to one
with smaller body size and the elder does to one with larger
body size. So we can translate the relation between the
optimal timing for a shell change and the body size as
follows: the younger individual would show the shell
change behavior relatively earlier after the breeding season,
and the elder would not show the shell change behavior
and suppress the body size.

6.4. Cost for the shell change behavior

In our model, the ratio m/¢ in the parameter f is one of
important factors which determine the optimality of a shell
change behavior, whereas the ratio m/¢ does not affect the
optimal timing for a shell change at all. If m/¢ gets larger,
the optimality conditions (17) and (20) are harder to be
satisfied.

The smaller m/¢, that is, the smaller cost for the shell
change behavior and/or the larger probability of the
successful shell change increases the optimality of the shell
change behavior.

Our results indicate that the cost for a shell change
behavior and the probability of its success have no relation
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Fig. 4. A temporal variation of the body size x and the energy reserve E. Upward arrows indicate the moment of a shell change. Numerical calculation
with r = 0.05; x(0) = 1.0; k=g = 5.0; Ak = 1.0; b = 1.0; ¢ = 10.0; T = 6.0; E(x(0)) = 4.0; m = 1.5; ¢ = 1. The length of breeding season = 2.0: (a) body
size; (b) energy reserve with no cost for the breeding activity; (c) energy reserve with a time-proportionally increasing cost for breeding activity (cost per
time = 0.1). Except for the cost of the shell change or the breeding activity, no cost is charged in these calculations. In these calculations, as the result,

every shell change appears at the beginning of an inter-breeding season.

to the optimal timing for the shell change, while, with the
small cost for a shell change, the optimality itself is high.
Environment in which the hermit crab could easily find a
new shell corresponds to the case of a large probability of
the successful shell change. Sufficiently large probability
could make the shell change behavior optimal. In such an
environment, we could observe the shell change behavior
frequently.

6.5. Net accumulated energy uptake u

In our modeling, the net accumulated energy uptake
u is assumed to be a unimodal function of the body
size x. For not only a parabolic function but also
another unimodal function, our results would be expected
to hold. Furthermore, this assumption of the unimodality
may not be necessary for the existence of the optimal
timing for a shell change behavior. Indeed, for the existence
of the optimal timing for a shell change, the function u
should have an appropriate nonlinearity, because its
existence requires some nonlinearity of the function
E hange. Therefore, we expect that our results would
hold for a wide range of modeling about the same/
similar problem.

6.6. A simpler modeling

As described in Appendix A.1, we can consider a simpler
model that can derive some essential results corresponding
to those for our model analysed in our main text: Under
those same assumptions described in the previous section,
we assume for the mathematical modeling that the body
size growth is sufficiently fast once the individual succeeds
in getting a new shell. At the moment when the shell change
is succeeded in, the body size grows up to the maximal size
as the occupied shell allows. Only when the individual
succeeds in changing the shell to the larger one, the
individual can increase the body size by Ax, where
the increment Ax is a positive constant independent of
the previous body size x. So, once the shell change is

successful in at time 7, the body size is assumed to increase
simultaneously by Ax. In this modeling, differently from
that shown in our main text, we ignore the time required
for the body size growth from x to x+ Ax. This
assumption mathematically means that the body size grows
up from x to x + Ax in a discontinuous manner like a step
function of time.

Even though this modeling may seem oversimplified, as
briefly shown in Appendix A.1, we can obtain the results
quantitatively same as those from the model of our main
text. Some simple model could grasp the essential factors
relevant for the problem and provide some satisfactory
results to discuss theoretically the phenomenon.

7. Conclusion

Analysing a mathematical model, we showed that the
hermit crab would have a range of the initial body size and
the length of breeding season to make the shell change
behavior optimal. Our results imply that the individual
with sufficiently large body size would not show the shell
change behavior and suppress the body size growth. With
regard to the optimal timing for a shell change, the
individual with the larger body size would show the shell
change behavior relatively later in the inter-breeding
season. The individual with the smaller body size would
show the behavior relatively earlier.

Length of the breeding season could affect the optimality
of a shell change behavior. Only with an intermediate
length of the breeding season, the shell change behavior
would be optimal. As the breeding season is longer, the
individual would show the shell change behavior relatively
earlier in the inter-breeding season.

Our results indicate that the cost for a shell change
behavior and the probability of its success have no relation
to the optimal timing for the shell change, while, with the
small cost for a shell change, the optimality itself is high.
Sufficiently large probability of the successful shell change
could make the shell change behavior optimal.
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Appendix A

A.1. A simpler model with a step-wise growth of the body
size

In this appendix, we consider a simpler model that can
derive some essential results corresponding to those for our
model in the main text. Now, we assume that the body size
growth is sufficiently fast once the individual succeeds in
getting a new shell: at the moment when the shell change is
succeeded in, the body size is assumed to grow up to the
maximal size as the occupied shell allows. Only when the
individual succeeds in changing the shell to the larger one,
the individual can increase the body size by Ax, where the
increment Ax is a positive constant independent of the
previous body size x. So, once the shell change is successful
in at time 7, the body size is assumed to increase
simultaneously by Ax (Fig. A.l1). In this modeling,
differently from that in the main text, we ignore the time
required for the body size growth from x to x 4+ Ax. This
assumption mathematically means that the body size grows
up from x to x + Ax in a discontinuous manner like a step
function of time (see Fig. A.1). When the individual fails in
changing the shell, the body size growth is assumed to be
suppressed and unchanged.

The energy reserve of individual with body size x at time
t is assumed to be determined by the net energy uptake &(x)
per unit time at body size x and the initial energy reserve
E(x,0) at the beginning of the inter-breeding season with
the initial body size x. Eventually, the energy reserve of
individual with body size x is given by E(x,0)+ &(x)t at
time ¢ in the inter-breeding season.

In the case when the individual with the initial body size
x successfully changes the shell at time 7 (0<t<7) in an
inter-breeding season, the terminal energy reserve at t = T
is given by

E(x,0) + e(x)t — m~+e(x + Ax)(T — 1) (A.1)

i

2| x+ Ax

o e

X
0 T T time
breeding .
season 1ntcr—brccdimg season breeding season

T

shell change

Fig. A.1. Step-wise growth of body size. The solid line shows the case
when the individual tries the shell change and succeeds in it at # = 7. At the
moment of the successful shell change, the body size immediately changes
from x to x + Ax.

with the terminal body size x + Ax. On the other hand,
in the case when the individual with body size x tries
and fails to get the larger shell at time 7 (0<t<T), the
body size is unchanged, and the terminal energy
reserve is given by E(x,0)+ &(x)T — m with the terminal
body size x.

Therefore, when the individual with the initial body size
x would seek the larger shell, the expected terminal energy
reserve  Egpange(x,7) is given by the following with
probability ¢ to succeed in the shell change:

Ec'hange(xa T) = E()C, 0) + S(X)T —m

+ (T = D)o le(x + Ax) — e(x)}.
In contrast, in the case when the individual with the initial
body size x would not seek the larger shell but keep the

occupied shell through the inter-breeding season, the
terminal energy reserve E,change(Xx) at time T is given by

Eunchange(x) = E(X, O) + S(X)T (A3)

Hence, the expected difference AE(x, 1) = Epange(x, ) —
E nchange(x) is given by

AE(x,7) = —m+ (T — t)p{e(x + Ax) — &(x)}.

(A.2)

(A4

A.1.1. Timing for the shell change

We consider here the optimal timing 7 = 7, to change
the shell in terms of the maximization of E pguge(xX, T) given
by (A.2).

If e(x+ Ax)—e(x)> 0, the 7-dependent part of
E thange(x,7) 1s decreasing in 1. Thus, since Epunge(X, 7)<
E thange(x,0) for any 7 (0<t<7T), the optimal timing for
shell change is 7, = 0 just after the previous breeding
season, that is, at the beginning of the considered inter-
breeding season. In contrast, if ¢(x + Ax) — &(x) <0, the -
dependent part of Ecpumge(x,7) is increasing in 7, and
E thange(x,T) < Ecpange(x, T) for any © (0<t<T), the optimal
timing is 7,,; = T at the beginning of the next breeding
season, that is, at the end of the considered inter-breeding
season. Since the body size increment Ax is a constant
independent of 7 for a given inter-breeding season, the sign
of &(x + Ax) — ¢&(x) is uniquely determined for the inter-
breeding season. So these arguments indicate that the
optimal timing for shell change could be alternatively
Topt = 0 0Or 7,y = T. There could not exist such an optimal
timing 7, as 0<1,,,<T in this model.

A.1.2. Optimality of the shell change behavior

Only if AE(x, t,p;) >0, the shell change behavior at time
Top: could be optimal. From the arguments in the above,
since alternatively 7., =0 or 7, = T, we now consider
just AE(x,0) and AE(x,T). From (A.4), in the case
when 1,,, =T, AE(x,T) is equal to —m and negative
for any x, so that consequently the shell change behavior
in such a case is not optimal than such behavior as to
keep the occupied shell. On the other hand, in the
case when 1., =0, the condition that AE(x,0)>0



22 Y. Sato, H. Seno | Journal of Theoretical Biology 240 (2006) 14-23

€ (x)

(a) *min

€ (x)

(C) xmux

€ (x)

(d)

€ (x)

(d)

Fig. A.2. Four types of the body size dependence of the net energy uptake &(x) per unit time at body size x. The interval indicated by the thick segment
schematically shows such a range that the condition (A.5) is satisfied. For detail, see the text.

corresponds to the following:

e(x + Ax) — e(x) > ﬂ.

T (A.5)

This condition (A.5) is necessary for the optimality of shell
change behavior in this model.

If the length of inter-breeding season T is sufficiently
long, the right-hand side of (A.5) becomes sufficiently small
so that the condition for AE(x, 0) >0 is satisfied. Therefore,
as a consequence, the longer inter-breeding season makes
the shell change behavior more observable as the optimal
strategy, as well as shown for the model in our main text.

As well as the model in our main text, the condition
(A.5) clearly indicates that the smaller m/¢, that is, the
smaller cost for the shell change behavior and/or the larger
probability of the success in a shell change, increases the
optimality of shell change behavior.

A.1.3. Limitation of body size

Now, we consider the relation between the choice of shell
change behavior and the body size x. If the condition (A.5)
is satisfied for any x larger than a critical size xq;, (see
Fig. A.2(a)), that is, when AE(x,0)>0 for any x > xpin, any
individual with size x> xpi, is expected to advantage with
the shell change behavior in terms of the expected
reproductive success. Unless the condition (A.5) is satisfied
for any x (see Figs. A.2(b) and (d)), that is, when
AE(x,0)<0 for any x, the individual with any body size
is not expected to advantage with the shell change behavior
in terms of the expected reproductive success. So no
individual would be expected to show the shell change

behavior. Therefore, in such a case with a net energy
uptake function &(x) decreasing in terms of x, the body size
is limited only by the size of shell occupied first in the life.

If the condition (A.5) is satisfied for x<xm.x (see
Fig. A.2(c)), only individual with body size x<Xmax 18
expected to advantage with the shell change behavior.
Thus, only the hermit crab with body size smaller than xpax
is expected to show the shell change behavior. The
individual with body size more than xq,x is expected not
to try to change the shell but to suppress the body size
growth up to the maximal body size afforded by the
occupied shell size. The net energy uptake rate per unit
time would be increasing in body size, while the larger body
requires the larger energy for its homeostasis or metabo-
lism. Hence it would be most likely to have the shape of
Fig. A.2(c).
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