
Pergamon 
Mathl. Comput. Modelling Vol. 23, No. 4, pp. 67-91, 1996 

Copyright@1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

SO8957177(96)00004-O 
0895-7177/96 $15.00 + 0.00 

Sex Ratio Features 
of Two-Group SIR Model for 

Asymmetric Transmission 
of Heterosexual Disease 

C. KOIDE 
Department of Mathematics, Faculty of Science 

Hiroshima University, Kagamiyama 1-3-1 

Higashi-Hiroshima, Hiroshima, 739 Japan 

H. SENO* 

Information and Computer Sciences 

Nara Women’s University, Kita-uoya-nishi-machi, Nara, 630 Japan 

seno@ics.nara-wu.ac.jp 

(Received and accepted April 1995) 

Abstract-we consider the SIR model with two sexual groups to discuss the effect of the asym- 

metricity in the transmission dynamics of STDs. It is shown that the asymmetric transmission 
between two groups results in the asymmetric structure of infective populations. 
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1. INTRODUCTION 

In the modern communities, many diseases once rampant have virtually disappeared, except 

perhaps for some sporadic cases. However, the others like influenza, poliomyelitis, infective 

hepatitis, etc., not only continue to defy prevention but still lack the specifically distinct cures. 

All methods of study are therefore welcome for them, whether clinical, biological, ecological or 

mathematical. 

Today, the AIDS/HIV infection is one of the most serious contemporary social problems. Many 

mathematical modelling analyses are challenging the problem, and some could be expected to play 

an important role for understanding its outbreaking prevalence. It appears that there exist many 

difficult points for demographic and mathematical researchers on the dynamics of AIDS/HIV 

transmission. One of them is that, for example, people with HIV have a wide and variable 

range of incubation periods, 4-15 years [1,2], and there has not yet been found any successful 

preventive treatment or cure. In addition, its dynamics must reflect the social structure involving 

the infection: the number of drug users, the frequency of homosexual contacts, the degree of 

sexual activities, the number of spouses, the frequency of medical accidents, etc. Moreover, there 

are few confidentially sufficient statistical data in any country besides Japan, since AIDS/HIV 

infection appears very serious just in recent years, and since many infectives tend to hide their 

infection. 

The authors greatly thank M. Kakehsshi and Y. Takeuchi for their helpful comments to complete this paper. 
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Figure 1. Reported variation of infectives for STDs in Japan [4]. Those numbers of 
reported patients per 100,000 are plotted. 

On the other hand, in regards to other sexually transmitted diseases (STDs), many records 

remain through the past. In Japan, the first time that syphilis was reported was in 1512 [3]. 

After World War II, various institutions were established, and the law obliges infectives to report 

infection with STDs. So statistical data has been accumulated since 1949 (Figure 1) [4]. The 

number of infectives could reflect some developments of social background. For a striking example, 

the law to prohibit prostitution was established in 1958. Although some STDs were very serious 

in the past, almost all of them are now cured without mortality and vertical transmission. 

In mathematical biology, the study on the epidemic models is one of the most successful fields 

because we have been able to apply various statistical data, especially with regard to human 

epidemics. Indeed, the history of mathematical models for infectious diseases is quite long, traced 

back to at least the 1920’s. In that period, the work by Kermack and MacKendrick [5] appeared. 

In the Kermack-MacKendrick model, total population is presumed to be constant in size and to 

be divided into three classes. There are infectives, I who can pass on the disease to susceptibles, S 

who have not yet contracted the disease. The remaining class consists of members R who have 

been infected and have become unable to transmit the disease for some reasons, for instance, 

because of isolation from the rest of population. In the Kermack-MacKendrick system, one of 

the most basic SIR models is 

dS(t) - = -MI, 

d$t) - = MI - yI, 
dt 

dR(t) - =yI. 
dt 

To consider the nature of epidemic dynamics by SIR model, there must be initially some infectious 

and some susceptible population for infection, so I(0) > 0 and S(0) > 0. The basic idea of the 

Kermack-MacKendrick model is that the susceptibles become infected at a rate proportional to 

the number of contacts between individuals of S and I, assuming that the contact depends only 
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on the population size of each class, which can be regarded, for example, as the uniform mixing 

of the whole population. The rate at which individuals become unable to transmit the disease 

is assumed proportional to the population size of infectives. It could be regarded as to represent 

some kind of average of the process in which particular individuals take different lengths of time 

to reach the state in which they neither contract nor pass on the infection. 

Recently, Beretta and Capasso [6,7] mathematically studied some multigroup SIR models. Epi- 

demic process among heterogeneous populations can be considerably contributed to asymmetric 

relationships among them. Such asymmetric relationships corresponds to, for example, some 

social structures or some genetic factors. In this paper, we consider two sexual groups: one 

corresponds to male group and another to female. We analyze an SIR model with two sexual 

groups to consider some qualitative natures of STDs, and also try to discuss some real cases of 

nonmortal STDs. In our modelling analysis, the sex ratio appears to be one of complications 

in the study of such two sexual models. Further, it is interesting that slight differences in the 

dynamic structure of modelling lead to different results. 

2. SIR MODEL FOR 
ASYMMETRIC TRANSMISSION 
OF HETEROSEXUAL DISEASE 

2.1. Assumptions and Modelling 

We 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

make the following assumptions on the epidemic dynamics for our modelling: 

There are two sexual groups, whose total populations are temporally variable due to the 

recruitment of newborns and death. Group 1 and group 2 at time t have, respectively, 

male population N,(t) and female one Nz(t). 

Each of populations Ni and Nz is divided into three classes: 

(a) Susceptible class Si(t): subpopulation capable of contracting disease and becoming 

infective. 

(b) Infective class L(t): subpopulation capable of transmitting disease to susceptible 

subpopulation. 

(c) Removed class Z&(t): subpopulation which has contracted disease, and died or re- 

covered, permanently immune or been isolated, so as to be unable to contract and 

transmit the disease. 

Newborn population is supplied by female population. The sex ratio of newborn is gener- 

ally assumed constant as follows: 

{male newborn) k 

{female newborn} = - l-k 
O<k<l. 

All newborns are susceptible without any vertical transmission. Birth rate depends in 

general on the class of the mother, denoted by Bs, Br and BR, respectively, for S, I and 

R classes. 

The death process is exponential decay with the rate pi > 0 (i = 1,2). 

A susceptible individual of Si becomes infected at a rate proportional to the frequency 
of contacts with infectives of both groups, which are given by the multiplication SiIj 

(i,j = 1,2). I n ective f individuals of group j (j = 1,2) transmit the disease to susceptible 

individuals of group i (i = 1,2) with the transmission rate Xi? 2 0. 

For group i, the transition of individuals from the class Ii to the class Ri is exponential 

with the rate yi > 0 (i = 1,2). 

All parameters pi, Xij and ri (i, j = 1,2) are time-independent constants. 
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Figure 2. Scheme of population dynamics for SIR model with two sexual groups. 

2.2. Basic Model System 

With the above assumptions, we consider the following system (Figure 2): 

dS1 (t) 
- = k (Bs&(r) + Bllz(t) + BRR2(t)) - (X1111(t) + X1212(t))&(t) - @1(t) 

dt 

y = (hlll(q + &212(t)) G(t) - (P + r)l1(t) 

dR1 (t) - = 711(t) - /&(t) 
dt 

y = (1 - k) (B,&(t) +&12(t) + BRR2(t)) - (X2111(t) + ~22~2(t>)sz(t) -@z(t) 

(1) 

fJ$ = (X2111(t) + X2212@)) Sz(t) - (P fyPz(t) 

d%(t) 
- = -/12(t) - @2(t). dt 

The total population Ni(t) (i = 1,2) is defined by Ni(t) = &(t) + Ii(t) + l&(t). 

We consider the population which has a temporally variable size. The sex ratio of newborns is 

in general assumed to be k : 1 - k (0 < k < l), and the birth rate is commonly constant B. For 

convenience, male birth rate is denoted by Br, and female one is by B2: 

B1 E kB, B2 E (1 - k)B. 

We consider only the case without the homosexual transmission, when X11 = X22 = 0. For in- 

stance, in regards the general STDs in Japan, there is insignificant infection owed to it, compared 

with heterosexual transmission. To consider the dependence of results on the model structure, 

we comparably analyze the following three systems depending on which female classes could con- 

tribute to the recruitment of newborns. Actually, it is known that once a female contracts certain 

kinds of STDs, for example, the papilloma virus, it is highly probable she becomes sterile. 
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MODEL I. With birth from every female class: 

I 
dS1 
- = Bi(S2 + I2 + R2) - xK&?si - I_Lsi 
dt 

dI1 
- = ~12IZSl - (p + -/)I1 dt 

dR1 
dt = YIP- PRY 

i 

dS2 
- = B2(S2 + I2 + R2) - X2111S2 - pS2 
dt 

dJ2 
- = X2111S2 - (CL + y)12 dt 

dRz 

MODEL II. With birth from S and I classes: 

d% 
- = Bl(S2 + 12) - x1212s1 - pus1 dt 

dI1 
- = A1212Sl - (p + y)11 dt 

dR1 
- = yIl - pR1 

dt 

dS2 
- = B2(S2 + 12) - XZlIlS2 - ps2 dt 

dI2 
- = XZl~lS2 - (CL + y)12 dt 

dR:, 
- = y12 -pR2. 

dt 

MODEL III. With birth only from S class: 

I 
dS1 
- = BiS2 - XizIzSi -psi 
dt 

dIl 
x = X1212Sl - (p + r)l1 

dR1 
- = $1 - pR1 

dt 

I 

dS2 
- = B2S2 - X2iIiS2 - pS2 
dt 

dI2 
- = XZl~lS2 - (P + -/)I2 
dt 

dR2 
- = $2 - pR2. 

dt 

3. ANALYSIS 

(2) 

(3) 

(4 

In our mathematical analysis of those models, we focus on the behaviour of the infective 

population at the early stage, and at the stationary state, to consider how the sex ratio of 

infectives is related to epidemic parameters, especially to the asymmetric transmission rates. 
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3.1. Invasion of Heterosexual Disease 

Could the disease successfully invade and persist after a few infectives come into the group 

which formerly had no infectives ? In this section, we consider this question by examining some 

phases of the development of an infective population. 

3.1.1. Early spread of disease 

At the early stage of invasion of disease, the early spread of disease is defined as follows. 

DEFINITION 1 (EARLY SPREAD OF DISEASE). Early spread ofdiseasein group i is defined for 

the case when, with sufficiently small initial infectives within the group, the infective population 

increases just after its initial invasion. 

From the definition, the early spread of disease within group i for the SIR model can be 

mathematically defined to occur, iff the following condition is satisfied: 

Z(O) > 0, (i = 1,2). (5) 

Let us consider the condition for the early spread of disease, defined in the above for the SIR 

model. Wezsume that 119) and 12 (0) are sufficiently small. From (5), we get another equivalent 

inequality Ri > 1, where Ri is defined as a nondimensional value, given commonly among three 

models as follows: 

z = Sag 
CL+? 

for group 1, 

R^2 = s~(o+ 
I-L+7 

for group 2. 

Iff Ri > 1, % is positive at t = 0, and early spread of the disease occurs. Ri is called the basic 

reproductive rate of epidemic disease within group i [8]. z corresponds to the expected value of 

susceptibles that the unit infective population can transmit during its expected infective period 

until transition to the removed class. If the expected number is more than the unity, then the 

disease will spread, since the infectives are expected to gain new recruits. 

From (6) and (7), the larger the summation is of the natural death rate ,D and the recovery 

rate y, the harder it is for early spread to occur, because Ri becomes smaller. It is interesting 

that even if we can increase the recovery rate y, z may not become smaller when the natural 

death rate decreases. This can be often observed in medically advanced countries. When the 

initial susceptible population Si(O) or the transmission rate X, is large, x is large and early 

spread easily occurs. Since R? is in general not equal to R^2 except when S1(0)X12 = S2(O)X21, 

it is likely that one of two groups takes the early spread and another does not (for instance, 

see Figure 3). 

On the other hand, again from (5), the threshold gi for the initial susceptible population Si(O) 

in terms of the early spread within group i can be also obtained 

R-4) 

If Si(O) > !?i, we have the early spread within group i. Since Si(0) M Ni(O), (8) can be regarded 

as the threshold for the total population of group i, in order to cause the initial spread of disease 

within group i. Further, in the same way, the threshold Xi for the transmission rate Xij can also 

be defined 
&P”+Y 2 

si(o)’ 

When Xij > ii, early spread occurs within group i. 
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Figure 3. A behaviour of li (i = 1,2). p = 0.02, 7 = 0.0333, B = 0.106, k = 0.50, 
x12 = 0.30, x21 = 0.90 x 10-3, Sl(0) = S2(0) = 1.0, h(O) =12(O) = 0.1. 

Along the same lines, if 11(O) < 1, 12(O) < 1 and 11(0)/12(O) = q (q: constant), we can 
estimate the basic reproductive rate for the total population 

jg = X12&(0) + X21S2(0) 

P+qHP+Y) . 
(9) 

Iff &, > 1, the total infective population increases at the initial stage of invasion. 

3.1.2. Persistence of disease 

We consider if the disease can persist after the invasion. We define the persistence of disease 

as follows. 

DEFINITION 2 (PERSISTENCE OF DISEASE). Persktence of disease is defined for the caSe when 

infectives can exist at any time once the invasion is successful. 

There are mathematically three distinct cases of the persistence with positive infective popu- 

lation: nontrivial positive equilibrium, periodic solution, and chaotic behaviour. When infectives 

disappear, we can distinguish two types: one is the case when the total population becomes 

extinct, another is when the susceptibles come to occupy the whole group, that is, when the 

invasion is not completely successful. 

We can analyze the local stability of the equilibrium states without any infectives. If all of 
them are unstable, the infectious disease can necessarily persist after the invasion. If the disease 

free equilibrium is locally stable, it can be regarded as to imply that infectious disease with 

initially very small infective population is eventually excluded. Another standing point of the 

analysis is the existence of the nontrivial equilibrium state with infectives. With what condition 

of parameters could it exist? We can argue the condition which is necessary for the persistence 

of disease with an equilibrium state. 
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MODEL I. From (2), we obtain the following closed linear system of ordinary differential equations 

for Ni(t) and Nz(t): 
dN1 
- = BIN2 -pNl, 
dt 

z = (B2 - ,u)Nz. 
(10) 

Solving this system, we can get 

Ni (t) = 
{ 

Ni (0) - &Nz(O) 
1 

e-@ + &Nz(0)e(BZ-fi)t, (11) 

Ns(t) = Ns(0)e(B2-Cl)t. (12) 

Therefore, iff Bz < p, (ST, S,*, I;*, I,*, R;, Rz) = (O,O, O,O, 0,O) is the stable equilibrium for any 

initial condition. 

When Bz = p, since the female population is assumed constant N2, we can obtain the explicit 

solution for Ni as follows: 

Ni(t) = Ni(0) - 
1 

&Nz 
1 

k 
eePt + -Nz. 

l-k (13) 

So, it can be immediately seen that, as t -+ co, the male population Ni asymptotically approaches 

to 

Thus, in the stationary state, the sex ratio of the total population is the same with that of 

newborn. The local stability of the disease free trivial equilibrium (ST, S,*, 1;) 1;) = ((k/(1 - 

k))Nz, N2, 0,O) is determined by the eigenvalues of the following Jacobian matrix: 

J(&W%~W) = 1” : j;) I;;;]. 

From the eigenvalue analysis, the trivial equilibrium is unstable, iff 

(P + r)2 - x12x21 &N;<O. 

If the nontrivial equilibrium exists, from (2), it turns out to satisfy the following: 

(15) 

s; = 

s; = 

I; = 

1; = 

R; = 

R; = 

(xzlq + P)(P + r)2 

A2X21N2 ’ 

(P + rj2 

Jb2x21s; ’ 

/-Wd2& - Cl- k)(p + rJ2) 

(1 - k)(p + YPP~(P + Y + h2N2)’ 

(P + ?)I; 

x12q 
7 

II;, 
P 

II;. 
P 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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Table 1. Feasible asymptotic states for Model I with p < B2 and for Model II with 
p + y < B2. The symbol * indicates an unknown finite value. 

The necessary and sufficient condition for the existence of the above nontrivial equilibrium, that 

is, for 0 < S,7 < NT (i = 1,2), is equivalent to (15). 

In the case when 

(22) 

since Jacobian matrix (14) has a zero-eigenvalue, the stability of the nontrivial equilibrium is not 

trivial from the eigenvalue analysis for the linearized system around the equilibrium. However, 

we know that the total male population asymptotically approaches a constant, and hence we 

can argue the nature of the w-limit set for this model, by analyzing the corresponding system 

with BP = p and constant Ni. In such condition, it can be shown that the trivial equilibrium is 

locally stable if (22) is satisfied from the eigenvalue analysis. 

When ,u < B2, Ni(t) -+ 00 (i = 1,2); i.e., population is explosive. In this case, the feasible 

asymptotic states of S, I and R classes are given in Table 1 (for detail way of the derivation, 

see Appendix A). Consequently, it is proved that the infective population is explosive (see Fig- 

ures 4a,b). 

MODEL II. For this model, Nl(t) and Nz(t) themselves cannot be analytically solved, although 

it can be proved that Nl(t)/Nz(t) tends asymptotically to Ic/(l - k) as t + cm (see Appendix B). 

(4 1 0)) I (B2 =IL) 

(cl 11 (d) III 

Figure 4. Persistence of disease. For detailed explanation, see text. 

When Bs < b, it can be easily shown that the trivial equilibrium 

(S;,%,I,*,G,R;,R;) = (O,O,O,O,O,O) 

is locally stable from the eigenvalue analysis for the corresponding Jacobian matrix. 

When Bz = ~1, the unique equilibrium point in the domain (R6, - D} is the following trivial 

one: 

(S;,S,*,Ii7G7R;,R~) = (0,0,0,0,0,0)7 

Kn 23:,-F 
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where we define 
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~={(S~,S2,I~r12,R1,R2))Sl>O, S,>O, I1=12=Rl=R2=0}, 

R6+ = {(Sl,S2,~1,~2,&,Rz) I Sl L 0, 572 2 0, 11 L 0, I2 L 0, R1 2 0, R2 2 0). 

It can be proved that the trivial equilibrium is globally stable in R$ - 23, and that the trajectory 
with the initial state in l7 asymptotically approaches to 

(S;,S;,G,G,R;,R;) = 
( 

~S2(O),S2(0),0,0.0,0), 

and this equilibrium state exists uniquely determined by the initial state (for the proof of these 

results, see Appendix C). This is a disease free case for t 2 0. 

On the other hand, if the nontrivial equilibrium exists, it must satisfy the following: 

S; = (P + r>1; 

&24? ’ 
(23) 

s* = ~+y-Bz~. 
2 B2-,u 2’ 

(24) 

1; = (P + -/)(Bz - CL) 

X21(/-4+~432)’ 
(25) 

1; = 
1 

Wy(p + Y - J32)&2A21 
{ 

P32 - P)“(P + yj2&2 

+ (B2 - P)~(P + yj4X:2 + 4&yb + Y - B2)2h2%(B2 - P)P(P + y) , 

R; = ;I;, 

R; = ;I;. 

(26) 

(27) 

(28) 

Iff the right-hand sides of (23)-(28) are positive, this nontrivial equilibrium exists. From equations 

(23)-(28), we can easily prove that the necessary and sufficient condition for the existence of the 

above nontrivial positive equilibrium is ,u < Bs < p + y. 

As for the case when p + y < B2, it can be proved that S2 + Is diverges as t -+ co (see 
Appendix D). In this case, the feasible asymptotic states of S, I and R classes are shown in 

Table 1, qualitatively the same as for Model I. For Model II, we can prove that Sl(t) + B1/X12 

as t + co in the state (d) of Table 1 (see Appendix D). Anyway, the obtained result is that 

the infective population is explosive. Some numerical calculations implied that the state (d) of 

Table 1 would be as asymptotically attainable equilibrium state. 

MODEL III. Also for this model, with the argument analogous to that for the previous model, 

we can prove that 

K(t) : k 

Nz(t) l-k 
t -+ 00. 

When Bs < p, it is easily proved that the trivial equilibrium 

(ST,S;,I;,I,,R;,R;) = (O,O,O,O,O,O) 

is locally stable. 

When B2 = ~_t, the same as for Model II, the unique equilibrium point in R”+ -2, is the following 

trivial one: 

(S;,S;,I,*,I;,R;,R;) = (O,O,O,O,O,O). 
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This trivial equilibrium is globally stable in R6, - V. With the initial state in V, the same 

argument as for Model II can be applied, and the same result of the disease free asymptotic state 
can be drawn. 

Iff the condition ~1 < BP is satisfied, the nontrivial equilibrium exists. This results from such 
requirements that the following (29)-(34) must all be positive: 

s* = (cl + TN32 - P) 
1 

h2X21qi 
7 (29) 

a$‘= /J+r 
2 

B2 - CL 
I,*, (36) 

I* = B2 - P 
1 

x21 ’ 
(31) 

1; = 
1 

2&X12X21 
(B2 - d2h2 + &32 - P)~X:, + 4&&2A21p(B2 - /.J)~ , (32) 

R; = ?I;, 
I-J 

(33) 

Moreover, along the same line of argument as for Model I and II, we can prove that the state 

(Sl(t),S2(t),Il(t),12(t),Rl(t),Ra(t)) = (Nl(t),N2(t)rO,O,O,O) cannot be the asymptotically at- 
tainable one as t -+ co. 

Results from the above analyses about the local stability of trivial equilibria and the existence 
of nontrivial ones for each model are displayed in Figure 4. For the region of extinction in 

Figure 4, the total population dies out, which is determined only by the relation between the 
birth and the death rates. That is, for that region in Figure 4, since the death rate exceeds the 
birth rate, the total population goes extinct. 

3.2. Sex Ratio of Infective Population 

We consider the sex ratios of infective population at the equilibrium states. 

3.2.1. Sex ratio at equilibrium state 

For the nontrivial equilibrium, the stationary infective population for each model has been 
obtained by the previous analysis. In this section, we consider the sex ratio of the infective 
population at the equilibrium state. We must note that the following analysis should be under 
the restriction of parameters in order for the existence of the nontrivial equilibrium. 

MODEL I. 

1; _ ((1 - k)(P + Y) + ~X21N2Ih2 

I;;- (1 - kHJ412N2 + P + YP21 . 
(35) 

1,*/I,’ is a monotonically increasing function of k (0 < k < 1) (Figure 5). 

MODEL II. 

5__ 2b-4 + 7HB2 - PM 

Iz* - (B2 - /-JU>~(P + rJ2 + (B2 - c1j4@ + rj4 + 4B17h + Y - Bd2&(Bz - /J)/& + Y)’ 

(36) 
As Xl2 -+ oo, If/I,* approaches the constant B~Y/{(B~ - p)(p + y)} independent of X21 (see 

Figure 6a and Table 2). When X21 is sufficiently small, 1,*/I,* is asymptotically Bly/{(Bz - 

P)(P + 7)). w e consider that for such sufficiently small X 21, the transmission of disease from 
male to female occurs very slowly. Then, 1; could be quasi-stationary determined by only female 
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Figure 5. Sex ratio of infective population at the equilibrium state for Model I. 
p = 0.02, y = 0.0333. 

population dynamics, so that Xi2 and Xai do not contribute to the sex ratio of infective population 

in such case. 

MODEL III. 
1; 2B1 
12+= 

& - CL + J(& - pj2 + 4&(&/X12)~ 
(37) 

(4 (b) 
Figure 6. Sex ratio of infective population at the equilibrium state: (a) for Model II; 
(b) for Model III. p = 0.02, y = 0.0333, B = 0.106, k = 0.50. 

As well as for Model II, if Xi2 + 0;) or X21 + 0, 1:/I,* is asymptotically constant, Bl/(Bz -p), 

independent of both transmission rates, which is larger than that for Model II (Figure 6b and 

Table 2). The infective sex ratio for this model behaves qualitatively the same as that for Model II 

except for its &-dependence. It would be due to the structural difference such that the mother 

class is only S2 in Model III while S2 + 1~ in Model II. When we compared the result for Model III 

with that for Model II, the sex ratio for Model III tended to take the bigger value than that for 

Model II, except for when Xrz is sufficiently small (see Table 2). 

3.2.2. Sex ratio at explosive state 

For Model I, we could not find any mathematical result about the sex ratio at the explosive 

state. 
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Table 2. Sex ratio of infective population at the nontrivial equilibrium for each model. The parenthesized 
numbers in the second and the third rows indicate the corresponding conditions and formulas in the text. 
Dashed lines in III show the results for II. 

I II III 
B2-p 

(22) 
P~~2-vS”I 1-1-c B2 

IT 

3 
(35) (36) (37) 
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MODEL II. In Table 1, the states (c) and (d) lead to a sex ratio of infective population which 

asymptotically tends to a constant value (see Appendix E), which is 

11(t) B2 

Izo- x21s; ’ 
t -+ co 

For Model III, we consider the sex ratio of the infective population, assuming that both Ii(t) 

and Is(t) diverge exponentially as t -+ co. 

MODEL III. As described in Appendix E, we can prove that 

3.2.3. Sex ratio at extinctive state 

For our models, it can be proved that Ii(t)/ls(t) converges to a finite constant (see Appendix F). 

However, we could not distinctly determine the converged constant (for example, see Figure 7). 

2.5 

2 

1.5 

1 

0 

Figure 7. Sex ratio of the infective population at the extinctive state for Model II. 
Numerically obtained for k with which the extinctive state is attainable. p = 0.02, 
y = 0.0333, B = 0.106, Xl2 = 0.90, X 21 = 0.50, Sl(0) = &(O) = 1.1, II(O) = 12(O) = 
0.1. 

3.3. Stationary Incidence of Disease 

In this section, we consider the incidence of disease that is the ratio of the new infective 

recruitment. 

DEFINITION 3 (INCIDENCE OF DISEASE). Incidence of disease is the ratio of population trans- 
ferred from the susceptible class to the infective in the total population. 

In ordinary statistical use, the incidence is reported as the ratio of recruited infective population 

to a certain total population. For our model, to somehow give corresponding meaning, we consider 

the incidence of disease at the nontrivial equilibrium state. We define the male and the female 

incidences of disease, respectively, as follows: 

Inc* = XlZSYG 
1 

N,” 

X2lS;li 
Inc; = -, 

N,* 
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where Inc; is the male incidence and Inc; is the female one. Further, we introduce the ratio 

Inc;/Incs denoted by INC*: 

INC* = x&r;rv; 

X,,S~IfN~ (40) 

For our models, INC* can be computed as follows: 

INC* = (l - ‘)‘i 
kI; ’ (41) 

It turns out that INC* behaves qualitatively the same as the sex ratio of infective population 

1,*/I,* does for transmission ratios Xis and Xsi. However, for the sex ratio k of newborn, INC* 

has natures different from those of 1; /I,*. 

syphilis O- 

gonorrhea +---- 

genital herpes 

chancroid 

condyloma 
acumlnatum 

P- 

O-- 

.- 

genital chlamydial 
- wkctious disease 

X- 

‘50 ‘55 ‘60 ‘65 ‘70 ‘75 ‘a0 ‘85 ‘90 

year 
Figure 8. Sex ratio of incidences of STDs in Japan [4]. 

3.4. A Qualitative Application 

FLeported numbers of STD infectives in postwar Japan are shown in Figure 1 [4]. Those numbers 

can be regarded as to correspond to the incidence of STDs. However these numbers are changing 

due to the radical changes of social background. Compared with the social upheaval just after 

World War II, the temporal variation of them to some drastic changes of those incidences of 

STDs appears smaller after 1970s. In this chapter, along with our results in the previous section, 

we consider the incidences of some STDs from the statistical data. 

We focus on the ratio of incidences of STDs between male and female population. The temporal 

variation obtained from some statistical data in Japan [4] is given in Figure 8. 

In our models, k = 0.50, INC’ = If/l,* from (41). Especially in some cases of strongly biased 

transmission (see Table 2), using B = 0.106, p = 0.020, y = 0.033 by May and Anderson [l], we 

get 

(B2 -;;e + y) = 1*oo44, (42) 

& 
- = 1.6060, 
B2 - P 

(43) 

where (42) is for Model II, and (43) is for Model III. 
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The statistical data from 1970 in Figure 8 gives the average values for gonorrhea, syphilis and 

genital herpes: 6.975, 1.395, and 1.572, respectively. In regards genital herpes, the average seems 

relatively near the value of (43). Also for genital chlamydial, which is a disease known to make the 

infected female sterile, it appears roughly near the value of (43). Hence, the genital chlamydial 

infectious disease might be corresponding to Model III, in which 1s and Rz are sterile. 

INC* for Model I is given by 

INC* = 
{(1-k)~P+~)+k~21}%2 

k (L + P + Y) 121 ’ 
(44) 

where 

x12 = X12N2; x21 = X2iN2. 

Figure 9. Relation among k, in and %I with INC‘ = 1.572 for genital herpes. 
Drawn from Model I. p = 0.02, y = 0.0333. 

With p = 0.020, y = 0.033 by May and Anderson [l], parameters k, XI, and &i determine 

INC*. From (41), for a fixed INC* = 1.572, in case of genital herpes, the other parameters k, xl, 

and Xsr have the relation shown in Figure 9. In the cases of gonorrhea and syphilis, a similar 

relation can be drawn. 

In regards to Models II and III with B = 0.106, p = 0.020, y = 0.033 by May and Anderson [l], 

we can draw the relation among INC* and the other parameters as shown in Figure 10, where 

X&/Xr2 and &r/Xi2 are used ss characteristic parameters for Models II and III, respectively. 

If we suppose k = 0.5, the contribution of parameters X&/X12 and Xsr/Xrs for INC* can be 

obtained as shown in Figure 11. From some statistical data in Japan [4], we can pick up the values 

of incidence ratio. Applying the data of incidence ratio to our INC* with B = 0.106, p = 0.020, 

y = 0.033 by May and Anderson [I], the parameters X&/X12 and Xsr/Xrs can be estimated. 

Indeed, applying the data for gonorrhea, genital herpes and syphilis, we obtain Table 3. For 

Model II, since X&/Ais N 0(104 N 105) we can suggest that A 21 might be larger than Xi2 with 

0(102 N 103). As in Model II, referred to in Table 2, this corresponds to the case when Xl2 

is sufficiently small or Xsr is sufficiently large. For Model III, &/Xi2 is negative in case of 

gonorrhea. This indicates that Model III could not be applied in this case. For the other STDs, 

Xsr appears smaller than Xis by 0(10m2 N lo-‘), as in Model II (Table 2), corresponding to the 

case when Ais is sufficiently large or X21 is sufficiently small. Therefore, it might be appropriate 
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log( INCf log( INC!) 

0.6 
t 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

(4 (b) 
Figure 10. INC*: (a) for Model II; (b) for Model III. B = 0.106, /.L = 0.02, y = 0.0333. 

‘-‘4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 ‘.12-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 

Figure 11. INC” with k = 0.5: (a) for Model II; (b) for Model III. B = 0.106, 
p = 0.02, y = 0.0333. Some values of the incidence ratio from the data for STDs in 
Japan [4] are indicated. 

Table 3. Estimated X$,/Xrz and X21/X12 for the data of incidence ratios for some 
STDs in Japan [4]. 

that we consider the constant Bi/(& - ,LJ) by (43), especially for genital herpes. This drastic 
difference between the resulting estimations of X&/Xi2 and Asi/Xr2 in Table 3 could be due to 
the structural difference between Model II and III, that is, the difference of reproductive and 
sterile classes. 

With the estimated values of parameters X&/X 1s and &i/Xi2 in Table 3, we consider the 
k-dependence of INC* (Figure 12). There are distinct differences between results for Models II 
and III. The k-dependence for Model II appears monotonically decreasing independently of STDs. 
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III-2 III-3 

k 
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Figure 12. k-dependence of INC’ with the estimated parameters X&/X12 and X21/X12 
in Table 3. Some parts are not drawn due to the nonexistence of nontrivial positive 
equilibrium. 

0 0.4 0.6 
k 

0.8 1 

However, for Model III, it has a peak in case of the syphilis, while monotonically increasing for 

genital herpes. It should be noted that, since the estimated values in Table 3 are for k = 0.5, we 
should especially pay attention to the nature of INC’ around k = 0.5 in Figure 12. This difference 

of results between Model II and Model III could again be considered due to the difference of model 

structure. 

On the other hand, we can consider INC* with the assumption A12 = X21. Even if the trans- 

mission is symmetric, the relatiw between INC* and k is not clear from the sexually asymmetric 

structure of the dynamical system. When X 12 = &I, the INC* applied to the data for genital 

herpes and syphilis leads to the result k > 0.5 (Figure 13). This result implies that in the consid- 

ered community, a male newborn might be expected more than a female. Most of the previous 
mathematical considerations provided that k = 0.5. However, the sex ratio of newborn is indeed 
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not exactly 1 : 1 in Japan [9]. The averaged sex ratio calculated from the statistical data after 

1970 for (male):(f emale) is 96.6 : 100. Since at the equilibrium state the sex ratio of total popu- 

lation must be equivalent to that of newborn, we now consider this sex ratio as that of newborn; 

then we have k = 4.91 x 10-l. For a while, let us consider the case of k = 4.91 x 10-l. Then, for 

Model II, this value of k turns out not to satisfy the condition for the existence of nontrivial equi- 

librium. In case of Model III, we can estimate &i/Xi2 only for syphilis: &i/Xi2 = 1.23 x 10-l. 

With the data for the other STDs, it appears negative. 

0.5 

0 

-0.5 
l - 

ii 

5 -1 ~genital herpes 
: : 
: : 

-1.5 
: : 
I I 
: : 

-2 -’ 
: : 

sYPm; f 
: : 

-2.5 r : : 
: : . * 
: : 
: : 

-30 0.2 0.4 0.6 0.8 1 

k 

Figure 13. Relation between k and INC’ for Model III with ,412 = X21. p = 0.02, 

7 = 0.0333. 

4. CONCLUSION 

In this paper, we discussed the effect of the ssymmetricity in the transmission dynamics of STDs 

on the population structure. Some parameters, the transmission rate Xij and the newborn sex 

ratio k, appear to contribute fundamentally to the features of population structure with STDs. 

Indeed, for example, the transmission rate could reflect the average number of sexual partners, the 

sexual activity, the physical nature, and so on. In this paper, we construct our models to consider 

differences of population dynamics. Interestingly, it is shown that the results are significantly 

different depending on which classes can contribute to the recruitment of newborns. 

As for the early stage of infection in our models, we can obtain the basic reproductive rates given 

by (S)-(S). May and Anderson [2] suggest for the total population with HIV/AIDS infection: 

& oc d&&. Different from our traditional SIR modellings, in their model, it is assumed 

that susceptible individuals become infected proportionally to the ratio of infective population 

to the total number. They also neglect natural death rate in comparison with the transition rate 

from I class to R class. The basic reproductive rate by May and Anderson [2] is proportional 

to the geometric mean of transmission rates of both classes, while our result given by (27) is 

proportional to the arithmetic mean of them, weighted with the sex ratio of the initial invading 

infective population. 

The sex ratio of the infective population long after the disease invasion reveals some differences 

among models. May and Anderson [2] give the sex ratio of infective population at the early 

stage: {HIV/AIDS among male}/{HIV/AIDS among female} N dm. We consider the 

corresponding sex ratio at the equilibrium state (Section 3.2). Only the resulted sex ratio for 

Model III could be regarded to be relatively corresponding to that by May and Anderson [2]. 

Consequently, the sex ratio of infective population strongly depends on the dynamical structure 

of the transmission of disease. 



86 C. KOIDE AND H. SENO 

Applying the incidence ratios from the statistical data for STDs in Japan f4], we consider the 

corresponding ratios for each of our models. As a result, we are able to suggest that the considered 

STDs have a much more asymmetric (biased) transmission rate, which were estimated not to have 

small order of difference. 

As for mathematical analysis along our modelling, we still have many open-problems to consider 

general STDs. One of them is the effect of vertical transmission, in which the mother’s disease 

transmits to the fetus. Another is the mortality due to disease. 

We expect that a variety of mathematical studies, including ours, can contribute to the epi- 

demiology in the other fields so as to understand present diseases. We expect that our work will 

somehow contribute to the way the dynamics of some STDs are understood, as one of such works 

in mathematical biology. 

APPENDIX A 

FEASIBLE ASYMPTOTIC STATES FOR MODEL I 

We can easily find, from the differential equation for I&(t), that Ii(t) and I&(t) have similar 

asymptotic behaviour as t --f co. So, iff N,(t) = &(t) + Ii(t) + I&(t) diverges, Si(t) + Ii(t) also 

diverges. 

At first, suppose that Iz(t) -+ 0. Then, it is required that as t -+ co, y --f 0, so that 
&11S2 -+ 0 from equation for Iz(t). Since Iz(t) converges to zero, Sz(t) must diverge and as- 

ymptotically behave as exp{(B,-p)t} from (12). Hence, it is additionally required that II(~) + 0 
with a smaller order than exp{-(& - p)t}. Therefore, if 12(t) -+ 0, (Sl(t), Sz(t), II(t), 12(t)) -+ 

(%(t),~2(%0,‘3). H owever, it can be proved that this state cannot be attained as t + cm. (For 

proof, see below.) Similarly, provided that II(~) + 0, (S,(t), &(t),Il(t),I2(t)) is required to 
attain asymptotically to (Nl(t), Nz(t), O,O), which is unattainable. 

Next, suppose that 12 (t) converges to a positive finite constant. From the divergence of Nz (t), it 

is required that Sz(t) --f co. Since &!z@ -+ 0, XzlIlS2 + 0, so that II(t) -+ 0. Then, w -+ 0, 
and therefore X1212S1 -+ 0. Since Itconverges to a positive finite constant, it is required that 

s1 --+ 0. so, s,(t) +11(t) -+ 0, and this is contradictory to the condition that Nl -+ co. Along 

the same line of argument, it is proved that 11(t) positively diverges. 

On the other hand, suppose that S,(t) converges to zero; then 3 -+ 0 as t --f co. Now, 

consider 9 as follows: 

Since I2 + ca from the above argument, 3 z IzBl for sufficiently large t. This is contradictory 
to the convergence of &. In the same way, we can show that L&(t) cannot converge to zero. 
These arguments lastly give the result given as Table 1. 

For unattainable state (Nl(t), Nz(t),O,O), f rom (2), provided that Ii(O) = I&(O) = 0, then 
I&) = I&(t) = 0 f or any t, and system (2) is reduced to 

dS1 (t) 
- = &S2(t) -P&(t), 

dt 

F = (Bz - p)&(t)* 

Now, let us denote the solution for this system by (s(t),%(t)), w lc can be explicitly obtained h’ h 
a.5 follows: 

S;(t) = 
[ 
&(O) - &s2(o) I et + &S2(0)e(B2-“)ty 

z(t) = S2(0)e(B2-pL)t, 

when p < B2, s(t), and s(t) explode as t -+ m. 
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We consider the perturbation from the trajectory (Si(t), L&(t), 11(t), 12(t)) = (%(t),%(t), 0,O). 
The Jacobian matrix governing the asymptotic behaviour of (S,(t), Ss(t), 11(t), 12(t)) around 

(K(t), s(t), 0,O) is the following: 

i 

-p & 0 

J(3T;(t),~(t)Jw = 

0 B2 -p -X,,%(t) 

0 0 +++Y) 

\o 0 X21%?(t) -(P + 7) 

We obtain the following closed system for the perturbation (ii, i2) from (11,12) = (0,O): 

-(P + 7) h,-s;@) 

A2,S(t) -(P + Y) 

Under the condition ~1 < B2, the matrix has positive real eigenvalue for t > f, where 

1 

t = 2(B2 -/L) 
log (P + r)2(1 - k) > 0. 

~12~21~s2(o)2 
(45) 

Therefore, the trajectory (s(t), s(t), 0,O) is not attainable as one of equilibrium states for 
Model I with any infected initial state. 

APPENDIX B 

ASYMPTOTIC SEX RATIO IN MODEL II 

From (3), we obtain the following: 

dN1 
- =&(S2+12)-~N1, 
dt 

dN2 
- = B2(5’2 + 12) - pN2. 
dt 

From these, we derive 

-$ (B2N - BlN2) = -P(BzN~ - Bi&), 

so that immediately 

B2Nl(t) - BlNz(t) = {&Nl(O) - B1N2(0))eppt. 

As t -+ co, the right-hand side approaches to zero. Therefore, 

Nl lc 
--l-k’ N2 

t -+ co. 

APPENDIX C 

GLOBAL STABILITY OF THE 
TRIVIAL EQUILIBRIUM FOR MODEL II 

We consider the female population z = (&(t), 12(t), I&(t)), and define the function 

V(s) = Sz(t) +12(t) + R2(t), z E R3; u {r’}, 
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where 

R3+* = {(Sz, 12, R2) I S2 2 0, I2 2 0, R2 > O}, 

x0 = (O,O,O). 

Suppose that X* is the unique equilibrium for the female system in Ry U {x0}. Then, V(z) 

satisfies 

V(x) > 0, XER~, 

V(xO) = 0. 

Since v(x) = -_cLR~, 

V(x) < 0, XEERT, 

P(2) = 0. 

Hence, V(x) becomes the Lyapunov function, so that x0 is GAS in Ry U {x0}. 

If S2(t) = 12(t) = Rs(t) = 0, then 

dNi 
- = -puNi, 
dt 

and Ni approaches asymptotically to zero. Therefore, (Si, $2, Ii, 12, RI, R2) = (0, 0, 0, 0, 0,O) is 
GAS in 271 U {z’}, where 

Dl = &%,S2rIl,I2,R1,Rz) 1% L 0, S2 2 0, II L 0, I2 2 0, R1 2 0, R2 > o}, 

z” = (0, o,o, o,o, 0). 

For convenience, we define the following subspace of six-dimensional space: 

D2 = ((S1,Sz,~l,~z,Rl,Rz)IS1 Lo, 5’2 LO, 11 > 0, I2 L 0, Rl 20, R2 =0}- {z”}, 

The w-limit set for trajectory with the initial state in Ds can be determined. Since I2(t) E 0 

if R2(t) E 0, II(t) + 0 and RI(t) --+ 0 as t + 00, as easily seen from the system (3). Hence, the 

w-limit set is within the following subspace V3: 

2)s = {(Si, S2, II, 12, R1, R2) I& L 0, S, 2 0, I1 = I2 = RI = R2 = 0). 

It is easily seen that Vs is the invariant set for the map given by the system (3). Since % E 0 
within Ds, Sz(t) = Sz(O), and Sl(t) can be explicitly obtained as follows: 

f&(t) = 
[ 
Sl(0) - ?S2(0) 1 &S2(0)fY + ?S2(0), 

a.nd &(t) + (&I/.@z(O) as t -+ cm. Hence, the considered w-limit set consists of the point 

(Sl,S2,Il,12,RlrR2) = ~~2(0),~2(0),0,0,0,0) + 
( 

If 55(O) = 0, this is equivalent with {z”}. Therefore, any trajectory with the initial state in 2)s 
leads to the w-limit set included to Vs. From these arguments, the trivial equilibrium is GAS in 
Ds - {zO}, that is, 2, as defined in the main text. 
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APPENDIX D 

EXPLOSIVE STATE FOR MODEL II 

For Model II, we can easily find that 

-$2(t) + 12(q) = (B2 - P)SZ(t) + {B2 - (cl + Y))12@) > {B2 - (P + Y))(S2(t) + 12(t)). 

Thus, using the conventional comparison theorem, 

E?(t) + 12(t) > (&C&?(O) + 12(O)) e{B2-(fi+@) 

for any t. Therefore, if BP - (/.L + 7) > 0, S2 + 1s diverges as t + co. 
We denote by 5’; the positive equilibrium value for Si(t). From the following transformation: 

we can obtain $$ + 12(Bi - XisSi), if 12 -+ co and Ss converges to a finite value. Therefore, 
for the state (d) in Table 1, it is required that 5’: = Bi/Xi2. 

We further consider the cases in Table 1. Provided that Ii(t) and 12(t) behave as exp(cpt) and 
exp(pt) (cp, p: unknown constants), respectively, for sufficiently large t, we rewrite the differential 
equation for Ii as follows: 

Then, for sufficiently large t, we obtain the following relations: 

Since 9 and p are constant, it is required that Sl(t) behaves as exp{(cp - p)t}, and ,92(t) as 
exp{(p - cp)t} for sufficiently large t. 

In type (a) in Table 1, since Si(t) -+ 00, cp - p > 0. However, Sl(t) + co requires p - up > 0. 
This is contradictory. Similarly, we can lead to contradictions in the other types, except for 
type (d). In type (d), since both S,(t) and Sz(t) converge, we get ‘p = p. From % -+ 0, 
X2illS2 x (B2 - ,u)S~ + B21s for sufficiently large t. Therefore, for sufficiently large t, 

% 23 (B2 - p)S2 + (B2 - (P + Y)12). 

Then, we can obtain p = B2-(P+Y); i.e., both Ii(t) and 12(t) ex p onentially behave as exp[ { B2 - 

(/J + 7))tl. 

APPENDIX E 

INFECTIVE SEX RATIO OF EXPLOSIVE POPULATION 

We suppose that II(t) and 12(t) diverge exponentially as same as in Appendix D for Model II. 
Then, we can obtain the result that 5&(t) behaves as exp{(p--cp)t}. NOW, we suppose 12(t) = Aept, 
where A is unknown constant. Then, l&(t) becomes 

Rs(t) = J&(O) - -$$ e-‘lt + pe 
{ 1 

-YA pt 

PfP 

x yAept 
P + iJ 

for sufficiently large t. 
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So, for sufficiently large t, we can denote 12(t)+&(t) M Ce@. 

because p = XnlIlS~i - (p + 7) is constant (Appendix D). 

Moreover, we set Ii(t)&?(t) x 

Then, we can solve out Sz(t) 

De@, 

Sz(t) = Sz(O) - 
B2C - Xzi D e(n2-ll)t + B2C - X2i D 

P-(Bz-P) P - (B2 - P) 
ept. 

Hence, for sufficiently large t, 

Sz+k?+R2= Ee@2-L+ + FePt, 

where 

E = S2(0) - 
B2C - X2iD 

P-(Bz-4 

F = B2C - X21D TA 

,~-(BP-/L)+~+-’ p+cL 

From (3), we find that 

$ N2(t) = B2 (S2(t) + 12(t)) - 02(t) I (B2 - p) Nz(t). 

So, with the conventional comparison theorem, 

N,(t) 5 N2(0)e(B2-p)t 

for any t > 0. Thus, with the obtained asymptotical behaviour of Nz(t) in the above, we find 
that p 5 Bz - CL. Consequently, from the asymptotic behaviour of &(t) for sufficiently large 
t, p - cp = Bz - p. This brings such a result that II(t) -+ 0 since cp = p - (Bz - /_J) 5 0. 

And similarly, Iz(t) --+ 0. This argument proves that neither Ii(t) nor Iz(t) can diverge in an 

exponential manner. 
When S2(t) converges to a finite value and 12(t) -+ oc), 

In order that $$ + 0, it is required that 1,*/I,* = Bz/(&iSz). 

Along the same line of argument as for Model II, if Ii(t) and 12(t) diverge in Model III, they 

do not behave in an exponential manner. It can be easily shown from (4) that, if Ii(t) -+ 00 a~ 

t + co, then &z(t) -+ OQ, Sl(t) -+ 0, ,92(t) -+ 0, and &(t)Iz(t) -+ co, II(t)Sz(t) -+ co. l&(t) 

asymptotically behaves as -y&(t)/p (i = 1,2). H ence, if the infective population in Model III 

is explosive, the population Ni(t) -+ (p + T)&(t)/p. Since Nl(t)/Nz(t) + k/(1 - k) as t -+ co 
in Model III, this argument indicates that Il(t)/Iz(t) -+ k/(1 - k) for the explosive infective 

population. 

APPENDIX F 
SEX RATIO OF EXTINCTIVE POPULATION IN MODEL III 

In this appendix, we describe the sex ratios of extinctive population only in the case of 

Model III. For Models I and II, we can apply the same line of argument. 
At first, we can easily get the following: 

= B1 - (X1212 + B2 - X2111);. 

Since the total population goes extinct, Ii(t) can be regarded as sufficiently small for sufficient 

large t. If Si/S2 + 0, ($> (&/Sz) + B1 > 0, and this is contradictory. Therefore, we prove 
that Si/Sz converges to Bl/B2 = k/(1 - k). 

Using this result, we next consider the following: 

. 

Provided that Ii/I2 converges to a positive finite value, the above equation is always satisfied 
without any additional condition, and we cannot determine the value. Moreover, in the similar 
line of argument as above, it can be shown that Ii/I2 cannot converge to zero or diverge. 
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