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Little is known about the effect of environmental heterogeneity on the spatial expansion
of epidemics. In this work, to focus on the question of how the extent of epidemic dam-17
age depends on the spatial distribution of susceptible units, we develop a mathematical
model with a simple stochastic process, and analyze it. We assume that the unit of infec-19
tion is immobile, as town, plant, etc. and classify the units into three classes: susceptible,
infective and recovered. We consider the range expanded by infected units, the infected21
range R, assuming a certain generalized relation between R and the total number of
infected units k, making use of an index, a sort of fractal dimension, to characterize23
the spatial distribution of infected units. From the results of our modeling analysis, we
show that the expected velocity of spatial expansion of infected range is significantly25
affected by the fractal nature of spatial distribution of immobile susceptible units, and
is temporally variable. When the infection finally terminates at a moment, the infected27
range at the moment is closely related to the nature of spatial distribution of immobile
susceptible units, which is explicitly demonstrated in our analysis.29

Keywords: Epidemics; Stochastic Process; SIR Model; Fractal Dimension; Velocity.

1. Introduction31

A variety of infectious diseases show different seriousness in terms of the infected
area expansion, depending not only on the infectivity but also on the characteristics33

of infected place, city, or country: the environment-dependent way of disease trans-
mission and the sanitary/health condition determine the nature of infected area

∗Corresponding author.
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expansion.1–3 However, little is known about the effect of environmental hetero-1

geneity on the spatial expansion of epidemics. In reality, a variety of species expand
their spatial distribution depending on their ecological characteristics, settling their3

habitats composed of patchy environments, for instance, of trees, of wetland, or of
mountains.3,4–13 Especially, in case of plants or crops under attack from pests and5

diseases, the spatial distribution of susceptible hosts is considered as important for
the spread of infection.3,14–187

So we can regard such a spatially patchy/fragmentated habitat as the collection
of immobile units for infection of an epidemic disease transmitted within a consid-9

ered population which inhabits in the habitat. Jules et al.17 studied an invasion of
non-native root pathogen, Phytophthora lateralis, over a heterogeneous landscape11

of its host, Port Orford cedar, Chamaecyparis lawsoniana, the population of which
is restricted to riparian zones along creeks. In human case, we may consider the13

town or the village as such unit. Such patchiness of population distribution can be
discussed from the viewpoint of fractal, too.12,13,19–2515

As for spatially transmitted disease dynamics, a variety of researches with math-
ematical model have been studied,3,26 making use of, for instance, reaction-diffusion17

system,27–32 integro-differential or integro-difference equations,33–38 percolation
theory or network theory,18,39–46 cellular automaton or lattice dynamics.14,47–5019

Especially, mathematical models with percolation theory or network theory have
been attracting researchers who are interested in the invasion threshold which is21

the critical condition to determine weather the infection stops in a finite period or
keeps its spatial expansion.23

In this paper, with a mathematical model, we consider the effect of spatial dis-
tribution of susceptible units (cities, communities, plants, nests, etc.) on the nature25

of spatial expansion of disease infected region. Especially we focus on the velocity
of its spatial expansion, which has been theoretically discussed in various contexts27

mostly with mathematical models used reaction-diffusion system (for instance, see
Refs. 27, 28, 30–32 and their references). In contrast, we therefore try to discuss29

the characteristics of velocity with a mathematical model making use of a stochas-
tic process. The velocity of spatial expansion of disease infected region must be31

affected by the nature of spatial distribution of susceptible units. In our model-
ing, to incorporate the effect of heterogeneous spatial distribution of susceptible33

units on the spatial expansion of disease infected region, we characterize the spatial
distribution with an index, fractal dimension,22 and introduce it into our model.35

So our model describes the epidemic population dynamics with a stochastic pro-
cess, and the spatial expansion of disease infected region with a fractal nature of37

spatial distribution of susceptible units. This type of combination of population
dynamics and spatial expansion may be regarded as an approximation for the real39

inter-relationship between them. We show that our modeling would be useful to
get theoretical insights or develop the more advanced or practical model about the41

spatial expansion of disease infected area.
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2. Modeling1

2.1. Assumptions

In our modeling, we assume that the unit of infection is immobile, as town, plant,3

etc. We classify the units into three classes, depending on the state in terms of
the disease infection: susceptible, infective and recovered. Susceptible unit is not yet5

infected, and infective one has transmitted the disease and is still carrying it so as
to transmit the disease to another unit. Recovered unit was infected in the past but7

is recovered so as not to transmit the disease to any other unit. It could correspond
to the unit with immunity after its recovery from the disease. So this modeling9

can be regarded as a kind of SIR epidemic dynamics.27,28,30,32 Since the recovered
unit has no relation to the disease transmission dynamics, we could regard it as11

a completed destroyed or abandoned unit due to the disease infection, though the
expression “recovered” is not appropriate in this context.13

We do not consider the population/epidemic dynamics within each unit, but
classify the unit as mentioned above in terms of its epidemic state of the disease15

infection. In this sense, our model would be regarded as belonging to the metapop-
ulation model.5117

To construct our mathematical model, we assume the following:

• Infection rate depends only on the total number of infective units.19

• Only susceptible unit could be infected.
• Recovered unit is never infected again.21

• Infection and recovery of a unit are independent of those of any other units.

The first assumption corresponds, for instance, to the case that the epidemic23

vector has a high mobility to transmit the disease, or the case that the disease trans-
mission is through the matrix environment (e.g. wind, water or soil) surrounding25

susceptible units.16,18,39

In this paper, we consider the number of infective units, h, and that of infected27

units which is the sum of infective and recovered, k. Infected unit is an infective or
recovered one, that is, a unit which experienced the disease transmission.29

2.2. Model construction

2.2.1. Probability for infection31

With the assumptions given in the previous section, we consider events occurring
in sufficiently short time interval (t, t + ∆t] when h infective units exist at time t.33

Probability that a susceptible unit has transmitted the disease by an infective
unit is assumed to be given by β∆t + o(∆t) independently of the distance between35

them, where β is a positive constant, the infection rate. Since we assume that the
infection of a susceptible unit by an infective unit is independent of that by any37
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other infective one, the probability that a susceptible unit has transmitted the1

disease by h infective units becomes

βh∆t + o(∆t). (2.1)3

Probability that more than one susceptible unit has transmitted the disease during
sufficiently small period ∆t is assumed to be o(∆t). Hence, the probability that5

none of the susceptible units has transmitted the disease during sufficiently small
period ∆t is given by7

1 − [βh∆t + o(∆t)] − o(∆t) = 1 − βh∆t − o(∆t). (2.2)

2.2.2. Probability for recovery9

Probability that an infective unit recovers during sufficiently small period ∆t is
assumed to be given by11

γ∆t + o(∆t), (2.3)

where γ is a positive constant, the recovery rate.13

When there are h infective units, the probability that only one infective unit
recovers is given by the probability for the case when the recovery of an infective15

unit occurs with probability given by (2.3) and at the same time the other h − 1
infective units do not recover with probability given by [1−{γ∆t+o(∆t)}]h−1. This17

is because the probability that an infective unit does not recover is 1−{γ∆t+o(∆t)},
and the epidemic state of each unit is assumed to be independent of that of any19

other unit.
Therefore, taking account of which infective unit of h recovers, the required

probability is obtained as follows:

h · {γ∆t + o(∆t)} · [1 − {γ∆t + o(∆t)}]h−1

= h · {γ∆t + o(∆t)} · {1 − (h − 1)γ∆t + o(∆t)}
= γh∆t + o(∆t). (2.4)

Probability that more than one infective unit recovers is assumed to be o(∆t).21

Thus, from (2.4), the probability that none of the infective units recovers during
sufficiently small period ∆t is given by23

1 − γh∆t − o(∆t). (2.5)

From the assumption of independence between infection and recovery, the prob-25

ability that both infection and recovery occur during the time period ∆t is given
by o(∆t), because the probability for each of them has the order ∆t at the highest.27
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2.2.3. Probability distribution for epidemic state1

We denote by P (k, h, t) the probability of epidemic state such that there are k

infected units and h infective units at time t in the considered system. To determine3

the probability P (k, h, t), we consider the transition of state in sufficiently small
time interval (t, t + ∆t], and derive the system of differential equations that govern5

the temporal variation of probability P (k, h, t).
With transition probabilities for possible transitions of epidemic state in suf-

ficiently small time interval (t, t + ∆t] as derived in Appendix A, we can get the
following differential equations for P (k, h, t) (Appendix B):

dP (k, h, t)
dt

= −(β + γ)hP (k, h, t) + γ(h + 1)P (k, h + 1, t)

+ β(h − 1)P (k − 1, h − 1, t), (2.6)

for k ≥ 2, h ≥ 1, k ≥ h + 1, and

dP (k, 0, t)
dt

= γP (k, 1, t), (2.7)

dP (k, k, t)
dt

= −k(β + γ)P (k, k, t) + (k − 1)βP (k − 1, k − 1, t) (2.8)

for k ≥ 1.7

2.2.4. Initial condition

We assume that the epidemic begins at a unit, so that the initial condition is
given by

P (k, h, 0) =
{

1 if k = h = 1,

0 otherwise.
(2.9)

2.2.5. Expansion of infected range9

Next, we consider the range expanded by infected units, say, the infected range.
We characterize the infected range by the minimal diameter R which includes all11

infected units.
In the case when the infected range expands in every direction with the same13

probability, the shape of infected region can be approximated by the disc, and
therefore, the range R approximately has the following relation with the number of15

infected units k: k ∝ R2. However, the expansion of infected range is constrained by
the spatial distribution of potential carriers for the considered disease, which could17

be in general heterogeneous. So the shape of infected region is possibly inhomoge-
neous in direction, and could be characterized by its fractal nature (for the concept19

of “fractal”.22,52 To deal with such a case, we assume the following generalized
relation between the infected range and the total number of infected units:21

k ∝ Rd (1 ≤ d ≤ 2), (2.10)
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(a) (b) (c)

Fig. 1. Illustrative explanation of the relation of the fractal dimension d to the spatial pattern of
unit distribution. Schematic procedure of disease transmission is also shown: White disc indicates
susceptible unit, black infective, and grey recovered. (a) d ≈ 1; (b) 1 < d < 2; and (c) d ≈ 2.

where the power d characterizes the spatial pattern of infected region occupied by1

infected units (Fig. 1). Power d is called cluster dimension or mass dimension, which
is a sort of fractal dimension.22,52 When d ≈ 2, the spatial distribution of infected3

units has approximately a disc shape of its envelope. When d ≈ 1, the distribution
can be approximately regarded as one-dimensional, that is, the infected units can5

be regarded to be arrayed along a curve.
For instance, Port Orford cedar, Chamaecyparis lawsoniana, is the host for the7

root pathogen, Phytophthora lateralis, and has a heterogeneous population distri-
bution, because it is restricted to riparian zones along creeks.17 The population9

distribution of Port Orford cedar, Chamaecyparis lawsoniana, would be character-
ized with the fractal dimension d such that 1 < d < 2 (see Fig. 1).11

This idea of introduction of fractal nature into the mathematical model for the
spatial distribution of units is the same as that in Seno.53 This modeling may be13

regarded as a sort of mean-field approximation for the percolation process on a frac-
tal lattice or the growing network. However, we focus on the temporal variation of15

the spatial range spanned by infected susceptible units, differently from most of pre-
vious works with the percolation theory or the growing network theory.18,39,40,42–4617

Some percolation models for the epidemic dynamics considered the fractal
nature of susceptible unit distribution, too.46 In such previous models, the main19

problem was the invasion threshold which is the critical condition to determine
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Fig. 2. Illustrative explanation of range R(2).

weather the infection stops in a finite period or keeps its spatial expansion. In con-1

trast, we are going to focus on the velocity of spatial expansion of infected range.
For convenience to apply the relation (2.10) for our modeling, we now define3

the proportional constant C:

k = CRd (1 ≤ d ≤ 2). (2.11)5

Then, we define the mean distance R̄(2) from one unit to the nearest neighbor
(Fig. 2). In our modeling, R̄(2) is assumed to correspond to the expected infected7

range expanded by two infected units, that is, k = 2. Therefore, from (2.11), we
assume that9

2 = CR̄d
(2). (2.12)

Hence, from (2.11), for the expected number of infected units 〈k〉t at time t, we11

assume the following relation with the expected infected range r̄t at time t:

〈k〉t = 2r̄d
t (1 ≤ d ≤ 2), (2.13)13

where r̄t is the expected infected range at time t, measured in the mean distance
R̄(2): r̄t ≡ R̄t/R̄(2).15

Further, we define the expected velocity V̄t of the expansion of infected range at
time t as follows:17

V̄t =
dr̄t

dt
.

From (2.13), we can obtain the following relation between the expected velocity V̄t

and the expected number 〈k〉t of infected units at time t:

V̄t =
1
d

(
1
2

)1/d

〈k〉1/d−1
t · d〈k〉t

dt
. (2.14)



1st Reading

March 15, 2005 18:14 WSPC/129-JBS 00147

8 Koshiba & Seno

3. Analysis1

3.1. Expected number of infective units

We denote by 〈h〉t the expected number of infective units at time t. It is defined by

〈h〉t =
∞∑

k=1

k∑
h=1

hP (k, h, t). (3.1)

Hence, from (2.6) and (2.8), we can obtain the following:3

d

dt
〈h〉t = (β − γ)〈h〉t,

that gives5

〈h〉t = e(β−γ)t, (3.2)

where we used the initial condition (2.9) for (3.1): 〈h〉0 = 1.7

3.2. Expected number of infected units

We denote by 〈k〉t the expected number of infected units at time t, defined by9

〈k〉t =
∞∑

k=1

k

{
k∑

h=0

P (k, h, t)

}
. (3.3)

From (2.6), (2.7) and (2.8), we can obtain the following:11

d

dt
〈k〉t = β〈h〉t.

With (3.2), we can solve this differential equation and get the following:13

〈k〉t =
β

β − γ
{e(β−γ)t − 1} + 1, (3.4)

where we used the initial condition (2.9) for (3.3): 〈k〉0 = 1.15

We can get the saturated value for 〈k〉t. From (3.4), for β ≥ γ when the infection
rate is not less than the recovery rate, the saturate value becomes positively infinite,17

that is, any saturation to a finite value does not occur. On the other hand, for β < γ

when the recovery rate is greater than the infection rate, the saturated value is finite,19

and is given by

〈k〉t→∞ =
γ

γ − β
. (3.5)

21
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3.3. Expected infected range1

Since, from (2.13),

r̄t =
( 〈k〉t

2

)1/d

, (3.6)
3

we can consider how the expected infected range r̄t depends on the fractal dimension
d for the spatial distribution of susceptible units, making use of (3.4). For 0 <5

β/γ < 1/2, when the recovery rate is sufficiently greater than the infection rate,
the expected infected range r̄t gets larger as d is larger (Fig. 3a). This means that7
the infected range is expected to become wider as the susceptible units are more
uniformly distributed. In contrast, for β/γ ≥ 1/2, the expected infected range gets9
smaller as d is larger (Figs. 3b–d). In this case, the infected range is expected to be
narrower as the susceptible units are more uniformly distributed. Therefore, in our11
model, only if the infection rate is smaller than half of the recovery rate, the more
uniform distribution of susceptible units causes the wider expected infected range13
(see Fig. 4).

Now, we consider the saturated value of expected infected range as t → ∞. From
(3.4) and (3.6), for β > γ when the infection rate is greater than the recovery rate,

(a) (b)

(c) (d)

Fig. 3. Temporal development of the expected infected range. (a) 0 < β/γ < 1/2, calculated for
β = 0.3 and γ = 0.8; (b) 1/2 ≤ β/γ ≤ 1, calculated for β = 0.3 and γ = 0.5; (c) 1 < β/γ < d,
calculated for β = 0.55 and γ = 0.5; and (d) β/γ ≥ d, calculated for β = 0.55 and γ = 0.5.
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(a) (b)

Fig. 4. d-dependence of the saturated value of expected infected range. (a) 0 < β/γ < 1/2,
calculated for β = 0.3 and γ = 0.8 and (b) β/γ ≥ 1/2, calculated for β = 0.3 and γ = 0.5.

the value becomes positively infinite as t → ∞ (Figs. 3c and d). On the other hand,
for β < γ when the recovery rate is greater than the infection rate, it is saturated
to the following value as t → ∞ (Figs. 3a and b):

r̄t→∞ =
( 〈k〉t→∞

2

)1/d

=
(

1
2
· γ

γ − β

)1/d

. (3.7)

3.4. Expected expansion velocity of infected range1

When β/γ ≤ 1, that is, when the recovery rate is not less than the infection rate,
the expected velocity V̄t given by (2.14) monotonically decreases in time (Fig. 5a).3

When 1 < β/γ < d, the expected velocity V̄t decreases in the earlier period
and then turns to increase monotonically (Fig. 5b). We denote by tc the time when
the expected velocity turns from decreasing to increasing. From (2.14), we can

(a) (b)

Fig. 5. Temporal variation of the expected expansion velocity of infected range. (a) 0 < β/γ ≤ 1,
calculated for β = 0.3 and γ = 0.5; (b) 1 < β/γ < d, calculated for β = 0.5 and γ = 0.4; and (c)
β/γ ≥ d, calculated for β = 0.5 and γ = 0.4.
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(c)

Fig. 5. (Continued).

explicitly get

tc =
1

β − γ
ln

γ

β
d. (3.8)

When β/γ ≥ d, the expected velocity V̄t monotonically increases in time1

(Fig. 5c).
At last, we can see how the expected velocity V̄t depends on the fractal dimension3

d for the spatial distribution of susceptible units. The expected velocity gets smaller
as d is larger (Figs. 5a–c) for any value of β/γ. Therefore, in our model, the more5

uniform distribution of susceptible units causes the slower expansion of infected
range.7

3.5. Probability of termination of infection

We denote by Ph=0 the probability of termination of infection. Once an infective
unit disappears in space because of recovery, the infection can no longer continue
and restart. If the infection terminates at time t, for sufficiently small ∆t, the
epidemic state should be with only one infective unit at time t − ∆t, and the
infective unit should recover during ∆t without causing any new infection. When
the number of infected units is k at time t, from (2.2) and (2.3), the probability for
this event is given by

P (k, 1, t)[1 − β∆t − o(∆t)] · [γ∆t + o(∆t)] = γP (k, 1, t)∆t + o(∆t). (3.9)

Therefore, the probability for the termination of infection between t − ∆t and t is9

given by the sum of (3.9) over any possible k.
Making use of the probability generating function (p.g.f.) defined by

f(x, y, t) =
∞∑

k=1

k∑
h=0

P (k, h, t)xkyh, (3.10)
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we can derive the probability for the termination of infection (as for the p.g.f., see
Appendix C):

Ph=0 =
∫ ∞

0

γ
∞∑

k=1

P (k, 1, t)dt

=
∫ ∞

0

γ · ∂f

∂y

∣∣∣∣
x=1,y=0

dt

=
∫ ∞

0

γ · e−(β−γ)t{(β − γ)/β}2

1 − e−(β−γ)tγ/β
dt

= min
{

γ

β
, 1
}

. (3.11)

The probability Ph=0 is 1 for β ≤ γ when the recovery rate is greater than the1

infection rate (Fig. 6). This case is when the infection certainly terminates in a
finite time. When the infection rate is greater than the recovery rate, the probability3

Ph=0 is proportional to the recovery rate and inversely proportional to the infection
rate (Fig. 6).5

3.6. Expected time for the termination of infection

We denote by 〈t〉h=0 the expected time for the termination of infection. From the
arguments in the previous section, we can explicitly obtain

〈t〉h=0 =
∫ ∞

0

tγ

∞∑
k=1

P (k, 1, t)dt

=

{
+∞ if β ≥ γ;
1
β ln γ

γ−β if β < γ.
(3.12)

For β < γ when the recovery rate is greater than the infection rate, we can expect7
that the infection terminates at a finite time. In this case, the expected time gets

(a) (b)

Fig. 6. Parameter dependence of the probability for the termination of infection, Ph=0.
(a) β-dependence and (b) γ-dependence.
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(a) (b)

Fig. 7. Parameter dependence of the expected time for the termination of infection 〈t〉h=0.
(a) β-dependence and (b) γ-dependence.

longer as the infection rate is greater, and shorter as the recovery rate is greater1
(Fig. 7).

3.7. Expected number of infected units at the termination3

of infection

We denote by 〈k〉h=0 the expected number of infected units at the termination of
infection. Integral

∫∞
0 γP (k, 1, t)dt gives the probability that the number of infected

units is k at the moment when the infection terminates. Therefore, making use of
the p.g.f. (3.10) and (C.4) in Appendix C, we can get

〈k〉h=0 =
∞∑

k=1

k

∫ ∞

0

γP (k, 1, t)dt

= γ

∫ ∞

0

∞∑
k=1

kP (k, 1, t)dt

= γ

∫ ∞

0

∂

∂y

(
∂f

∂x

)∣∣∣∣
x=1,y=0

dt

= γ

∫ ∞

0

∂

∂x

(
∂f

∂y

∣∣∣∣
y=0

)∣∣∣∣∣
x=1

dt

=
γ

γ − β
. (3.13)

From (3.5) and (3.13), we can see that the expected number of infected units at5

the termination of infection, 〈k〉h=0 is identical to the saturated value of 〈k〉t, that
is, 〈k〉t→∞:7

〈k〉h=0 = 〈k〉t→∞.

Therefore, 〈k〉h=0 has the characteristics same as for 〈k〉t→∞. The expected range9

at the termination of infection is also identical to the saturated range of r̄t, that
is, r̄t→∞.11
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4. Discussion1

In this work, to focus on the question of how the extent of epidemic damage depends
on the spatial distribution of susceptible units, we constructed a mathematical3

model with a simple stochastic process, and analyzed it.
We assumed that the unit of infection is immobile, as town, plant, etc. and clas-5

sify the units into three classes: susceptible, infective and recovered. This modeling
can be regarded as a kind of SIR epidemic dynamics.27,28,30,32 We do not consider7

the population/epidemic dynamics within each unit, but classify the unit as men-
tioned above in terms of its epidemic state in terms of the disease infection. In this9

sense, our model would be regarded as belonging to the metapopulation model.51

Our modeling is not always unrealistic or over-idealized. In reality, a variety of11

species expand their spatial distributions, settling their habitats composed of patchy
environments, for instance, of trees, of wetland, or of mountains.3,8,10–16,18 So we13

can regard each patch of such spatially fragmentated habitats as the immobile unit
of infection for an epidemic disease transmitted within the population. In human15

case, we may consider the town or the village as such unit.
In our model, we considered the probability for the state such that k infected and17

h infective units exist at time t. Infected unit is an infective or recovered one, that is,
a unit which experienced the disease transmission. Infective unit has transmitted19

the disease and is still carrying it so as to transmit the disease to another unit.
Recovered unit transmitted the disease in the past and has recovered so as not21

to transmit the disease to any other unit. So it could correspond to the unit with
immunity after its recovery from the disease. Since the recovered unit has no relation23

to the disease transmission dynamics, we could regard it as a completely destroyed
or abandoned unit due to the disease infection, though the expression “recovered”25

is not appropriate in this context.
We derived the system of differential equations to describe the temporal varia-27

tion of the probability distribution in terms of the numbers of infected and infec-
tive units. Furthermore, we considered the mathematical modeling for the range29

expanded by infected units in space ,the infected range R, which can be character-
ized by the expected minimal diameter R which includes all infected units. In our31

modeling, we assumed a generalized relation between R and the total number of
infected units k, making use of an index called cluster dimension or mass dimension,33

that is a sort of fractal dimension, which characterizes the spatial distribution of
susceptible units. With the generalized relation, we can develop the mathematical35

model for the temporal variation of expected infected range and of expected expan-
sion velocity of infected range. From our analysis of the model, we showed that the37

expected velocity is significantly affected by the nature of spatial distribution of
immobile susceptible units, and is temporally variable, differently from those typ-39

ical results derived for the mathematical model with the reaction-diffusion system
in continuous space.41

Consequently we found three types of temporal variation of expected veloc-
ity of infected range expansion, depending on the fractal dimension of spatial43
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distribution of susceptible units: monotonically decreasing, monotonically decreas-1

ing and increasing after initially decreasing. The last case implies that we have
to pay attention to the expansion of infected area even if the velocity of its spa-3

tial expansion is observed to decrease in the early period of disease transmission
process.5

In our modeling, a susceptible unit has transmitted the disease and becomes
infective with probability proportional to the total number of infective units, that7

is, the total number of patchy habitats with active disease carriers, as in Seno
and Matsumoto54 who analyzed a mathematical model for population dynamics to9

expand its spatial distribution with patch creation by the existing whole population.
This assumption corresponds, for instance, to the case that the epidemic vector has11

a high mobility to transmit the disease, or the case that the disease transmission is
through the matrix environment (e.g. wind, water or soil) surrounding susceptible13

units.16,18,39

It may be more realistic that a susceptible unit would have transmitted the dis-15

ease via some spatially neighbor infective units. This assumption requires another
modeling and would make the model more difficult to be mathematically analyzed.17

Some cellular automaton models or lattice models have been considered such disease
transmission in space. Computer-aided numerical analysis has always been useful19

in the analysis of such models, whereas numerical calculations could not derive the
general result about the nature of spatial disease transmission. To consider only a21

specific disease transmission in space, it might be satisfactory with some specific
parameter values. However, as indicated in some well-known mathematical works23

about epidemics, for example, the Kermack-McKendrick model,55 this does not
mean less evaluation of theoretically/mathematically general results from mathe-25

matical models in mathematical biology. Only a few mathematical methods could
reach some general features of such models, for instance, the mean field approxi-27

mation and the pair approximation, etc.15,48,50,56

In this paper, we consider our mathematical model in the context of spatial29

expansion of infected range of epidemic disease transmitted via immobile suscep-
tible units. However, our modeling is easily applied in the case of the spatially31

expanding population distribution through patchy/fragmentated habitats in space.
In this context, the parameter β can be regarded as the settlement rate from an33

established habitat to another newly immigrated one, and γ as the rate to abandon
or destroy a settled habitat. If the considered population is of a harmful insect to35

be exterminated, γ may be regarded as the exterminated rate for a unit aggregated
by the insect.37

For the spatial expansion of population distribution, some well-known mathe-
matical models are of reaction-diffusion system in spatially continuous space.30–32,5739

However, in general, it is not easy or is more tactical to introduce the nature
of spatial heterogeneity of habitat distribution into such models with reaction-41

diffusion system. In contrast, in the case of spatially discrete models, frequently
constructed by cellular automaton or lattice space,18,39,50,58 introduction of spatial43
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heterogeneity is relatively easy, whereas mathematical analysis is rarely easy and1

becomes harder as the number of factors governing the dynamics increases, so that
a number of numerical calculations are required. Stochastic models like ours is3

another way for the theoretical study that could give some new insights, as indi-
cated in some papers of landscape ecology.59–61 Our model could be regarded as5

one that is between a non-spatial population dynamics model and a numerical one,
and may be termed a semi-spatial model as called by Filipe et al.48 Since there has7

been few models to consider the velocity of spatial expansion of infected region with
such spatially discrete susceptible units, we hope that our modeling consideration9

would be a pioneer approach to the problem.
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Appendix A.1

To determine the probability P (k, h, t), we consider respectively the following tran-
sitions of state in sufficiently small time interval (t, t + ∆t].3

(k, h, t) → (k, h, t + ∆t): In this case, since there is no change in the number
of infected units and that of infective ones, neither infection nor recovery occurs
during time period ∆t. Therefore, from (2.2) and (2.5), the transition probability
is given by

[1 − βh∆t − o(∆t)] · [1 − γh∆t − o(∆t)] = 1 − (β + γ)h∆t + o(∆t). (A.1)

(k−1, h, t) → (k, h, t+∆t): Since only the number of infected units increases by5

one, one infection and one recovery should occur during time period ∆t. To increase
the number of infected units by one, the number of infective units must increase by7

one. Hence, in order that the number of infective units at t+∆t is simultaneously h,
the number of infective units must decrease by one during ∆t. From the assumption9

given in the previous section, both infection and recovery occur during ∆t with
probability o(∆t), so that the considered transition probability is o(∆t), too.11

(k, h + 1, t) → (k, h, t + ∆t): In this case, only one recovery occurs during time
period ∆t with no change in the number of infected units, when any new infection
does not occur. Therefore, from (2.2) and (2.4), the transition probability is given by

[1 − β(h + 1)∆t − o(∆t)] · [γ(h + 1)∆t + o(∆t)] = γ(h + 1)∆t + o(∆t). (A.2)

(k − 1, h − 1, t) → (k, h, t + ∆t): In this case, one infection occurs without
any recovery during time period ∆t. Therefore, from (2.1) and (2.5), the transition
probability is given by

[β(h − 1)∆t + o(∆t)] · [1 − γh∆t − o(∆t)] = (h − 1)β∆t + o(∆t). (A.3)

(k − l, h − l, t) → (k, h, t + ∆t) (l ≥ 2): In this case, infection occurs l times
without any recovery during time period ∆t. Since more than one infection occurs13

during ∆t, the transition probability is o(∆t).

(k, h + m, t) → (k, h, t + ∆t) (m ≥ 2): In this case, recovery occurs m times15

without any infection during ∆t. Since more than one recovery occurs during ∆t,
the transition probability is o(∆t).17

(k−l, h+n, t) → (k, h, t+∆t) (n ≥ 0; 1 ≤ l ≤ k−1): In this case, infection
and recovery occur l and n + l times, respectively during ∆t. Since more than one19

infection and recovery occurs during ∆t, the transition probability is o(∆t).
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Appendix B.1

With transition probabilities (A.1), (A.2) and (A.3) for possible transitions of state
in sufficiently small time interval (t, t + ∆t], we can derive the following equation
from the definition of P (k, h, t) for k ≥ 1, h ≥ 0, k ≥ h + 1:

P (k, h, t + ∆t) = P (k, h, t) · [1 − (β + γ)h∆t + o(∆t)]

+ P (k, h + 1, t) · [γ(h + 1)∆t + o(∆t)]

+ P (k − 1, h − 1, t) · [(h − 1)β∆t + o(∆t)]

+
∞∑
l=2

P (k − l, h− l, t) · o(∆t)

+
∞∑

m=2

P (k, h + m, t) · o(∆t)

+
k−1∑
l=1

∞∑
n=0

P (k − l, h + n, t) · o(∆t).

Therefore, we can obtain the equation for {P (k, h, t + ∆t) − P (k, h, t)}/∆t], and
then as ∆t → 0, we can get the differential equation (2.6).3

Appendix C.

From (3.10), applying (2.6) to (2.8) with a cumbersome and careful calculation, we5

can derive the following partial differential equation for the probability generating
function (p.g.f.) f(x, y, t) defined by (3.10):7

∂f(x, y, t)
∂t

= {−(β + γ)y + γ + βxy2}∂f(x, y, t)
∂y

. (C.1)

From (2.9), the initial condition is given by

f(x, y, 0) =
∞∑

k=1

k∑
h=0

P (k, h, 0)xkyh

= P (1, 1, 0)xy

= xy. (C.2)

In addition, the following condition can be derived:

f(1, 1, t) =
∞∑

k=1

k∑
h=0

P (k, h, t) = 1, (C.3)

because the sum of probability for any possible k and h corresponds to the occur-9

rence of any event.
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With condition (C.2) and (C.3), we can directly solve (C.1) as follows:621

f(x, y, t) = x ·
[
v+(x) − v̂(x){v+(x) − y}

Φ(x)

]
, (C.4)

where

Φ(x) = {v+(x) − y} + {y − v−(x)}e−βxv̂(x)t;

v̂(x) = v+(x) − v−(x),

and v+(x) and v−(x) are functions of x, given by two distinct roots of the following3

equation in terms of ξ:

βxξ2 − (β + γ)ξ + γ = 0.5


