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Group defense is a phenomenon that occurs in many predator–prey systems. Different functional
responses with substantially different properties representing such a mechanism exist. Here, we develop
a functional response using timescale separation. A prey-dependent catch rate represents the group
defense. The resulting functional response contains a single parameter that controls whether the group
defense functional response is saturating or dome-shaped. Based on that, we show that the catch rate
must not increase monotonically with increasing prey density to lead to a dome-shaped functional
response. We apply bifurcation analysis to show that non-monotonic group defense is usually more suc-
cessful. However, we also find parameter regions in which a paradox occurs. In this case, higher group
defense can give rise to a stable limit cycle, while for lower values, the predator would go extinct. The
study does not only provide valuable insight on how to include functional responses representing group
defense in mathematical models, but it also clarifies under which circumstances the usage of different
functional responses is appropriate.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Predation is a ubiquitous interaction in ecological communities
(Allan, 1995). The dynamics of mathematical models describing
predator–prey relationships depend critically on the functional
response (Abrams and Ginzburg, 2000; Gross et al., 2004;
Aldebert et al., 2016). The most commonly used functional
responses rely on the work of Holling (1959, 1961). These are cat-
egorized as Holling type I, II, and III functional responses. However,
a wide range of other functional responses exist as well, and even
though the shape of the functional response is similar (for instance,
the Holling type II and the Ivlev functional response (Ivlev, 1961)),
the dynamics may change qualitatively (Aldebert et al., 2016). This
phenomenon is called structural sensitivity.

In this study, we will focus on a mathematical predator–prey
model incorporating a group defense of the prey. It is well known
that some prey species adapt to predation and can develop differ-
ent avoidance or defense strategies (Jeschke, 2006). Some bacteria,
for instance, produce toxins that may be lethal for eukaryotic
predators (Lainhart et al., 2009). However, avoidance strategies
such as flight, freezing (Blanchard et al., 1986), using refuge areas,
or a combination of these (Blanchard et al., 1990) usually do not
have a direct negative impact on the predator population
(Edmunds, 1974). Instead, decreasing the attack success due to
predator confusion can reduce the predation without harming
the predator (Allee, 1958; Jeschke and Tollrian, 2005). For instance,
moose use intimidation of wolves as a non–harmful defense strat-
egy (Caro, 2005). Another example is given by plankton sensing
predator kairomones leading to morphological changes, which is
a successful defense strategy against size-selective predators
(Lass and Spaak, 2003). Besides, many species warn conspecifics
of the group using alarm signals (Klump and Shalter, 1984). Such
a swarming effect often occurs in social populations (Tener,
1965; Líznarová and Pekár, 2013).

In mathematical models, anti-predator defense strategies have
often been incorporated by a potentially adaptive decrease in han-
dling time, an increase in attack rates, or a combination of these
two (Jeschke and Tollrian, 2000; Líznarová and Pekár, 2013;
Köhnke, 2019). However, as many of the defense mechanisms
depend on the population size of the prey (Krams et al., 2009),
often also a dome-shaped functional response is used. The charac-
teristic feature of a dome-shaped functional response is that the
consumed prey for a particular prey density has a maximum at
finite prey densities. Different experiments have confirmed the
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dome-shape, such as Pekár (2005), as well as Líznarová and Pekár
(2013). However, group defense is likely to be present in many sys-
tems, although not indicated by the functional response (Jeschke
and Tollrian, 2005). Even though, not in his classical paper about
functional responses (Holling (1959)), in Holling (1961), already
Holling has proposed four functional responses, one of them incor-
porating a swarming effect leading to a dome-shaped functional
response. Hence, this is often referred to as a Holling type IV func-
tional response (Huang and Xiao, 2004; Lian and Xu, 2009; Wang
et al., 2009). However, classically only type I, II, and III are referred
to as Holling types. To avoid confusion, we will stick to the term
type IV functional response throughout this paper.

Different expressions exist for such a type IV functional
response (Tostowaryk, 1972; Fujii et al., 1986; Líznarová and
Pekár, 2013). Particularly some studies use a type IV functional
response with a square prey dependence in the denominator but
without any linear dependence (Zhang et al., 2006; Baek, 2010).
These usually have a form similar to

f IV ðUÞ ¼
U

1þ U2 : ð1Þ

This form was originally proposed by Sokol and Howell (1981) as a
simplification of a functional response that also incorporates a lin-
ear prey dependence in the denominator. Such kind of response is
sometimes referred to as Monod-Haldane functional response
(Andrews, 1968) and is commonly used as well (Edwards, 1970;
Chen, 2004; Upadhyay and Raw, 2011). Collings (1997) derived a
similar functional response resulting from the assumption that
searching efficacy and handling time are decreasing and increasing
with prey density, respectively.

In Section 2, we develop a functional response based on a quasi-
steady-state assumption. Applying quasi-steady-state assumptions
is a powerful tool ranging back to Bodenstein (1913). It can help to
significantly simplify dynamical systems using the idea that pro-
cesses described by the dynamical system happen on different
timescales (Shoffner and Schnell, 2017). We will show that, if the
catch rate is monotonically increasing with prey density, the
resulting functional response will be saturating. Otherwise, the
functional response can be dome-shaped. We will analyze the
rather general model analytically before we introduce a functional
response incorporating a group defense in Section 3. The shape of
this functional response can be varied using a single parameter. We
will treat this model analytically and with bifurcation analysis to
show that the group defense can drive the predator to extinction.
However, we will also show that for a small parameter region, a
paradox occurs.

2. General model

We start with developing a predator–prey model of the form

dU
dT

¼ UðUÞ � f ðUÞV ; Uð0Þ ¼ U0; ð2aÞ
dV
dT

¼ Qðf ðUÞVÞ �mV ; Vð0Þ ¼ V0 ð2bÞ
with

Uð0Þ ¼ UðKÞ ¼ 0; U0ðKÞ < 0:
ð2cÞ

with all parameters being positive. Here, K represents the carrying
capacity of the prey population. The prey U grows according to
the function UðUÞ in absence of the predator V. This function has
at least two stationary states, the extinction, and the carrying
capacity. Furthermore, the carrying capacity is stable in absence
of the predator. We model the mortality of the predator with a lin-
ear term. The term f ðUÞ is the functional response, i.e., how the
number of predated prey per unit time of one average predator
varies with changing densities. Note that we are interested in group
defense and thus assume that the functional response is only
affected by the prey density. The function Qðf ðUÞVÞ represents the
biomass production of V due to predation, i.e., the numerical
response.

To develop the functional response, we assume that the preda-
tor can be divided into two separate states, searching and handling,
i.e., V ¼ Sþ H. Note that an alternative approach to develop a func-
tional response is by argumentations on time budgets of the prey.
An example regarding group behavior is given by Braza (2012). The
dynamics of the subpopulations are given by

dS
dT

¼ �bgðUÞSþ cH; Sð0Þ ¼ S0; gð0Þ ¼ 0; ð3aÞ
dH
dT

¼ bgðUÞS� cH; Hð0Þ ¼ H0: ð3bÞ

This approach also allows for the derivation of a Holling type II
functional response (Diekmann et al., 2012). Note that we neglect
birth and death processes here, assuming that they happen on a
much slower timescale (for a discussion on the validity of such a
timescale separation see Appendix A). Hence, V ¼ Sþ H ¼ const.
holds for this timescale. Searching individuals turn into handling
individuals by capturing prey with a rate b depending on the func-
tion gðUÞ. The function gðUÞ represents the rate of successful catch
and kill per searching predator, while b represents the search rate.
Throughout the manuscript, we will refer to gðUÞ as catch rate. Note
that in this interpretation, handling individuals are all individuals
that are not actively searching for prey, for instance, handling prey
or digesting it. After some handling time s ¼ c�1, handling individ-
uals turn back into searching individuals.

Applying time-scale separation, we can find a quasi-stationary
solution for the searching subpopulation

S� ¼ cV
bgðUÞ þ c

: ð4Þ

Now, we assume that predation depends only on searching individ-
uals which allows us to introduce the functional response

f ðUÞV ¼ bgðUÞS� ¼ cV
bgðUÞ

bgðUÞ þ c
: ð5Þ

For monotonically increasing catch rates, the resulting functional
response will also increase monotonically. Hence, dome-shaped
functional responses only occur if the catch rate is not monotoni-
cally increasing.

To derive the functional response in this way and not to incor-
porate it directly into the model has three advantages. First, it may
be easier to measure in some cases as the predation process is split
up into two separate processes, i.e., searching and handling. For the
conversion of searching into handling individuals, it is sufficient to
introduce an entirely searching (not satiated) predator population
into a prey population of different sizes to retrieve the catch rate
depending on the prey population. For many experiments, that is
the case anyway. However, note that one must be cautious with
such measurements as a discrepancy between local measurements
and a mean-field functional response, e.g., over a heterogeneous
vertical water column, may exist (Morozov and Arashkevich,
2008; Morozov, 2010). Furthermore, only the time between
searching events needs to be measured. Second, it shows under
which assumptions a type IV functional response of the form given
by Eq. (1) emerges, which will show the artificiality of this form.
Third and most important for this study, it allows us to introduce
a single parameter later on that changes the functional response
from a saturating form into a dome-shaped form to differentiate
the effect of different group defense forms from other factors.

For simplicity, we assume that the numerical response depends
linearly on the functional response (for a discussion on alternatives
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see Abrams and Ginzburg (2000)). In particular, this means that
conversion of prey biomass into predator biomass is proportional
to the predation term with a proportionality constant e, which
one can interpret as conversion efficiency. Assuming that the time-
scale separation is valid, this yields

dU
dT

¼ UðUÞ � b
cgðUÞV

bgðUÞ þ c
;Uð0Þ ¼ U0; ð6aÞ

dV
dT

¼ eb
cgðUÞV

bgðUÞ þ c
�mV ; Vð0Þ ¼ V0 ð6bÞ

for the original predator–prey model. Note that this form is similar
to a functional response in Jeschke et al. (2002), incorporating a
probability of a predator searching for prey in the classical Holling
type II functional response.

This model has two stationary solutions, that always exist, i.e.,

E0 ¼ ðU�
0;V

�
0Þ ¼ ð0;0Þ; ð7aÞ

Ec ¼ ðU�
c ;V

�
0Þ ¼ ðK;0Þ: ð7bÞ

Depending on the growth dynamics UðUÞ, more semi-trivial solu-
tions may exist. Furthermore, depending on the form of the function
gðUÞ, non-trivial solutions E�

n may exist. These take the form

gðU�
nÞ ¼

mc
bðec�mÞ ; ð8aÞ

V�
n ¼ eUðU�

nÞ
m

: ð8bÞ

Hence, the predator can only survive in coexistence with its prey.
The function gðUÞ is by definition a catch rate and, thus,
gðU�

nÞ P 0. For the existence of these solutions, this yields

ec > m; ð9aÞ
UðU�

nÞ > 0: ð9bÞ
From a biological perspective, this means that the conversion effi-
ciency e and the handling rate c, which are both related to predation
abilities, need to be larger than the mortality of the predator. As we
assume that handling prey takes place on a shorter timescale than
Fig. 1. A type IV functional response as in Eq. (1) overestimates stability of coexist
growth with a strong Allee effect. For stability, Eqs. (12) need to holds. If g0ðU�

nÞ, shown
stability is guaranteed in the dark blue regions in the upper panel. Otherwise, coexistenc
g0ðU�

nÞ. The panel in the middle shows the value of different functional responses f ðUÞ (ord
gðUÞ. (For interpretation of the references to colour in this figure legend, the reader is r
birth and death processes, Eq. (9a) likely holds. Interestingly, a
higher value of the searching rate b cannot compensate for lower
handling rates regarding the existence of the coexistence solution.

For the linear stability of the stationary solutions, we consider
the Jacobian

J ¼
U0ðUÞ � bc2g0 ðUÞV

ðcþbgðUÞÞ2 � bcgðUÞ
cþbgðUÞ

ebc2Vg0 ðUÞ
ðcþbgðUÞÞ2

ebcgðUÞ
cþbgðUÞ �m

0
@

1
A: ð10Þ

Evaluation at the trivial solution E0 yields the eigenvalues
k0;1 ¼ U0ð0Þ and k0;2 ¼ �m. Hence, the trivial solution is always a
saddle in absence of a strong Allee effect and a stable node in pres-
ence of a strong Allee effect.

The Jacobian evaluated at the semi-trivial solution Ec has the
eigenvalues kc;1 ¼ U0ðKÞ, and kc;2 ¼ bgðKÞðec�mÞ�cm

cþbgðKÞ . Hence, if no coexis-

tence solutions exist, i.e., ec 6 m, the semi-trivial solution is a
stable node. Conversely, if coexistence is possible,

gðKÞ < mc
bðec�mÞ ¼ gðU�

nÞ: ð11Þ

must hold as a stability criterion. If gðUÞ is monotonically increasing
in U, this can never hold as K > U�

n. However, for a non-monotonic
predation rate, the carrying capacity may be stable if a coexistence
solution exists. Hence, bistability between coexistence and carrying
capacity may occur.

We address the stability of the coexistence solution(s) using the
Routh-Hurwitz-criterion. After some simplification involving par-
ticularly Eqs. 8, one gets

TrðJjE�n Þ ¼ U0ðU�
nÞ � jg0ðU�

nÞUðU�
nÞ < 0 ð12aÞ

detðJjE�n Þ ¼
jg0ðU�

nÞUðU�
nÞ

m
> 0 ð12bÞ

with j ¼ bðm�ecÞ2
ec2m as conditions for stability of the coexistence solu-

tion(s). If the coexistence solution(s) exist(s), only

g0ðU�
nÞ > 0 ð13Þ
ence solutions at low prey densities. The upper panel shows logistic growth and
in the lower panel, is negative, stable coexistence is not possible. If it is positive,

e becomes more likely with higher UðU�
nÞ as indicated by the blue shade and higher

inate) depending on the prey density. The colors indicate the underlying catch rates
eferred to the web version of this article.)
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must hold for a positive determinant. Note that this is assured for a
monotonically increasing catch rate. If this holds, Eq. (12a) can be
rewritten as

U0ðU�
nÞ

g0ðU�
nÞUðU�

nÞ
< j: ð14Þ

Hence, if the conditions before hold, a sufficient condition for stabil-
ity is that U0ðU�

nÞ < 0. Clearly, if the coexistence state is unstable but
existent in case of a monotonically increasing functional response,
an asymptotically stable periodic solution must exist as the only
possible stable attractor. If Eq. (13) and TrðJjE�n Þ ¼ 0 hold, a Hopf
bifurcation occurs (Britton, 2012). As J2;2 ¼ 0 at the coexistence
solution, the second condition requires J1;1 ¼ 0, i.e., the bifurcation
occurs at the maximum of the nontrivial prey nullcline.

From a biological perspective, the stability criterion given by Eq.
(14) means that the growth function of the prey needs to be suffi-
ciently high, i.e., UðU�

nÞ � 0. Furthermore, the change of the catch
rate with increasing prey densities g0ðU�

nÞ needs to be sufficiently
large. To visualize this relationship, Fig. 1 shows different growth
functions of the prey and different functional responses emerging
from given catch rates. The figure shows five general tendencies.
First, logistic growth tends to stabilize coexistence compared to a
strong Allee effect (upper panel). Second, as g0ðU�

nÞ > 0 for mono-
tonically increasing functions, the coexistence equilibrium is
always stable if it exists in the dark blue regions for these func-
tional responses. Third, the light blue line corresponds to the often
used type IV functional response, cf. Eq. (1). As its derivative with
respect to the prey is particularly high at low densities, it tends to
overestimate the stability of the coexistence equilibrium at these
densities compared to other functional responses representing
group defense (red and green curve). Fourth, group defense with
critical population size, i.e., a dome-shaped functional response,
is more successful at high prey densities as it makes the stability
of the coexistence equilibrium unlikely. Conversely, group defense
leading to a saturation (green curve) is more successful for equilib-
ria at low prey densities. Fifth, if the prey population obeys a strong
Allee effect with a higher Allee threshold than the threshold of the
group defense, coexistence can never be stable.

3. Model with a given catch rate

Depending on the catch rate, the resulting functional response
could represent diverse biological phenomena, such as saturation,
e.g., gðUÞ ¼ U or prey switching, e.g., gðUÞ ¼ U2. Here, we want to
investigate the potential impact of group defense. Group defense
can be represented by the catch rate

gðUÞ ¼ U

1þ U
C

� �m : ð15Þ

The form of this function is arbitrary to a certain extent. However,
we will see that the shape of the functional response changes by
varying m from saturation to different dome-shaped functional
responses. Most studies assume a n exponent m P 1. However,
some studies also indicate m < 1 for species with herding behavior
such as group defense (Braza, 2012). If m > 1, a dome-shaped func-
tional response emerges while if m 6 1, a saturating functional
response emerges. If C � K , the resulting functional response coin-
cides with the Holling type II functional response. However, if the
critical value is C < K , it controls the impact of a higher prey density
if m 6 1. In case of m > 1, it represents a critical value beyond which
the group defense has a high impact. In the following, we will refer
to it as the critical defense value.

The derivative of this function at low densities is given by

lim
U!0

g0ðUÞ ¼ 1: ð16Þ
Hence, the rate of change at low densities is not affected by this
function, but it impacts the shape of the curve at higher densities.

In particular,

lim
U!1

g0ðUÞ ¼ 0 ð17Þ

holds at high densities. For m � 1, this leads to saturation of the
catch rate like in the Holling type II functional response, whereas
for m > 1, the catch rate has a maximum at

Umax ¼ Cðm� 1Þ�1
m ð18Þ

meaning that higher prey densities lead to lower predation success.
Even with m > 1, the model can represent different dome-shaped
functional responses such as one with a linear and quadratic term
(Líznarová and Pekár, 2013) or with a linear and cubic term
(Tostowaryk, 1972) in the denominator.

Incorporating this function in the general model, i.e., Eq. (6),
yields

dU
dT

¼ UðUÞ � V
bcU

cþ bU þ cðU=CÞm ; ð19aÞ

dV
dT

¼ eV
bcU

cþ bU þ cðU=CÞm �mV : ð19bÞ

It can be seen that the linear term can be neglected as in Eq. (1) only
if the search rate of the predator b and handling time c�1 are suffi-
ciently small and/or if C � K . In this case, the nonlinear term in the
denominator is the leading term.

Regarding the stability of the carrying capacity, we already
know that it is stable if no coexistence solution exists. Otherwise,
ec > m holds and given the functional response above

K

1þ K
C

� �m < gðU�
nÞ ð20Þ

needs to hold for stability. This demonstrates that low critical
defense values and high group defense strengths increase the like-
lihood that the carrying capacity is stable.

Regarding the number of coexistence solutions, we can simplify
Eq. (8a) to

U�
n
m ¼ Cm

gðU�
nÞ
U�

n � Cm: ð21Þ

Hence, a necessary condition for the existence of a coexistence solu-
tion is U�

n > gðU�
nÞ. Depending on m, the potential number of station-

ary coexistence solutions differ. Only in the non-monotonic case,
i.e., m > 1, more than one coexistence solution can exist.

In particular, if m < 1;U�
n
m is a concave function. As the right

hand side of Eq. (21) is a straight line intersecting the abscissa at
U ¼ gðU�

nÞ > 0, one intersection always exists. If m ¼ 1, the left-
hand side and the right-hand side intersect at

U�
n ¼ CgðU�

nÞ
C � gðU�

nÞ
: ð22Þ

Hence, C > gðU�
nÞ needs to hold for the existence of a coexistence

solution. Furthermore, UðU�
nÞ > 0 must hold for feasibility.

If m > 1;U�
n
m is a convex function. Hence, either zero or two solu-

tions exist for almost all parameter combinations satisfying
UðU�

nÞ > 0. However, note that UðU�
nÞ > 0 may also just hold for

one of the nontrivial solutions. In this case, the other vertical
predator nullcline is at positive densities but is not biologically
meaningful as it is beyond the carrying capacity. Rewriting Eq.
(21) yields

/ðU�
nÞ ¼ U�

n
m � Cm

gðU�
nÞ
U�

n
m þ Cm ¼ 0: ð23Þ



M.C. Köhnke et al. / Journal of Theoretical Biology 505 (2020) 110419 5
As this function has a minimum at the positive value

U�
nmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm

mgðU�
nÞ

m�1

s
ð24Þ

and /ð0Þ ¼ Cm > 0;/ðU�
nminÞ < 0 must hold for the feasibility of two

coexistence solutions. This corresponds to

gðU�
nÞ < gðU�

nÞcrit ¼
ðm� 1ÞðC�mðm� 1ÞÞ�1

m

m
: ð25Þ

At gðU�
nÞ ¼ gðU�

nÞcrit , a saddle-node bifurcation takes place. The
threshold gðU�

nÞcrit is visualized in Fig. 2. The color scale shows the
maximum value of gðU�

nÞ for feasibility of two coexistence solutions.
For higher values of C, the critical value of gðU�

nÞ increases monoton-
ically. Hence, a higher critical defense value makes the feasibility of
two coexistence solutions more likely. This relationship becomes
more complex regarding the strength of the group defense. The
function gðU�

nÞðC; mÞ shows a minimum at m ¼ 2. This corresponds
to the classical function of group defense, which thus may tend to
underestimate the existence of two coexistence solutions. However,
note that this effect is very weak.

Now, we consider the stability of the coexistence solutions. By
Eqs. (13) and (12a), we know that

g0ðU�
nÞ ¼

CmðCm � ðm� 1ÞU�
n
mÞ

ðCm þ U�
n
mÞ2

ð26Þ

is a crucial expression for the stability of the nontrivial equilibrium.
In particular, a necessary condition for stability is g0ðU�

nÞ > 0, which
always holds if m 6 1. However, if a maximum of the catch rate
exists at finite population densities, i.e., m > 1,

U�
n < gðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Cm

m� 1
m

s
ð27Þ

must hold for stability. Note that this corresponds to the maximum
of the catch rate given by Eq. (18), meaning that in case of group
defense, stable coexistence is only possible at prey densities smaller
than the prey density at the maximum of the catch rate. Note that
this is already visualized in Fig. 1. From this condition, we can see
Appendix (B) that

lim
m!1

gðmÞ ¼ C ð28Þ
Fig. 2. The likelihood of the feasibility of a second coexistence solution tends to
increase with a higher critical defense value and higher group defense strength.
The threshold gðU�

nÞcrit given by Eq. (25) is visualized. Low values denoted by blue
colors correspond to situations in which the feasibility of two coexistence solutions
is unlikely. Note that for m 6 1, two coexistence solutions are never possible.
and

lim
m!1þ

gðmÞ ¼ 1: ð29Þ

Furthermore, for m ¼ 2;gðmÞ ¼ C holds. Hence, for high group
defense values as well as for m ¼ 2, prey and predator can only coex-
ist at values U�

n < C underlining the criticality of this parameter.
There is no biologically meaningful threshold close to saturation
of the catch rate. Note that this is only a necessary condition for sta-
bility. As a sufficient condition, g0ðUÞ needs to be sufficiently large. It
is obvious that

g00ðU�
nÞ ¼ � mCmU�m�1

n ð1þ mÞCm � ðm� 1ÞU�m
n

� �
ðCm þ U�m

n Þ3
ð30Þ

is negative if m 6 1. Furthermore, if m > 1; g00ðU�
nÞ is negative if

U�m
n <

ð1þ mÞCm
m� 1

: ð31Þ

As

Cm

m� 1
<

ð1þ mÞCm

m� 1
; ð32Þ

one can say from Eq. (27) that g0ðU�
nÞ is a monotonically decreasing

function in U�
n as long as g0ðU�

nÞ is positive. Thus, with smaller values
of U�

n, stability of the equilibrium gets more likely. However, in
these regions, stable coexistence is unlikely due to the growth func-
tions (see Fig. 1). In particular, if a strong Allee effect is present, this
makes coexistence unlikely as UðU�

nÞ > 0 needs to hold as well.
Hence, a strong Allee effect prevents stable coexistence at low den-
sities while group defense prevents stable coexistence at high den-
sities. Thus, a combination of a strong Allee effect in the prey and
group defense may be detrimental for predators.

Table 1 summarizes the feasibility and stability conditions of
model (19).

For the numerical investigation of the model, we have chosen a
logistic growth function

UðUÞ ¼ rU � cU2 ð33Þ
where rc�1 represents the carrying capacity K. Fig. 3 shows a bifur-
cation diagram for the two parameters representing the group
defense. For the remaining parameters, we used estimations based
on an ecological microtine rodent mustelid model from Huisman
and De Boer (1997) and Hanski and Korpimäki (1995) satisfying
the conditions for timescale separation, see Appendix A. The usage
of this case study makes sense as rodents show anti-predator
behavior such as ultrasonic vocalizations as an alarm signal that
can be interpreted as group defense (Blanchard et al., 1990).

C is the critical defense value, while m shapes the form of the
functional response. Recall that for high C, the functional response
tends to the Holling type II functional response. Hence, it is evi-
dent, that group defense is beneficial for the prey as it increases
the likelihood that the carrying capacity is the only stable station-
ary solution.

At higher values of m or low values of C, the carrying capacity of
the prey is the only stable stationary solution. Hence, it is evident
that stronger group defense is beneficial for the prey population for
most parameter regions. Note that the exact values of m and C
depend on the parameter set. The values stated in the following
are just for reference regarding Fig. 3. For m/1:4, a stable coexis-
tence solution emerges for high values of C via a transcritical (solid
black line) bifurcation. Increasing the value of C even further, this
equilibrium undergoes a Hopf bifurcation (blue line), leading to a
limit cycle. For m’1:4, this limit cycle vanishes via a homoclinic
bifurcation (dashed line) for sufficiently low C. This homoclinic
bifurcation coincides with a transcritical bifurcation. Fig. C.7



Fig. 4. In case of a non-monotonic functional response, group defense can lead
to complex dynamics including a paradox. A sketch of the region around the
Bogdanov–Takens bifurcation in Fig. 3 is shown. The small plots represent sketches
of the phase plane. Circles denote stable limit cycles; the black dots represent stable
equilibria. Note that for convenience, we did not show the trivial nullclines. The
paradox is visualized by the arrows. Here, increasing the group defense by
increasing m or decreasing C can prevent the predator from extinction.

Fig. 3. Group defense can lead to extinction of the predator. A two-dimensional
bifurcation diagram with m, and the critical defense value C as bifurcation
parameters is shown. In the squared region, the prey exists at its capacity. The
solid black line corresponds to a transcritical bifurcation leading to a stable
coexistence state (white region). This stable coexistence state loses stability via a
Hopf bifurcation (blue line), resulting in a stable limit cycle (dotted area). For higher
m, the limit cycle is destroyed via a homoclinic bifurcation that takes place
simultaneously with a transcritical bifurcation (dashed black line). Note that
between green, blue, and black solid lines, the system is bistable. It depends on the
initial conditions, whether the system converges to the stable coexistence state or
the carrying capacity of the prey. BT indicates the Bogdanov-Takens bifurcation
point. From this point, a homoclinic bifurcation (red dotted line) emerges. Below
this line, a small parameter region corresponding to bistability between a limit
cycle and the carrying capacity exists. The remaining parameters are as stated in A.
We computed the bifurcation curves using XPPAUT (Ermentrout, 2002). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Feasibility and stability of solutions for model (19) assuming that UðUÞ ¼ 0 only at U ¼ 0 and U ¼ K , i.e., in
absence of a strong Allee effect.

Solution Feasibility Stability

ðU0;V0Þ ¼ ð0;0Þ unconditionally feasible unconditionally unstable
ðUc ;V0Þ ¼ ðK;0Þ unconditionally feasible if ec 6 m

or if gðKÞ < gðU�
nÞ

ðUn;1;Vn;1Þ nec.: U�
n > gðU�

nÞ nec.: if m 6 1

or if m > 1 ^ Un;1 <
ffiffiffiffiffiffiffi
Cm
m�1

m
q

ðUn;2;Vn;2Þ m > 1 ^ gðU�
nÞ < gðU�

nÞcritðC; mÞ ^UðU�
nÞ > 0 nec.: Un;2 <

ffiffiffiffiffiffiffi
Cm
m�1

m
q
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illustrates the homoclinic orbit. Furthermore, for m > 1, i.e., if group
defense is dome-shaped, a saddle-node bifurcation exists (green
line). However, note that we have only plotted the saddle-node
bifurcation in the parameter regions in which it takes place at bio-
logically meaningful densities. Furthermore, note that the green
line corresponds to a particular isocline of Fig. 2. Hence, it has a
maximum value m ¼ 2.

Note that bifurcations have been extensively studied for preda-
tor–prey models with Holling type II functional response as well as
with type IV functional response. However, this bifurcation dia-
gram allows seeing the impact of defense directly. In particular,
if C is sufficiently low, i.e., C/16:1, a saturating group defense func-
tional response is sufficient. In this case, the carrying capacity is
the only stable solution already at m ¼ 1 corresponding to a satu-
rating functional response. For values higher than this threshold,
group defense makes leading to a non-monotonic functional
response makes sense as it may turn the carrying capacity into a
stable equilibrium via a transcritical bifurcation. However, at high
values of C, corresponding to high critical defense values, the tran-
scritical bifurcation curve (and the homoclinic bifurcation curve)
tends to saturate. In this case, group defense does not change the
system dynamics. As already stated above, for very large values
of C, the functional response converges to the Holling type II func-
tional response. Hence, from the bifurcation diagram, it is evident
that group defense, in general (independent of the exact form), has
the potential to drive the predator to extinction.

On the left-hand side of the Bogdanov–Takens bifurcation,
bistability can occur. As the parameter regions corresponding to
bistability are very small, Fig. 4 shows a sketch of this region. It
demonstrates that above the saddle-node bifurcation, bistability
can occur either with one stationary coexistence state and the car-
rying capacity or with a stable limit cycle and the carrying capac-
ity. This is a phenomenon that only occurs for a non-monotonic
functional response. Hence, catch rates with a critical value
increase the complexity of the model. Furthermore, in a small
parameter region, a paradox can occur. On the left-hand side and
above of the red dotted homoclinic bifurcation curve, the capacity
is the only stable stationary solution. Increasing the strength of col-
lective defense by increasing m or decreasing the critical value C,
the system becomes bistable. In this case, a stable limit cycle or a
stable stationary coexistence state exists. Fig. 5 shows such a tran-
sition as an illustration of this paradox. At low critical defense val-
ues, the system is bistable in this case. Starting in the region
separated by the stable manifold, the system converges to a limit
cycle. Increasing the value of C which can be interpreted as
decreasing the collective defense efficacy leads to an increase in
the amplitude of the predator–prey oscillations. At some point



Fig. 5. Increasing the critical defense value can drive the predator to extinction.
The phase plane for three different parameter combinations are shown to illustrate
the paradox. Black lines are sample trajectories, blue and red lines represent
predator and prey nullclines, respectively. The dotted green lines represents the
stable manifold of the saddle (right coexistence state). Parameters are
m ¼ 1:38;Clow ¼ 24:3; Chomoclinic � 24:32; Chigh ¼ 24:35. The remaining parameters
are as stated in A. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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the limit cycle vanishes via a homoclinic bifurcation. The homo-
clinic orbit is shown in the middle panel. Without the stable limit
cycle, the system is monostable and every initial condition con-
verges to the prey carrying capacity. Hence, increasing the critical
defense value is beneficial for the prey in this case. The same can
happen with an increase of the defense strength m.
4. Discussion and conclusion

In this study, we proposed a functional response incorporating
group defense based on timescale separation arguments. Here, a
dome-shape may or may not emerge. In particular, if the catch rate
increases monotonously with increasing prey density, the resulting
functional response is also a saturating function, although it incor-
porates group defense. However, compared to the Holling type II
functional response, the saturation value is lower. We provided
an example for that, cf. green curve in Fig. 1. Group defense that
is not leading to a dome-shaped functional response is commonly
found in experiments (Jeschke and Tollrian, 2005; Olson et al.,
2013). Thus, with our approach, we obtain a class of group defense
functional responses that can represent at least two biologically
meaningful shapes. Hence, with the derivation, we also underpin
the idea that group defense is likely to be present in many systems,
although not clearly indicated by the measured functional
response (Jeschke and Tollrian, 2005).

The dome-shaped functional response emerges only if a critical
prey density exists beyond which the catch rate decreases again, cf.
the red curve in the lower panel of Fig. 1. This is a valuable finding
as the mechanisms leading to dome-shaped functional responses
are not fully understood for some systems (Mezzalira et al., 2017).

From a modeling perspective, we have shown that the type IV
functional response, as in Eq. (1), potentially overestimates stable
coexistence at low prey densities. If the prey population exists at
low densities, the type IV functional response without linear prey
dependence in the denominator seems to be a good approximation.
However, we have shown that the linear term in the denominator
is only negligibly small if the searching rate and the handling time
are low and/or the critical defense value is much lower than the
carrying capacity of the prey. This is a strong assumption for many
predator–prey relationships. Indeed, some ecological studies even
lead to the conclusion that the linear component in the denomina-
tor in the functional response is much more pronounced than the
quadratic component (Líznarová and Pekár, 2013). If this is not
clear, a functional response, as proposed in this study, should
preferably be used.

For a saturating functional response, only one nontrivial equi-
librium can exist, while for a dome-shaped functional response,
up to two coexistence equilibria can occur. This allows for the pos-
sibility of a homoclinic bifurcation in the model and increases the
complexity of the behavior in general. Regarding the stability of
coexistence, a strong Allee effect in the prey combined with a
dome-shaped functional response shrinks the interval of the prey
density in which stable coexistence is possible. Furthermore, we
have applied bifurcation analysis for the defense parameters show-
ing that group defense increases the extinction probability of the
predator. However, for low critical defense values, a saturating
functional response is sufficient as the carrying capacity of the prey
is the only stable attractor. The same holds for very high critical
defense values. In this case, group defense does not have a qualita-
tive impact and should thus be omitted if it is related to costs.

Finally, we have shown that for a small range of parameters, a
paradox can occur. Lowering the critical defense value or increas-
ing the strength of the group defense gives rise to stable coexis-
tence (either stationary or oscillatory) that is not possible at
slightly higher critical defense value or lower strength of the group
defense. However, it needs further investigations to know whether
this paradox can occur over larger parameter regimes and thus
would have ecological relevance.
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Appendix A. Timescale separation

One necessary assumption for the validity of the timescale sep-
aration is that birth and death processes happen on another time-
scale compared to other processes such as predation or
competition. In particular, following Segel (1988), we can find a
characteristic timescale for the processes described by Eq. (3).
Assuming that changes in U and V are sufficiently small compared
to changes in S and H, we set U ¼ U0 and V ¼ V0 and rewrite Eq.
(3a) yielding

dS
dt

¼ �ðbgðU0Þ þ cÞ S� cV0

bgðU0Þ þ c

� �
: ðA:1Þ
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In this form, the stationary solution, as well as the characteristic

timescale tS ¼ l�1 ¼ ðcþ bgðU0ÞÞ�1 is directly visible. If l is large
compared to the vital parameters of the populations, U and V do
not change significantly in this time, and the timescale separation
is valid. In particular, this approach illustrates that the parameters
b and c need to be large compared to the magnitude of UðUÞ and
m representing birth and death processes.

More specifically, this holds if the upper bound of the flow per
characteristic time interval is significantly small. An approximation
for this is given by

max tS
dU
dT

����
����jmax; tS

dV
dT

����
����jmax

� �
� !: ðA:2Þ

Here, ! depends on the order of magnitude of the state variables.
Note that this is just an estimation as the flow may be changing
in the time interval ½t; t þ tS�. However, as the flow depends contin-
uously on the state variables and the time interval is small, this esti-
mate will give a reasonable value.

To investigate whether the timescale separation is valid, we use
a logistic growth function and parameterize the model with the
same two parameter sets as in Huisman and De Boer (1997). In
particular, they use one parameter set from Scheffer and De Boer
(1995) corresponding to an algae zooplankton model and one
parameter set from Hanski and Korpimäki (1995) corresponding
to a microtine rodent mustelid model. As our functional response
looks slightly different from the classical Holling type II functional
response, we estimate the parameters b and c with a Gradient
method, see, e.g., Polak (2012).

The adjusted parameters for the algae zooplankton model are

r ¼ 0:5 day�1
; c ¼ 0:05 l ðday mg DWÞ�1

; e ¼ 0:6; b ¼ 0:67 l (day
mg DW)�1, c ¼ 0:4 day�1, m ¼ 0:15 day�1. If either the equation
for the prey or the predator changes significantly, the timescale
separation approach is not valid. For convenience, we let V ! 0
and examine only jUðUÞtSj depending on the exact form of gðUÞ.
This is a biologically relevant parameter choice as it may corre-
spond to a predator invading into a habitat with only prey.
Fig. A.6a shows the dependence on the density of the prey and
on m. It can be seen that the quasi-steady-state assumption does
Fig. A.6. For the algae zooplankton model, the timescale separation is not valid
while it is valid for the rodent mustelid model. The expression z ¼ jUðUÞtSj is
plotted for different defense strengths m and different population sizes of the prey U.
The right panel refers to the rodent mustelid model. In this case, the steady-state
assumption is valid based on this expression, while it is not valid for the
zooplankton model (left panel). Furthermore, it can be seen (contours in the
U; z� plane) that stronger group defense make the validity of the quasi-steady-state
assumption less likely while it seems to be most likely for low or high prey
densities.
not hold for this parameter set for most values of U. Furthermore,
higher values of m tend to increase the length of the time interval
and thus make the quasi-steady-state assumption even worse.
Note that a reason for the failure of the timescale separation may
be the short lifespan of microorganisms. This becomes directly
apparent, comparing the intrinsic death rate m with the predation
parameters b and c.

The adjusted parameters for the rodent mustelid model are
r ¼ 4:05 year�1, c ¼ 0:054 ha (individuals year)�1,
e ¼ 0:0023; b ¼ 118:7 ha (individuals year)�1, c ¼ 600:7 year�1,
m ¼ 1 year�1. In this case, the rate of change of the growth function
is comparably low (Fig. A.6b). Note that in the predation terms, the
validity does not only depend on one species but on both species.
However, for relevant combinations of U and V, i.e., combinations
with densities that are realistic in the phase plane, the timescale
separation still holds in this case As before, higher values of m tend
to increase the rate of change. However, for the predation term,
this only holds until a maximum of m � 2. Beyond this threshold,
the function is decreasing again. Nevertheless, in models without
group defense, the validity of the timescale separation seems to
be more likely.
Appendix B. Limit of gðmÞ

lim
m!1

ffiffiffiffiffiffi
Cm

m�1
m
q

¼ lim
m!1

exp ln
ffiffiffiffiffiffi
Cm

m�1
m
q

¼ lim
m!1

exp ln Cm
m�1
m

¼ exp lim
m!1

lnCm�lnðm�1Þ
m

The numerator grows asymptotically slower than m, thus

limm!1 � lnðm�1Þ
m ¼ 0. Furthermore, as lnCm=m ¼ m lnC=m ¼ lnC;

limm!1
ffiffiffiffiffiffi
Cm

m�1
m
q

¼ C holds.
Appendix C. Homoclinic orbit

Fig. C.7 illustrates a sample trajectory close to the homoclinic
orbit that coincides with the transcritical bifurcation. At the trans-
critical bifurcation, the right predator nullcline gives rise to a sec-
ond coexistence equilibrium.
Fig. C.7. The homoclinic orbit destroying the limit cycle in the monostable case
coincides with a transcritical bifurcation. The phase plane for three different
parameter combinations are shown to illustrate the paradox. The black line is a
sample trajectory close to the homoclinic orbit, blue and red lines represent
predator and prey nullclines, respectively. Parameters are m ¼ 1:36 and C ¼ 24:2.
The remaining parameters are as stated in A. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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