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Abstract

We focus on the question of how the dispersion of an invading population is affected by the spatial
distribution of patches that have resource available for the population’s settlement and reproduction. We
have developed and analyzed a mathematical model with a simple stochastic process. The patches are
grouped into three classes – free, occupied and abandoned – depending on the state of the patch used by the
population. We especially consider the range expanded by invaded patches, the invaded range R, assuming a
certain generalized relation between R and the total number of invaded patches k, making use of an index, a
sort of fractal dimension, to characterize the spatial distribution of invaded patches. We show that the
expected velocity is significantly affected by the nature of spatial distribution of resource patches, and is
temporally variable. When the invading population finally becomes extinct at a certain moment, the
terminal size of the invaded range at that the moment is closely related to the nature of the spatial
distribution of resource patches, which is explicitly demonstrated by our analysis.

Introduction

In nature, a variety of species expand their spatial
distribution depending on their ecological charac-
teristics, settling into habitats composed of pat-
chy environments containing, for instance, trees,
wetland, or mountains (Anderson and May 1986;
O’Neill et al. 1988; Jeger 1989; Andow et al.
1990; Johnson et al. 1992; Levin 1992; Russell
et al. 1992; Dwyer et al. 1997; van den Bosch
et al. 1997; Neuhauser 2001; Turner et al. 2001;
Pascual et al. 2002; With 2002). In general, such a
patchy environment corresponds to the spatially
patchy distribution of resources required for set-

tlement and population reproduction. In the case
of humans, we may consider a geographical loca-
tion suitable for constructing a town or village as
such a patch. Since such a spatial distribution of
resources could be reflected in the resulting popu-
lation distribution, the spatial distribution of
population would often appear to be patchy.
Such patchiness of population distribution can
also be discussed from the fractal viewpoint
(Mandelbrot 1982; Morse et al. 1985; Palmer
1988; Sugihara and May 1990; Russell et al. 1992;
Gautestad and Mysterud 1994; With 1994, 2002;
With and King 1999; Keymer et al. 2000; Turner
et al. 2001; Haskell et al. 2002).
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In this paper we use a mathematical model
to consider the effect of spatial distribution of
resource patches on the nature of spatial expan-
sion of population distribution. We focus in par-
ticular on the velocity of its spatial expansion
from the original location where the population
invasion begins. The velocity of spatial expansion
of the invaded region must be affected by the
nature of the spatial distribution of resource pat-
ches. The velocity of spatial expansion of popu-
lation distribution has been theoretically discussed
in a variety of contexts, mostly with mathematical
models of a reaction-diffusion system (Shigesada
and Kawasaki 1997; Metz et al. 1999; Diekmann
and Heesterbeek 2000; Brauer and Castillo-Chá-
vez 2001; Fagan et al. 2002; Murray 2002a, b), in-
tegro-differential or integro-difference equations
(Atkinson and Reuter 1976; Brown and Carr
1977; Mollison 1977; Kot and Schaffer 1986;
Metz et al. 1999; Neubert et al. 2000; Medlock
and Kot 2003), percolation theory or network
theory (Grassberger 1983; Stauffer and Aharony
1991; Keeling 1999; Bailey et al. 2000; Tan et al.
2000; Newman 2002; Sander et al. 2002; Meyers
et al. 2003; Otten et al. 2004), and cellular autom-
aton or lattice dynamics (Sato et al. 1994; Levin
and Durrett 1997; Filipe and Gibson 1998; Brown
and Bolker 2004; Filipe et al. 2004). Mathemati-
cal models using percolation theory or network
theory have been especially attractive to research-
ers interested in the invasion threshold, which is
the critical condition for determining whether the
infection stops in a finite period or keeps on
expanding spatially.

In contrast to this, here we discuss the velocity
using a mathematical model of a stochastic pro-
cess, analyzing the expected velocity. To incorpo-
rate the effect of heterogeneous spatial distribution
of resource patches on the spatial expansion of an
invaded region, our model characterizes the spa-
tial distribution of resource patches with an index,
a fractal dimension (Mandelbrot 1982; Hastings
and Sugihara 1993). Our model thus describes the
population dynamics in terms of a stochastic pro-
cess, and the spatial expansion of an invaded
region in terms of the fractal nature of the spatial
distribution of resource patches. This type of com-
bination of population dynamics and spatial
expansion may be regarded as an approximation
to the actual interrelationship between them. We

show that our modeling method would be useful
for gaining theoretical insights or developing a
more advanced or practical model of the spatial
expansion of an invaded region.

Modeling

Assumptions

In our modeling method we classify the patches
into three classes, depending on the state of
patch use by the population: free, occupied and
abandoned. An occupied patch is a patch where
the population is consuming the resource in it
and reproducing. An abandoned patch means the
patch is exhausted of resource and abandoned by
the population. A free patch is a patch that has
not yet been invaded. Population dispersion
occurs only from occupied patches, and the dis-
perser invades some free patches. Such an inva-
sion of free patches causes the expansion of the
invaded region, determined by the population
distribution in space.

Another way of looking at the class of aban-
doned patch is that the population becomes
extinct within the patch. If the population con-
sidered is a harmful insect that has to be extermi-
nated, such an abandoned patch may be
regarded as the artificially exterminated patch
aggregating the insect. In our modeling method,
it is essential that any patch belonging to the
class of abandoned patch has no dispersion from
it, not must it attract any disperser into it. In
this sense, the abandoned patch may be regarded
as an isolated patch.

With inclusion of such abandoned patches, our
model could be regarded as a spatial dispersion
of population which appears as an outbreak at a
certain habitat and moves away from the origin,
consuming every available resource, such as a
grasshopper outbreak.

Our model assumptions are as follows:
• Invasion rate depends only on the total num-
ber of occupied patches.

• Only free patches can be invaded.
• An abandoned patch is never invaded or used
again.

• Settlement and abandonment of a patch are
independent of any other patches.
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We should note that the invasion rate is deter-
mined by the number of patches rather than popu-
lation size, like Seno and Matsumoto (1996). The
population size of a disperser would be closely
related to the population size in occupied patches as
the source of dispersers. Hence, in our model, we as-
sume that the population size of a disperser is posi-
tively related to the number of occupied patches.

We do not consider the population dynamics
within each patch, rather classifying the patch, as
mentioned above, in terms of its use by the popu-
lation. In this sense, our model can be regarded as
a sort of metapopulation dynamics (for instance,
see Johnson et al. 1992; Hanski 1994a, b, 1999;
With and King 1999; Keymer et al. 2000; Ovaskai-
nen and Hanski 2001). Furthermore, according to
the grouping of patches into three classes and their
definitions, our model may be regarded as corre-
sponding to a kind of SIR epidemic dynamics (see,
for instance, Shigesada and Kawasaki 1997; Diek-
mann and Heesterbeek 2000; Brauer and Castillo-
Chávez 2001; Murray 2002a).

In this paper, we focus on the number of occu-
pied patches, h, and the number, k, of invaded
patches, comprising both occupied and aban-
doned patches. An invaded patch is an occupied
or abandoned one, that is, a patch which has
experienced the invasion. The number of aban-
doned patches is given by the difference k)h.

Model construction

Probability distribution for the state of patch use
We donote by P(k, h, t) the probability of state
such that there are k invaded patches and h occu-
pied patches at time t in the considered system.
To determine the probability P(k, h, t), we
consider the possible transitions of state in suffi-
ciently small time interval (t, t+Dt] with our
modeling assumptions, and derive the following
system of differential equations that govern the
temporal variation of probability P(k, h, t):

dPðk; h; tÞ
dt

¼ �ðbþ cÞhPðk; h; tÞ

þ cðhþ 1ÞPðk; hþ 1; tÞ

þ bðh� 1ÞPðk� 1; h� 1; tÞ; ð1Þ

for k ‡ 2, h ‡ 1, k ‡ h+1, and the following
additional two:

dPðk; 0; tÞ
dt

¼ cPðk; 1; tÞ; ð2Þ

dPðk; k; tÞ
dt

¼ �kðbþ cÞPðk; k; tÞ

þ ðk� 1ÞbPðk� 1; k� 1; tÞ ð3Þ

for k ‡ 1. Parameter b is the settlement rate, and
c the abandonment rate. If the population con-
sidered is of a harmful insect to be exterminated,
c may be regarded as the extermination rate for
a patch aggregating the insect.

The essence of modeling for the derivation of the
above equations is as follows: the probability that
a free patch is invaded during a sufficiently small
period Dt by the disperser from an occupied patch
is assumed to be given by bDt+o(Dt) indepen-
dently of the distance between these patches. Since
we assume that the settlement into a free patch by
the disperser from an occupied patch is indepen-
dent of any other occupied patch, the probability
that a free patch is invaded by any dispersers from
h occupied patch becomes bh Dt+o(Dt). The prob-
ability that an occupied patch is abandoned is as-
sumed to be given by cDt+o(Dt). When there are h
occupied patches, the probability that only one of
them is abandoned is given by the probability of
the abandonment of an occupied patch and that of
the non-abandonment of the other h)1 occupied
ones. Therefore, the probability that only one
occupied patch is abandoned during a sufficiently
small period Dt is given by ch Dt+o(Dt). The prob-
ability that more than one occupied patch is aban-
doned is o(Dt). Moreover, from the assumption of
independence between settlement and abandon-
ment, the probability that both settlement and
abandonment occur during the time period Dt is gi-
ven by o(Dt), because the probability for each of
them is of the order Dt.

Initial condition
We assume that the invasion begins with a patch
at time 0, so that the initial condition is given by

Pðk; h; 0Þ ¼ 1 if k ¼ h ¼ 1;
0 otherwise.

n
ð4Þ

An invader species is assumed to be introduced
into the environment for an artificial or natural
reason. The invader species then settles in a
patch which is the original place of invasion.
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Expansion of invaded range
Next we consider the range expanded by invaded
patches, calling it the invaded range. We charac-
terize the invaded range by the minimal diameter
R which includes all invaded patches.

In the case when the invaded range expands in
every direction with the same probability, the
shape of the invaded region can be approximated
by the disc, and therefore, assuming the spherical
nature of the earth is negligible and can be well
approximated by a plane, the range R has
approximately the following relation with the
number of invaded patches k: k � R2. However,
since the expansion of the invaded range is con-
strained by the spatial distribution of resources,
which could in general be heterogeneous, the
shape is possibly inhomogeneous in direction. It
is likely that the shape can be characterized by
its fractal nature (for the concept of ‘‘fractal’’,
see for instance, Mandelbrot 1982; Sugihara and
May 1990; Hastings and Sugihara 1993). To deal
with such a case, we assume the generalized rela-
tion between the invaded range and the total
number of invaded patches as follows:

k / Rd ð1 � d � 2Þ; ð5Þ

where the exponent d characterizes the spatial
pattern of invaded region occupied by invaded

patches (Figure 1). Exponent d is called the clus-
ter dimension or mass dimension, which is a sort
of fractal dimension (Mandelbrot 1982; Hastings
and Sugihara 1993). When d [ 2, the spatial dis-
tribution of invaded patches can be approxi-
mated well by a disc. When d [ 1, the
distribution can be approximately regarded as
one dimensional, that is, the invaded patches can
be regarded as being arrayed along a curve.

This idea of introducing a fractal nature into
the mathematical model for spatial patch distri-
bution is the same as that described in Seno
(1993). This modeling may be regarded as a sort
of mean-field approximation for the percolation
process on an anisotropic/fractal lattice or the
growing network (Grassberger 1983; Stauffer and
Aharony 1991; Bailey et al. 2000; Tan et al.
2000; Newman 2002; Sander et al. 2002; Meyers
et al. 2003; Otten et al. 2004). In such previous
models, the main problem was the invasion
threshold, which is the critical condition to deter-
mine if the invasion stops in a finite period or
keeps on expanding spatially. In contrast, we are
now going to focus on the velocity of spatial
expansion of the invaded range.

For convenience to apply the relation (5) for
our modeling, we now define the proportional
constant C:

(c)(b)(a)

Figure 1. Illustration of the relation of the fractal dimension d to the spatial pattern of patch distribution. Schematic process of

settlement and abandonment is also shown. White disc indicates free patch, black occupied, and grey abandoned. (a) d [ 1; (b)

1< d <2; (c) d [ 2.
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k ¼ CRd ð1 � d � 2Þ: ð6Þ

Next, conventionally we define the mean distance
Rð2Þ from one patch to the nearest neighbor
(Figure 2). In our modeling, Rð2Þ is assumed to
correspond to the expected invaded range
expanded by two invaded patches, that is, k=2.
Therefore, from (6), we assume that

2 ¼ CR
d

ð2Þ: ð7Þ

Hence, from (6) and (7), for the expected number
of invaded patches Ækæt at time t, we assume the
following relation for the expected invaded range
rt at time t:

hkit ¼ 2rdt ð1 � d � 2Þ; ð8Þ

where rt is the expected invaded range measured
in terms of the mean distance Rð2Þ: rt � Rt=Rð2Þ.

Further, we can define the expected velocity Vt

of expansion of the invaded range at time t by

Vt ¼
d rt
dt

:

So, from (8), we can obtain the following relation
between the expected velocity Vt and the expected
number Ækæt of invaded patches at time t:

Vt ¼
1

d

1

2

� �1=d

hki1=d�1t � dhkit
dt

: ð9Þ

Analysis

Expected number of occupied patches

We denote by Æhæt the expected number of occu-
pied patches at time t, defined by

hhit ¼
X1

k¼1

Xk

h¼1
hPðk; h; tÞ: ð10Þ

From (1) and (3), we can obtain the following:

d

dt
hhit ¼ ðb� cÞhhit;

and then

hhit ¼ eðb�cÞt; ð11Þ

where we used the initial condition (4) for (10):
Æhæ0=1.

Expected number of invaded patches

As for invaded patches, we denote by Ækæt the
expected number of invaded patches at time t,
defined by

hkit ¼
X1

k¼1
k
Xk

h¼0
Pðk; h; tÞ

( )
: ð12Þ

From (1), (2) and (3), we can obtain the follow-
ing:

d

dt
hkit ¼ bhhit:

With (11), we can solve this differential equation
and get

hkit ¼
b

b� c
feðb�cÞt � 1g þ 1; ð13Þ

where we used the initial condition (4) for (12):
Ækæ0=1.

Now we consider the saturated value of Ækæt as
t fi ¥. From (13), for b ‡ c when the settlement
rate is not less than the abandonment rate, Ækæt
becomes positively infinite as t fi ¥. On the
other hand, for b<c when the abandonment rate
is greater than the settlement rate, the saturated
value is as follows:

hkit!1 ¼
c

c� b
: ð14Þ

Expected invaded range

Since, from (8),Figure 2. Illustration of range R(2).
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rt ¼
hkit
2

� �1=d

; ð15Þ

we can consider how the expected invaded
range rt depends on the fractal dimension d of
the spatial distribution of patches, making use
of (13). For 0<b/c<1/2, when the abandon-
ment rate is sufficiently greater than the settle-
ment rate, the expected invaded range rt

becomes larger as d is larger (Figure 3(a)). This
means that the invaded range is expected to
become wider as patches are more uniformly
distributed. In contrast, for b/c‡1/2, the
expected invaded range becomes smaller as d is
larger (Figures 3b–d). In this case, the invaded
range is expected to be narrower as the patches
are more uniformly distributed. Therefore, in
our model, only if the settlement rate is smaller
than half of the abandonment rate does the
more uniform distribution of free patches cause
a wider expected invaded range.

We now consider the saturated value of
expected invaded range as tfi¥ (Figure 4). From
(13) and (15), for b ‡ c, rt becomes positively

infinite as tfi¥ (Figures 3c, d). For b<c, it
saturates to the following value as tfi¥ (Fig-
ures 3a, b):

rt!1 ¼
hkit!1

2

� �1=d

¼ 1

2

c
c� b

� �1=d

: ð16Þ

Expected expansion velocity of invaded range

From (13), we can get the following expected
expansion velocity of invaded range, Vt defined
by (9):

Vt ¼
1

d

1

2

� �1=d

beðb�cÞt b
b� c

feðb�cÞt � 1g þ 1

� �1=d�1

¼ 1

d

1

2

� �1=d

hki1=d�1t ðb� cÞ hkit � 1
� �

þ b
� �

:

ð17Þ

When b/c £ 1, that is, when the abandonment
rate is not less than the settlement rate, the ex-
pected velocity Vt decreases monotonically in
time (Figure 5a).

(a) (b)

(d)(c)

Figure 3. Temporal development of the expected invaded range. (a) 0 < b/c < 1/2, numerically drawn for b = 0.3 and c = 0.8;

(b) 1/2 £ b/c £ 1, for b=0.3 and c=0.5; (c) 1<b/c< d, for b=0.55 and c=0.5; (d) b/c ‡ d, for b=0.55 and c=0.5.
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When 1<b/c<d, that is, when the settlement
rate is greater than the abandonment rate and
small enough so b/c is less than d, the expected
velocity Vt decreases in the earlier period and
then starts to increase monotonically (Figure 5b).
We denote by tc the time at the moment when
the expected velocity turns from decreasing to
increasing. From (9), we can get

tc ¼
1

b� c
ln

c
b
d: ð18Þ

When b/c ‡ d, that is, when the settlement rate is
sufficiently greater than the abandonment rate,
the expected velocity Vt increases monotonically
in time (Figure 5c).

In case of b/c > 1, from (17) for sufficiently
large t,

Vt �
1

d

1

2

� �1=d

b
b

b� c

� �1=d�1
efðb�cÞ=dgt

¼ 1

d

1

2

� �1=d

ðb� cÞhki1=dt :

ð19Þ

Therefore, if b/c > 1, the expected velocity Vt

increases exponentially for sufficiently large t,
with the exponent inversely proportional to the
fractal dimension d.

Consequently we can see how the expected
velocity Vt depends on the fractal dimension d
of the spatial distribution of patches. The
expected velocity becomes smaller as d increases,
(Figures 5a–c) for any value of b/c. Therefore,
in our model, a more uniform distribution of
patches causes a slower expansion of invaded
range.

Probability of termination of invasion

We denote by Ph=0 the probability of the termina-
tion of invasion. Once all the occupied patches
disappear in space because of abandonment, the
invasion can no longer continue and restart, which
means the invasion is terminated. If the invasion
terminates at time t, the state of patch use at time
t)Dt should be only one occupied patch for suffi-
ciently small Dt, and it should be adandoned dur-
ing Dt without causing any new settlement. When

(a) (b)

Figure 4. d-Dependence of the saturated value of expected invaded range. (a) 0<b/c<1/2, numerically drawn for b=0.3 and

c=0.8; (b) b/c‡ 1/2, for b=0.3 and c=0.5.

(a) (b) (c)

Figure 5. Temporal variation of the expected expansion velocity of invaded range. (a) 0<b/c £ 1, numerically drawn for b=0.3

and c=0.5; (b) 1<b/c< d, for b=0.5 and c=0.4; (c) b/c‡ d, for b=0.5 and c=0.4.
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the number of invaded patches is k at time t, the
probability of this event is given by

Pðk; 1; tÞ½1� bDt� oðDtÞ� � ½cDtþ oðDtÞ�
¼ cPðk; 1; tÞDtþ oðDtÞ:

ð20Þ

Therefore, the probability of the termination of
invasion between t)Dt and t is given by the sum
of (20) over any possible k.

Making use of the probability generating func-
tion (p.g.f.) defined by

fðx; y; tÞ ¼
X1

k¼1

Xk

h¼0
Pðk; h; tÞxkyh; ð21Þ

we can derive the probability Ph=0 for the termi-
nation of infection (for the detail of p.g.f., see
the Appendix A):

Ph¼0 ¼
Z 1
0

c
X1

k¼1
Pðk; 1; tÞdt

¼
Z 1
0

c � @f
@y

				
x¼1;y¼0

dt

¼
Z 1
0

c � e
�ðb�cÞtfðb� cÞ=bg2

1� e�ðb�cÞtc=b
dt

¼min
c
b
; 1


 �
:

ð22Þ

When the probability Ph=0 is 1, that is the case
when the abandonment rate is greater than the
settlement rate, the invasion certainly terminates
in a finite time (Figure 6).

Expected time for termination of invasion

We denote by Ætæh=0 the expected time at which
the invasion is terminated. From the arguments in
the previous section, we can obtain it as follows:

htih¼0 ¼
Z 1
0

tc
X1

k¼1
Pðk; 1; tÞdt

¼
þ1 if b � c;
1
b ln

c
c�b if b<c:

( ð23Þ

For b<c when the abandonment rate is greater
than the settlement rate, we can expect for the

invasion to terminate at a finite time Ætæh=0

(Figure 7).

Expected number of invaded patches
at termination of invasion

We denote by Ækæh=0 the expected number of in-
vaded patches at the termination of invasion.
Integral

R1
0 cPðk; 1; tÞdt gives the probability

that the number of invaded patches is k at the
termination of invasion. Therefore, making use
of the p.g.f. (A.4), we can get the following:

hkih¼0 ¼
X1

k¼1
k

Z 1
0

cPðk; 1; tÞdt

¼c
Z 1
0

X1

k¼1
kPðk; 1; tÞdt

¼c
Z 1
0

@

@y

@f

@x

� �				
x¼1;y¼0

dt

¼ c
c� b

:

ð24Þ

From (14) and (24), we see that the expected
number of invaded patches at the termination of
invasion, Ækæh=0, is identical to the saturated va-
lue of Ækæt, Ækætfi¥:

(a) (b)

Figure 6. Parameter dependence of the probability of the ter-

mination of invasion, Ph=0. (a) b-dependence; (b) c-depen-
dence.

(a) (b)

Figure 7. Parameter dependence of the expected time for the

termination of invasion Ætæh=0. (a) b-dependence; (b) c-depen-
dence.
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hkih¼0 ¼ hkit!1:

Therefore, Ækæh=0 has the same nature as Ækætfi¥.
Hence, the expected range at the termination of
invasion is also equal to the saturated range of
rt, rt!1.

Discussion

In this work we focus on the question of how the
dispersion of an invading population is affected
by the spatial distribution of patches that have
resource available for its settlement and repro-
duction, by developing and analyzing a mathe-
matical model with a simple stochastic process.

In reality, a variety of species expand their
spatial distribution depending on their ecological
characteristics, settling habitats composed of
fragmentated/patchy environments, such as trees,
wetland, or mountains (O’Neill et al. 1988; John-
son et al. 1992; Russell et al. 1992; van den Bos-
ch et al. 1997; Caraco et al. 2001; Neuhauser
2001; Turner et al. 2001; Pascual et al. 2002;
With 2002; Brown and Bolker 2004; Drenth
2004; Otten et al. 2004). So we can regard each
such spatially fragmentated habitat as a patch
that is available to an invader population. In the
human case, we may consider such a patch as a
geographical location that is favorable to the
construction of a town or village.

We assumed that these available patches can
be grouped into three classes: free, occupied and
abandoned, depending on the state of the patch
used by the population. An occupied patch is
one where the population is consuming the re-
source in it, allowing reproduction. An aban-
doned patch is where the resource is exhausted
and the population has left. It may be regarded
as a patch within which the population goes ex-
tinct. A free patch is a patch that has not yet
been invaded. Dispersers/migrators appear only
from occupied patches, and the dispersers/migra-
tors invade some free patches. Such invasion of
free patches causes the expansion of the popula-
tion distribution in space.

In our modeling, we do not consider the popu-
lation dynamics within each patch, but classify
the patch as mentioned above in terms of its use

by the population. In this sense, our modeling
can be regarded as a sort of metapopulation
dynamics (Johnson et al. 1992; Hanski 1999;
With and King 1999; Keymer et al. 2000), or
more specifically a sort of stochastic patch occu-
pancy modeling (Hanski 1994a, b; Ovaskainen
and Hanski 2001). Moreover, according to the
classification of patches into three types and their
definitions, our modeling may be regarded as
corresponding to a kind of SIR epidemic dynam-
ics (for instance, see Shigesada and Kawasaki
1997; Diekmann and Heesterbeek 2000; Brauer
and Castillo-Chávez 2001; Murray 2002a).

We considered the probability of the state such
that k invaded and h occupied patches existing at
time t. Invaded patches consist of occupied and
abandoned ones, that is, those which have expe-
rienced the invasion. We constructed and ana-
lyzed a system of differential equations to
describe the temporal variation of the probability
distribution. We then developed the mathemati-
cal model for the expanding range of invaded
patches in space, the invaded range, which can be
characterized by the expected minimal diameter
R which includes all invaded patches. We as-
sumed a certain generalized relation between R
and the total number of invaded patches k, mak-
ing use of an index called the cluster dimension or
mass dimension, which is a sort of fractal dimen-
sion (Mandelbrot 1982; Sugihara and May 1990;
Hastings and Sugihara 1993), to characterize the
spatial distribution of patches. Using this rela-
tion, we derived the temporal variation of ex-
pected invaded range and its expected expansion
velocity. Although we applied the fractal dimen-
sion to incorporate some notion of space or het-
erogeneity in space into our model, the location
or the configuration of patches in space is not
explicitly introduced. In this sense, our model
could be regarded as intermediate between a
non-spatial population dynamics model and a
numerical spatial dynamic model, and may be a
kind of semi-spatial model (cf. Filipe et al. 2004).

In our modeling, a free patch is invaded with
probability proportional to the total number of
occupied patches, that is, the total number of
habitats with inhabiting population. Our model-
ing assumption may be translated as follows: the
invasion of a free patch would be proportional
to the total population size of all occupied pat-

765



ches, as in Seno and Matsumoto (1996), who
analyze a mathematical model for population
dynamics to expand its spatial distribution with
patch creation by the existing population. This is
not exactly comparable to our model, because
ours is a sort of metapopulation dynamics with a
given spatial distribution of resource patches,
with no consideration of the population dynam-
ics within each patch or the patch size.

From the results of our analysis of the mathe-
matical model, we found that the expected veloc-
ity is significantly affected by the nature of
spatial distribution of resource patches, and is
temporally variable, in contrast to the results fre-
quently derived for the mathematical model with
the reaction-diffusion system in continuous and
homogeneous space (for instance, see Shigesada
and Kawasaki 1997; Okubo and Levin 2001;
Murray 2002a, b). Consequently we found three
types of temporal variation of expected velocity
of invaded range expansion, depending on the
fractal dimension of the spatial distribution of re-
source patches: monotonically decreasing, mono-
tonically increasing, and increasing after initially
decreasing.

The last case implies that we have to pay
attention to the expansion of the invaded region,
even if its velocity is observed to decrease, espe-
cially in the early period of invasion. An invader
population might decrease its velocity of spatial
expansion in the early period and then turn to
increase the velocity to expand its spatial distri-
bution with increasing rapidity.

It may be more realistic that a free patch
would be invaded by dispersers from some spa-
tially neighboring occupied patches. For instance,
this may be incorporated by introducing a frac-
tal-dimension-dependence of settlement rate.
Such an assumption about the location or the
configuration of patches in space makes the
model less amenable to mathematical analysis,
although it must be interesting from the view-
point of mathematical biology. This will be sure-
ly the next step of this type of mathematical
model to be considered.

Some cellular automaton models or lattice
models have been considered to describe such
population invasion in heterogeneous space
(Grassberger 1983; Stauffer and Aharony 1991;
Sato et al. 1994; Levin and Durrett 1997; Filipe

and Gibson 1998; Keeling 1999; Bailey et al.
2000; Tan et al. 2000; Newman 2002; Sander
et al. 2002; Meyers et al. 2003; Brown and Bol-
ker 2004; Filipe et al. 2004; Otten et al. 2004).
Computer-aided numerical analysis has always
been useful in the analysis of such models,
whereas numerical calculations could not neces-
sarily derive the general result about the nature
of population invasion in heterogeneous space.
Only a few mathematical methods are capable of
deriving some general features of such a model,
such as, the mean field approximation and the
pair approximation etc. (see Sato et al. 1994;
Caraco et al. 2001; Filipe and Gibson 2001;
Ovaskainen and Hanski 2001; Ovaskainen et al.
2002; Pascual et al. 2002; Filipe et al. 2004) Even
though such a model could be easily constructed,
for instance, by a type of cellular automaton, we
do not argue here in support of such types of
numerical models.

In this paper, we consider our mathematical
model in the general context of spatial expansion
of invaded range of population dispersing
through a spatially patchy distribution of re-
source. With some necessary modifications, our
model could be easily applied to the more speci-
fied case of the spatial expansion of population
distributed through patchy/fragmentated habitats
in space.

If we consider a population dynamics of sexual
reproduction, we may regard the patch as the fe-
male individual or a sort of female group, which
is searched by dispersing males (for a mathemati-
cal model of the same stand point, see, for in-
stance, Hirata and Seno 1997). The
abandonment of a patch is regarded as the ma-
ted female (group) which ceases to be a mating
target.

For the case of prey–predator population
dynamics, the patch in our model could corre-
spond to the prey individual or group (for the
same stand point, see for instance, Russell et al.
1992). In this case, the prey is regarded as the
resource for predator, and the abandonment of
a patch is the consumption of prey by preda-
tion, or the extinction of both prey and preda-
tor in it.

In case of host–parasite population dynamics,
the patch corresponds to the host individual or
group under parasitism by dispersing parasites.

766



The abandonment of a patch is regarded as the
parasitized host, so that this is the case when the
parasitized host cannot be parasitized again with-
out multi-parasitism.

As another context for the application of our
model, we could consider the epidemic dynamics
of disease transmission through immobile units
of infection, as town, plant, etc. and classify
these units into three classes: susceptible, infective
and recovered (Koshiba and Seno 2005). In this
context of epidemic dynamics, the parameter b
can be regarded as the infection rate from an
infective unit to a susceptible one, while c can be
seen as the recovery rate with immunity or the
death rate. In this case, the invaded range con-
sidered in this paper corresponds to the range ex-
panded by infected units, so that it means the
spatial range damaged by the epidemic disease.
Our modeling assumption that the settlement
rate depends only on the total number of occu-
pied patches corresponds to, for instance, the
case that the epidemic vector has a high mobility
to transmit the disease, or the case that the dis-
ease transmission is through the matrix environ-
ment (e.g. wind, water or soil) surrounding
susceptible units (Bailey et al. 2000; Drenth 2004;
Otten et al. 2004). An environment-dependent
mode of disease transmission and the sanitary/
health condition determine the nature of infected
area expansion (van den Bosch et al. 1997; Keel-
ing et al. 2001; Gilligan 2002). In case of plants
or crops under attack from pests and diseases,
the spatial distribution of susceptible hosts is
considered as important for the spread of infec-
tion (van den Bosch et al. 1997; Caraco et al.
2001; Jules et al. 2002; Brown and Bolker 2004;
Drenth 2004; Otten et al. 2004). However, little is
known about the effect of environmental hetero-
geneity on the spatial expansion of epidemics.

For the spatial expansion of population distri-
bution, some well-known mathematical models
are constructed with a reaction-diffusion system
in spatially continuous space (Shigesada and
Kawasaki 1997; Okubo and Levin 2001; Murray
2002a, b). However, in general, it is not easy, or
there is sometimes a great tactical advantage to
introduce the nature of spatial heterogeneity of
habitat distribution into such a reaction-diffusion
system model. By contrast, in case of spatially
discrete models, frequently constructed by

cellular automata or on a lattice space (Sato
et al. 1994; Levin and Durrett 1997; Rhodes
et al. 1997; Filipe and Gibson 1998; Bailey et al.
2000; Brown and Bolker 2004; Filipe et al. 2004;
Otten et al. 2004), the introduction of spatial het-
erogeneity is relatively easy, whereas mathemati-
cal analysis is rarely easy and becomes harder as
the number of factors governing the population
dynamics increases, so that a number of numeri-
cal calculations are required. A stochastic model
like ours is another mode of the theoretical study
that could give some new insights, as some re-
searches in landscape ecology indicate (Dunning
et al. 1995; Wiegand et al. 1999; Turner et al.
2001; Fortin et al. 2003). Since only few models
consider the velocity of spatial expansion of in-
vaded region over such a spatially distributed
patchy environment, we hope that our modeling
methodology offers a pioneering approach to the
problem.
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Appendix A

Applying (1), (2) and (3), and after cumbersome
and careful calculation, we can derive the follow-
ing partial differential equation for the probabil-
ity generating function (p.g.f.) f(x, y, t) defined
by (21):

@fðx; y; tÞ
@t

¼ f�ðbþ cÞyþ cþ bxy2g @fðx; y; tÞ
@y

:

ðA:1Þ

From (4), the initial condition is given by

fðx; y; 0Þ ¼
X1

k¼1

Xk

h¼0
Pðk; h; 0Þxkyh

¼Pð1; 1; 0Þxy
¼xy:

ðA:2Þ

In addition, the following condition can be
derived:
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fð1; 1; tÞ ¼
X1

k¼1

Xk

h¼0
Pðk; h; tÞ ¼ 1; ðA:3Þ

because the sum of probability for any possible k
and h corresponds to the occurrence of any
event.

With condition (A.2) and (A.3), we can solve
(A.1) as follows (for instance, see pp. 62–63 in
Bailey (1957)):

fðx; y; tÞ ¼ x vþðxÞ �
v̂ðxÞfvþðxÞ � yg

UðxÞ

� �
; ðA:4Þ

where

UðxÞ ¼fvþðxÞ � yg þ fy� v�ðxÞge�bxv̂ðxÞt;

v̂ðxÞ ¼vþðxÞ � v�ðxÞ;

and v+(x) and v)(x) are functions of x, given by
two distinct roots of the following equation in
terms of n:

bxn2 � ðbþ cÞnþ c ¼ 0:
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