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Abstract 

We consider a Lotka-Volterra prey-predator two-species system in a n-patchy environment, assuming that 
predator can migrate among patches, while prey cannot. Those n patches are categorized into two groups, group 1 
and group 2, according to the parameters determining the prey-predator relation and the predator’s migration 
process. Prey population in a patch of group 1 has parameters different from those for prey population in a patch of 
group 2. Predator population inhabiting and emigrating from a patch of group 1 has parameters different from those 
for predator population inhabiting and emigrating from a patch of group 2. Local stability of equilibrium states are 
analyzed, and the condition for the predator’s invasion success is derived to discuss the effect of environmentally 
heterogeneous patchiness on the coexistence of prey and predator. 
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1. Introduction 

Population persistence is influenced by biotic 
and abiotic environmental heterogeneity: re- 
source distribution, temperature, humidity, 
stochastic disturbance, etc. Some effect of local 
environmental heterogeneity is transferred 
through population migration processes and af- 
fects the whole population to affect population 
persistence. Especially populations in nature are 
influenced by environmental patchiness (Wiens, 
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1976). Various theoretical studies on the effect of 
environmental patchiness on population dynam- 
ics have been developed, following a great deal of 
field research. For well-known examples, Kier- 
stead and Slobodkin (1953) and Okubo (1982) 
studied plankton patchiness, using diffusion 
equations (see also Okubo, 1980). They studied 
the population persistence within an isolated 
patch and established a critical patch size below 
which the population becomes extinct (see also 
Skellam, 1951). DeAngelis et al. (19791, Kawasaki 
and Teramoto (19791, Vance (1984), Allen 
(1983a,b, 19871, and Seno (1988) analyzed popu- 
lation dynamics in a patchy environment, making 
use of “multi-patch” (spatially discrete) systems. 
Allen (1987) and Seno (1988) discussed the criti- 
cal patch number with a spatially discretized re- 
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action-diffusion model. On the other hand, with 
the same type of system, May (1974) and Levin 
(1976), Zeigler (1977) Travis and Post (1979), 
Hirata (1980) and Post et al. (1983) studied com- 
munity dynamics. The system corresponding to 
the case when patches have generally different 
parameters, has been mathematically investigated 
by many researchers, for example by Chau (1985). 
Further, DeAngelis et al. (1979) studied the gen- 
eral conditions for population persistence in the 
context of “M-matrix”. However, their results are 
either too complicated or too general to be used 
practically for a detailed analysis of dependency 
of population persistence on parameters in a 
multi-patchy system. 

Seno (1988) studied a single-species popula- 
tion persistence in a multi-patch system contain- 
ing a patch within which emigration and growth 
rates are different from those within the other 
patches. Such a patch was called “singular”. The 
singularity of a patch is regarded as an effect of 
disturbance in an ecological system, as was dis- 
cussed by DeAngelis et al. (1985), or of constant 
harvest or of some artificial environmental 
change. Seno (1988) discussed the influence of a 
singular patch on the persistence of a single- 
species population migrating over N patches, and 
arrived at the following results: (a) population 
persistence depends on the location of a singular 
patch in the whole system; (b) in some cases, 
population can persist independently of a singu- 
lar patch; (c) in some cases, there exists a critical 
total number of patches: if the total number of 
patches is below the critical number, population 
cannot persist; (d) there are the other cases in 
which there is not any critical total number of 
patches so that population can persist independ- 
ently of the number of patches ( & 3) even though 
it could not persist if all patches were identical or 
isolated. Some discussions in Seno (1988), as well 
as that in Allen (1987), shed some light on the 
effect of environmental patchiness on population 
persistence within it. An experimental study by 
Fahrig and kerriam (1985) clearly indicates the 
importance of such aspects for population dynam- 
ics. 

In this paper, we consider a Lotka-Volterra 
prey-predator two-species system (Volterra, 

Fig. 1. Predator migrates among n patches categorized into 
two groups, group 1 (dark) and group 2 (white). For detail 
explanation, see text. 

1926) in a n-patchy environment, corresponding 
to the system analyzed by Seno (1988). It is as- 
sumed that predator can migrate among patches, 
while prey cannot. Those n patches are catego- 
rized into two groups, group 1 and group 2, 
according to the environmental parameters deter- 
mining the prey-predator relation and the preda- 
tor’s migration process (Fig. 1). Prey population 
in a patch of group 1 has parameters different 
from those for prey population in a patch of 
group 2. Predator population inhabiting and emi- 
grating from a patch of group 1 has parameters 
different from those for predator population in- 
habiting and emigrating from a patch of group 2. 
Local stability of equilibrium states is analyzed, 
and the condition for the predator’s invasion suc- 
cess is derived to discuss the effect of environ- 
mentally heterogeneous patchiness on the coexis- 
tence of prey and predator. 

2. Statement of model 

Consider the environment consisting of n 
patches. A prey-predator relation of the Lotka- 
Volterra type is present in each of patches. 
Predator can migrate among patches, while prey 
can not. Emigrating predator immigrates evenly 
into all other patches. Those n patches are as- 
sumed to be categorized into two groups, group 1 
and group 2, according to the environmental pa- 
rameters determining the prey-predator relation. 
Prey population in a patch of group 1 has param- 
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eters different from those for prey population in 
a patch of group 2. Predator population inhabit- 
ing and emigrating from a patch of group 1 has 
different parameters from those for predator 
population inhabiting and emigrating from a patch 
of group 2. Our model corresponds to the system 
analyzed by Seno (1988) and is expressed as fol- 
lows (Fig. 2): 

W(t) - = -sly(t) +c,;y(t)yl(t) -P1qt) 
dt 

I jti 

(1) 
for i = 1, 2,. . . , k 

W(t) ~ = -c&y(t) +CZXi(t)qt) -P,Y.(t) 
dt 

I k SIPI +c- 
j=l n-1 

j#i 

(2) 
for i = k + 1, k + 2,. . . , n, where Xi(t) and 

x(t) are, respectively, prey density and predator 
density in patch i. rl and r2 are the prey’s intrin- 
sic growth rates, respectively, in the patch of 
group 1 and in that of group 2. K, and K, are 
carrying capacities, b, and b, prey’s predated 
rates, 6, and 6, the predator’s death rates, ci 
and c2 predation rates, P, and P, emigration 
rates, S, and S, success rates of migration. It is 
assumed that the predator’s emigration rate and 
its success rate of migration are determined by 
the environment of the patch from which the 
predator emigrates. The first term for prey in the 
righthand side of Eqs. 1 and 2 expresses prey’s 
logistic growth, and the second the decrease by 
predation. Next, the first term for predator in the 
righthand side of Eqs. 1 and 2 expresses the 

decrease of predator density by death, and the 
second the increase by predation. And the third 
term expresses predator’s emigration process, and 
the fourth and the fifth the predator’s immigra- 
tion process from the other patches of group 1 
and group 2, respectively, expected for the patch 
i. 

3. Analysis 

3.1. Linearized system 

Consider the equilibrium state (X *, Y *) on 
R2” for the system of Eqs. 1 and 2, where X * 
and Y * are vectors on R” given by 

x*=(x,“,x; )...) x;x;,x; )...) x;) 

(. 
i n-k 

Y * = Yl*) r,*, . . . ,Yl* r,* ) Y2* ). . .) r,* 
,I 

k n-k 

Now, we linearize the system of Eqs. 1 and 2 

Fig. 2. Schematic description for the model system. For de- 
tailed explanation, see text. 
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around the equilibrium state (X *, Y * ). We sub- 
stitute the following into Eqs. 1 and 2: 

xi(t) =x; +xi(t) for i= 1, 2,...,k 

X,(t)=X;+x,(t) fori=k+l,k+2,...,n 

r;(t) =yi* +yi(t) for i= 1, 2,...,k 

K(t) = Y2* +y,(t) for i=k+l, k+2,...,n 

where (x,(t), y,(t)) (i = 1,2,. . . ,n> is the perturba- 
tion from the equilibrium state (X *, Y * ). Then, 
we obtain the following linearized system: 

2r,X, 
-= rl - ~ - b,Y,* 

KI 

-b,X,*Yi(t) 

dYi(t) 
-=clY~*.xi(t)+(cIX1*-C31-P1)yi(t) 

dt + z fI YjCt> + s j=$+lYj(f) 
J=l 

j#i 

(3) 
for i = 1, 2,. . . , k 

2r,X,’ 
-= 

r2 - ~ - b*Y2* 
K2 

-b2X;Yi(t) 

dYi(t) 
___ =C2Y2*Xi(t) + (c2X2* -s2-P2)yi(t) 

dt + z ,5 Yjtt) + z j=t+lYj(t) 
J=l 

j#i 

(4) 
for i = k + 1, k + 2,. . . , n. The system of Eqs. 3 
and 4 can be expressed with 2n-dimensional vec- 
tor n and 2n x 2n matrix M as follows: 
dn 
- =M*n, 
dt 

where n =T(~, y). x and y are n-dimensional 
vectors respectively for prey and predator densi- 
ties in the linearized system of Eqs. 3 and 4: 

x= (Xl(t), x,(t),...,&(t)) 

Y = (Yr(% Y,(t)?...,Y,(t)) 

As for the expression of M, see Appendix A. If 
the real parts of all eigenvalues for M are nega- 
tive, the equilibrium state (X *, Y * > is locally 
stable. 

3.2. Equilibrium state with predator’s extinction 

Consider the equilibrium state Y * = 0 = 
(0,O , . . . ,O) such that any predator is to go extinct. 
In such case, the characteristic equation, det(M 
- AZ) = 0, which determines the eigenvalue A for 

M, is obtained as follows (Appendix A): 

(Hi -A)k(H2-A)n-k(L1 -J, -#-I 

x(L,-.&-A)“-“-‘(A2-Q1A+Q2)=0, 

(5) 

where 
2r,X, 

H,=r,-- 
K, 

2r,X,* 
H2=r2- ~ 

K2 

L,=c,X,*-6,-P, 

L,=c,X,* -6,-P, 

SIP, 
J, = - 

n-l 

s2p2 
J, = - 

n-l 

Q,=L,+L,+(k-l)J,+(n-k-l)J, 

Q2=L,L2+(k-l)L,J,+(n-k-l)L,J, 

-(n - l)J,J,. 

As easily seen from Eq. 5, all eigenvalues are 
real. Now, from Eq. 5, the condition with which 
each eigenvalue is negative, that is, the local 
stability condition for the equilibrium state 
(X *, 0) can be obtained as follows: 

HI<0 (6) 
H,<O (7) 
L,-J,<O (8) 
L,-J,<O (9) 

Q,<o (10) 
Q,>@ (11) 
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Let us consider four possible equilibrium states 
for (X *, 0) with the predator’s extinction: (0,O); 
(K,, Ok (K2, 0); UC,,, Ok where 

K, = 
(. 

K,, K, ,..., K, 0, 0 ,..., 0 
-1 

k n-k 

K,= 
(- 
0, O,...,O, K,, K,,...,K, 

,I 
k n-k 

K,2= 
(. 

K,, K, ,..., K, K,, K, ,..., K, 
I 

k n-k 

The equilibrium state (K,, 0) expresses such state 
that only the prey in the patch of group 1 persists, 
while the equilibrium state (K,, 0) expresses such 
state that only the prey in the patch of group 2 
persists. The equilibrium state (K,,, 0) expresses 
such state that the prey persists in any patch. 
These three equilibrium states are exclusive each 
other, that is, any two of them cannot be contem- 
porally stable for any parameters, which will be 
shown in the following analysis. 

Local stability for (0,O) 
The condition for local stability of (0,O) is 

that rl < 0 and r2 < 0. Those conditions given by 
Eqs. 8, 9, 10, and 11 are always satisfied, which is 
proved in Appendix B. Since this is the case when 
the intrinsic growth rate of prey is everywhere 
negative, prey population monotonically de- 
creases to become extinct. Without prey, preda- 
tor cannot survive. 

Local stability for (K,, 0) 
For (X *, Y * ) = (K,, O), the condition for local 

stability is to satisfy the following: 

rl >O, (12) 

r2<0, (13) 

k(n - k)/(n - 1)2 k-l 

D’>D2-(n-k-l),‘(n-1) +a1+ n-1 

(14) 

(4 

I 

n-k-l 

n-l 
_______,___t________________________I-_______ 

08 

D2‘ 

I 

n-k-l 

Fig. 3. CD,, D&dependence of the local stability for the equilibrium state (K,,O), given by Eqs. 12, 13, and 14: (a) when 
(or + (k - l)/(n - 1) > 1; (b) when or + (k - l)/(n - 1) < 1. Since 1 <D, and 1 Q D,, the white region is not considered. The 
shaded region indicates the parameter region for the unstability of (K,, 01, that is, for the predator’s invasion success, while the 
striped region is for the local stability, that is, for the predator’s invasion failure. The boundary curve between the invasion success 
and the failure regions is given by Eq. 14. DE and D$ are given by Eqs. 15 and 17. 
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where, for convenience, we use the following 
parameters: 

4 +p1 
D1= SIPl 3 

62 +p2 
D,e----- 

s2p2 ’ 

ClKl C2K2 

VsIpIV u2=s,p,. 

Conditions 8, 9, and 10 are always satisfied if 
condition 11 is, which is proved in Appendix B. 
Note that, since Si 2 0 and 0 G Si G 1 (i = 1,2), it 
is satisfied that Di 2 1 (i = 1,2), where Di = 1 
only when ?Si = 0 and Si = 1. 

The parameter Di can be regarded as repre- 
senting the environmental favorability of patches 
of group i for the predator, by which the preda- 
tor population is directly affected through the 
migration process. As the environment is more 
favorable, the value of Di becomes smaller. The 
parameter Di does not depend on any parameter 
related to the predation process, while the pa- 
rameter vi does on those parameters represent- 
ing the effectiveness of predation, ci and Ki. ai 
can be regarded as representing the quality of the 

(W 
D3 

n-k-l 
(J* + ___ 

n-l 

k-l 
n-l 

prey for the predator in patches of group i. As 
the quality of prey is richer, the value of ai 
becomes larger. Hereafter, we conventionally use 
these parameters. 

The parameter region for the local stability is 
given in Fig. 3. As easily seen from Fig. 3, if D, is 
not less than DE given by 

Df= 1 +(~i, (15) 
the local stability of (K,, 0) is established for any 
value of D,. The predator’s invasion fails inde- 
pendently of the environment of patches of group 
2. This means that the environment of patches of 
group 1 is not satisfactory for the predator’s 
invasion. 

In contrast, as seen from Fig. 3b, when 
k-l 

ff1+ -<1 
n-l (16) 

and D, is not less than 04 given by 

D”= (n-k)-(n-k-l)a, 
2 (n-k)-(n-l)a, ’ (17) 

the local stability of (K,, 0) is established for any 
value of D,. The invasion fails for predator with 

D2 

.:. 

I Invasion 
P 

succeeds y 

k-l 
n-l 

Fig. 4. CD,, &)-dependence of the local stability for the equilibrium state (K,,O), given by Eqs. 19, 20, and 21: (a) when 
cr,+(n-k-l)/(n-1)~1;(b)wheno,+(n-k-l)/(n-1)~l.Since1<D,and1~D~, the white region is not considered. 
The shaded region indicates the parameter region for the unstability of (K,, O), that is, for the predator’s invasion success, while 
the striped region is for the local stability, that is, for the predator’s invasion failure. The boundary curve between the invasion 
success and the failure regions is given by Eq. 21. 0; and Di are given by Eqs. 22 and 24. 
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any death rate 6, in patches of group 1. This is On the other hand, if 
the case when the environment of patches of 
group 2 is not favorable and the quality of prey in k-l 

patches of group 1 is poor. 
l<LI,<a,+- 

n-1’ 

137 

(18) 

(b) 

Fig. 5. CD,, D&dependence of the local stability for the equilibrium state (K,*, 0) given by Eqs. 26, 27, and 28: (a) when 
cl+ (k - l)/(n - 1) > 1 and u2 + (n -k - l)/(n - 1) > 1; (b) when (T, + (k - l)/(n - 1) < 1 and CT* + (n -k - l)/(n - I) a 1; (c) 
when crl + (k - l)/(n - 1) < 1 and (TV + (n -k - l)/(n - 1) > 1; (d) w h en u, + (k - l)/(n - 1) < 1 and o2 + (n - l)/(n - 1) > 1. 
Since 1 <D, and 1 < D,, the white region is not considered. The shaded region indicates the parameter region for the unstability 
of (K,,,O), that is, for the predator’s invasion success, while the striped region is for the local stability, that is, for the predator’s 
invasion failure. The boundary curve between the invasion success and the failure regions is given by Eq. 28. 05 and D; are given 
by Eqs. 17 and 24. 
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the equilibrium state (K,, 0) is unstable inde- 
pendently of the value of D, (Fig. 3a). The 
predator’s invasion succeeds independently of the 
environment of patches of group 2. This means 
that the environment of patches of group 1 is 
favorable and the quality of prey in patches of 
group 1 is rich enough to complement the de- 
crease of the predator population in patches of 
group 2 due to the unfavorable environment. 

Local stability for (Kd, 0) 
For (X * , Y * > = (K,, 01, the condition for local 

stability is to satisfy the following: 

rl < 0 (19) 
r2 > 0 (20) 

k(” -k)/(n - 1)” k-l 
D, > D,-{,,+(.-k-l)/(n-1)} + n-l’ 

(21) 

Conditions 8, 9, and 10 are always satisfied if 
condition 11 is, which is proved in Appendix B. 

The parameter region for the local stability is 
given in Fig. 4. As easily seen from Fig. 4, if D, is 
not less than 05 given by 

D;=l+a,, (22) 

the local stability of (K2, 0) is established for any 
value of D,. The predator’s invasion fails inde- 
pendently of the environment of patches of group 
1. The environment of patches of group 2 is not 
satisfactory for the predator’s invasion. 

In contrast, as seen from Fig. 4b, when 

n-k-l 
a2 + <l 

n-1 (23) 

and D, is not less than Di given by 

D”= k-(k-l)a2 

4 k-(n-l)a,’ (24) 

the local stability of (K,, 0) is established for any 
value of D,. The invasion fails for predator with 
any death rate 6, in patches of group 2. On the 
other hand, if 

n-k-l 
1 <D,<u,+ 

n-l ’ (25) 

the equilibrium state (K,, 0) is unstable inde- 
pendently of the value of D, (Fig. 4a). The 
predator’s invasion succeeds independently of the 
environment of patches of group 1. The environ- 
ment of patches of group 2 is favorable and the 
quality of prey in patches of group 2 is rich 
enough to allow the predator’s invasion into the 
whole system. These results are reciprocally cor- 
responding to those for the equilibrium state 
(K,,O). 

Local stability for (K12, 0) 
For (X *, Y * ) = (K,,, O), the condition for lo- 

cal stability is to satisfy the following: 

rl > 0 (26) 
r2 > 0 

k(n - k)/(n - l)* 
D1> D,-{~~++(n-k-l)/(n-1)) +a1 

k-l 
+- _ f 

(27) 

(28) 
n-1 ~ I  

Conditions 8, 9, and 10 are always satisfied if the 
condition 11 is, which is proved in Appendix B. 

The parameter region for the local stability is 
given in Fig. 5. As easily seen from Figs. 5c and d, 
when Eq. 16 is satisfied and D, - a2 is not less 
than 0; given by Eq. 17, the local stability of 
(K,,,O) is established for any value of D,. In 
contrast, as seen from Figs. 5b and d, when Eq. 
23 is satisfied and D, - crl is not less than Di 
given by Eq. 24, the local stability of (K,,,O) is 
established for any value of D,. In these cases, 
the environment in patches of group 1 or 2 is 
independent of the predator’s invasion success. 
In these cases, the environment and the quality of 
prey in patches of one group is so poor that the 
predation in patches of another group does not 
work effective for the predator’s invasion. 

On the other hand, when Eq. 25 is satisfied, 
the equilibrium state (K,,,O) is unstable inde- 
pendently of the value of D, (see Figs. 5a and c). 
Moreover, when Eq. 18 is satisfied, the equilib- 
rium state (K,,,O) is unstable independently of 
the value of D, (see Figs. 5a and b). There can 
exist the parameter region in which the predator’s 
invasion succeeds independently of the environ- 
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ment of patches of group 1 or 2. When the 
environment of patches of the better group is 
sufficiently favorable for predator’s invasion, it 
allows the predator’s invasion into the whole sys- 
tem, independently of the environment of patches 
of another group. 

4. Effect of the structure of patchiness 

In this section we focus on the effect of the 
structure of environmental patchiness, that is, the 

effect of the total number II of patches and the 
ratio k/n of patches of group 1, on the stability 
for the equilibrium state. For analytical conve- 
nience, we use the following parameters w and u 
for the structure of patchiness: 

k 1 
WE-’ 

n-1 
UE- 

n-1 
where u G w G 1. Parameter u expresses the ef- 
fect of the total number of patches, and w that of 
the ratio of the number of patches of group 1 to 
the whole patches. 

Invasion fails 
independently of (n, k) 

Invasion succeeds 
independently of (n, k) 

Fig. 7. Parameter dependence of the local stability for the equilibrium state (K,,, 0). The shaded region is for the unstability, and 
the striped one is for the local stability, independent of the structure (n, k) of patchiness. In contrast, for the parameters in the 
cross-hatched region, the stability depends on the structural parameters (n, k) of patchiness. The curve I,z is given by Eq. 40. wE2, 
~l;z, and e& are respectively given by Eqs. 37, 38, and 39, for the parameters w = k/(n - 1) and u = l/(n - 1). In each region of 
parameters (D, -(T, - 1, D, - v2 - l), the (v, w&dependence of the local stability is shown by the configure of how the 
(u, w&parameter space is categorized in terms of the local stability. 
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As for the equilibrium states, (K,,O) and 
(K,, 01, the (u, w)-dependence of the local stabil- 
ity is shown in Fig. 6. The (u, w)-dependence 
appears only in the region of the other parame- 
terssuchthat -1<Di-~i-l<OO(i=1,2).For 
the parameters of the other region, the local 
stability is determined independently of (n, k). 
Therefore, the structure of environmental patchi- 
ness is significant only when the environment and 
the quality of prey in patches of the group richer 
than another is moderately favorable for the 
predator’s invasion success. 

As seen in Fig. 6a, when - 1 < D, - c1 - 1 < 0, 
if w is not more than W; given by 

wc = (4 - Ul)(Pz - 1) 
1 D,-o,-D, ’ (29) 

the equilibrium state (K,,O) is locally stable 
independently of the value of U. That is, inde- 
pendently of the total number of patches, if the 
ratio of patches of group 1 is sufficiently low, the 
predator’s invasion fails. In contrast, when - 1 < 
D, - CT* - 1 < 0 and the following is satisfied, 

1 1 
+p 

D,-a,-1 D,-1 
+1>0, (30) 

thatis,whenO<D,-a,-l<-l+l/D,,if w 
is not less than et given by 

vc= _ (01 --VI - llDz 
1 D,-1 ’ 

eE= - (Di - a,)(Dz - 1) 
D,-o,-1 ’ (31) 

the equilibrium state (K,,O) is unstable inde- 
pendently of the value of U. That is, independ- 
ently of the total number of patches, if the ratio 
of patches of group 1 is sufficiently high, the 
predator’s invasion succeeds. 

Similarly, for the equilibrium state (K,, 01, as 
seen in Fig. 6b, when - 1 CD, - a, - 1 < 0 and 
the following is satisfied, 

1 1 

D,-a,- 1 
-----+1-C<, 

+ D,-1 

thatis,when -l+l/D,<D,-a,-l<O,if w 
is not less than eg given by 

the predator’s invasion fails independently of the 
value of w. Similarly, as for the equilibrium state 
(K,, 01, when - 1 < D, - u, - 1 < 0 and the left- 
hand side of Eq. 32 is negative, that is, when 
- 1 + l/D, <D, - a, - 1 < 0, if v is not less than 
ei given by Eq. 33, the predator’s invasion fails 
independently of the value of w. Further, there 
exists another critical number for the total num- 
ber of patches according to the predator’s inva- 
sion success. For the equilibrium state (K,, O), 
when -l<D,-a,-l<l+l/D,, if c’ is not 
less than ef given by Eq. 31, the predator’s inva- 
sion succeeds independently of the value of w, 
while for the equilibrium state (K2, 01, when 
-1 <D,-c2- 1 < -1 + l/D,, if v is not less 
than v; given by 

the equilibrium state (K,, 0) is locally stable 
independently of the value of U. And, as seen in 
Fig. 6b, when -D, - m2 - 1 < 0, if w is not more 
than w; given by 

WC zzz D,(D,-a,-11 
2 D,-DD,+q ’ (34) 

the equilibrium state (K,,O) is unstable inde- 
pendently of the value of U. 

The predator’s invasion success requires a suf- 
ficient ratio of the environmentally richer patches 
in the whole environment. In other words, there 
exists a critical value for the ratio of the number 
of patches of the richer group to the total of 
patches, below which the predator’s invasion al- 
ways fails. Further, there exists another critical 
value for the ratio of the number of patches of 
the richer group to the whole patches, beyond 
which the predator’s invasion always succeeds. 

On the other hand, as seen in Fig. 6, there 
exists a critical number for the total number of 
patches according to the predator’s invasion fail- 
ure. For the equilibrium state (K,, O), when - 1 
<D, - u1 - 1 < 0 and the lefthand side of Eq. 30 
is negative, that is, when - 1 + l/D, <D, - uT1 - 
1 < 0, if c’ is not less than vE given by 

(35) 

ez= - 
DdD2 -u2 - 1) 

D,-1 ’ 
“c _ _ (D1- l)(Dz-“z) 

2- D,-o-,--l ’ (36) 
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the predator’s invasion succeeds independently of 
the value of w. 

When the favorability of the richer patches is 
unsatisfactory for the predator’s invasion success, 
the decrease of predator population due to the 
leakage in the migration process and the death in 
the poorer patches cannot be compensate by the 
growth of predator population in the richer ones. 
In contrast, if the richness of the environmentally 
richer patches is satisfactory for the predator’s 
invasion success, even when the richer patch is 
only one in the whole system, the predator’s 
invasion succeeds. 

Also as for the equilibrium state (K12,0), the 
analogous argument can be carried out. As easily 
seen in Fig. 7, this case can be discussed as case 
combined those for equilibrium states (K,, 0) 
and (K,, 0). Corresponding critical values for w 

-15 -10 -5 0 5 10 15 20 

and u are given in this case as follows: 

W 
c _ (D,-a,)(D2-c2- 1) 
12 - 

II-CT, -II,+CT2 
(37) 

uc _ (O1- Cl - I>(02 - a21 

12- - 
D2-U2- 1 (38) 

ec _ (D,-~,)(D2-9-1) 
12- - 

D,-al-1 ’ 
(39) 

and the boundary curve lY,2 in the parameter 
region in which the (u, w)-dependence appears, 
that is, in the region such that - 1 <D, - (T~ - 1 
<OandO<D,-a,-l,orsuchthatO<D,-a, 
-land -l<D,-a,-l<O,isgivenby 

1 1 
+ 

D,-a,-1 
+1=0. 

D,-a,- 1 (40) 

i f / j_ (b _ I).. 

Fig. 8. Numerically calculated Y,’ (0) and YIi (0) at the stationary state of the system given by Eqs. 1 and 2 with n = 10; 
6, = b, = b; r,/b = r,/b = l.O;S,P,/ b = .S,P,/b = 0.1;(6, + P,)/b = (6, + P)/b = 2.0. (a-1) k = 2; czK,/b = 0.0 and D, - gz - 1 
= 19.0. (a-2) k = 8; c*K,/b = 0.0 and D, - CT~ - 1 = 19.0. (b-l) k = 2; c2Kz/b = 1.999 and D, - CT* - 1 = -0.99. (b-2) k = 8; 
c2K2/b = 1.999 and D, - v2 - 1 = -0.99. Th e f ormer k patches (1,2, ,k) are of group 1, and the rest is of group 2. Only the 
equilibrium state (K,,, 0) may become stable. The cases (a-l, 2) are for positive D, - CT* - 1, while (b-1,2) are for the negative, 
referring to Fig. 7. Solid disks (0) are for the case when c*K,/b = clKI/b, that is, D, - o2 - 1 = D, - CT* - 1, which corresponds 
to the case when the predator’s invasion is independent of the structural parameters (u, w), as shown in Fig. 7. 
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5. Conclusion 

Analyzing the local stability of equilibria with 
the predator’s extinction, it is discussed how the 
predator’s invasion is affected by the structure of 
environmental patchiness. Considered multi- 
patchy environment is categorized into two groups 
of patches. Every patches of each group have 
common environmental parameters which deter- 
mine the relation between prey and predator, the 
growth of prey population, and the migration 
process of predator population. For the predator’s 
invasion success, it is necessary that at least one 
of the two groups provides an environment satis- 
factory for predator population growth. 

Although our mathematical analysis is focused 
the local stability of equilibria with the predator’s 
extinction, some numerical calculations show the 
correspondence between the result by the local 
analysis and the global structure of stationary 
state (see Fig. 8, referring to Fig. 7). In addition, 
as the favorability of patches of one group be- 
comes higher, the stationary predator population, 
that is, the predator population coexisting with 
prey gets larger. Further, we could not numeri- 
cally find any dynamic stationary state, that is, 
periodically variational stationary coexistence. 
Therefore, as the environmental favorability for 
predator, which is measured by the parameter 
Di - oi - 1 (i = 1,2) for our model, gets larger, 
the coexistence is promoted and the predator’s 
stationary population becomes larger while the 
prey’s stationary population becomes smaller (see 
Fig. 8). 

Independently of the structural factors of envi- 
ronmental patchiness, that is, the total number of 
patches and the ratio of two groups, in some 
cases, it is determined whether the predator’s 
invasion is successful or not. When one of groups 
provides sufficiently rich environment or high-qu- 
ality prey, the predator’s invasion succeeds even 
when the number of the more favorable patches 
is only one, while, when both groups provides too 
poor environment, it fails independently of the 
numbers of patches of each group. 

In the other cases when the provided environ- 
ment is moderate for the predator’s population 

growth, the structural factors of environmental 
patchiness crucially determine whether predator 
can invade or not. In such case, there exist critical 
values for the total number of patches and for the 
ratio of two groups. If the more favorable group 
provides sufficiently satisfactory environment for 
the predator population, predator can invade 
independently of the total number of patches or 
of the ratio of two groups, while, if the more 
favorable group provides so unsatisfactory envi- 
ronment, predator fails to invade independently 
of them. 

This result can be regarded as implying that 
the environmental fragmentation can become a 
cause for an outbreak or for an extinction of 
insects, etc. Even in the case when the area 
summed up all over fragmented zone is equal 
between two multi-patchy environments different 
from each other in terms of the structural factors 
of environmental patchiness, the structure of eco- 
logical community in each environment can be 
drastically different from each other, which is the 
case corresponding to that mentioned above. 
Spatial structure of environment could be crucial 
for the stability of ecological community. 

In some parts of our analyses, the correspon- 
dence between our model and two-patch prey- 
predator system can be identified. As for the 
stationary state, group 1 and 2 in our model 
respectively correspond to two patches, in the 
other words, each of group 1 and 2 can be re- 
garded as a meta-grouped patch. Those results 
for two-patch prey-predator system are applica- 
ble for our model, although some translation of 
parameters is required including the total num- 
ber y1 of patches and the number k of group 1. 
This is because, at any stationary state of our 
model, every patch in each group reaches the 
same state, and patches in each group cannot be 
distinguished from each other. As long as they 
are at the stationary state, each group of patches 
can be treated as a group, that is, the stationary 
state for two-patch prey-predator system can be 
usefully applied with some translation of parame- 
ters. In contrast, in the stability analysis, since 
each group of patches has the larger degree of 
freedom of the perturbation around the equilib- 
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rium state than that for two-patch system, the 
analysis on two-patch system can provide results 
only for some specific cases for our model. 

It should be remarked that, in our model, any 
locational structure of patches is not taken into 
account, because emigrating predator population 
is assumed to immigrate evenly into all the other 
patches, independently of which patch is the des- 
tination. In this reason, some results for our 
model would be vulnerable for the case when the 

mobility of predator is not high compared to its 
population growth. The model with a locational 
structure of patches, for example, like that in 
Seno (1988), would frequently bring some analyti- 
cal difficulties, though it will be an interesting 
modelling analysis. 

It is expected that our analysis will give some 
stimuli for mathematical modelling researches or 
for ecological researches. 

Appendix A 

For the equilibrium state (X * , Y * 1, A4 is expressed with some block matrices as follows: 

( Hl’lk Ok,n-k -b,X; * Ik Ok+-k 
\ 

M= 
On-k,, H2 ‘t-k On-k,, -b2X; *In-k 

crYi* . 1, Ok,n-k 4 J2 
on IX*” X R2n, 

\ On-k,, c2y2* *In-k Jl L2 I 

where Zj is defined as j X j matrix whose elements are zero except for the diagonal elements which are 
all 1, O,,j is defined as i x j matrix whose every elements are zero, and the other block matrices are 
defined as follows: 

‘L, J, . . . J, ’ ‘L2 J, . . . J, ’ 

J, *. . . : 
L,= . : : 

J, ‘. . . : 
j on Rk X Rk L,= . : : 

1 
j on [WnPk X [Wnpk 

2 

\ i, ..I J; L, i2 . . : J2’ L2, 

on Rk X Rk on WPk X RnPk, 

where H,, H2, L,, L,, J, and J2 are the same as given in the main text. The characteristic equation for 
M is expressed as follows: 

I( H, - A)zk Ok.n-k -b,X,* ‘Ik ‘k,n-k I 

det( M - AZ) = c”~~k;~ 
(H2-A)zn-k On-k,, -b2X; *I,_, 

Ok+-k (L,-A)I, J2 =‘* 
(AlI 

;n’k,k 

k 

c2y2* ‘In-k Jl (L2-A)zn-k 

For the equilibrium state when Y * = 0, the determinant Al becomes 

I( H, - A)1k Ok,n-k -b,X,* . Ik 0 k,n-k 

det(M-AZ) = 
On-k,, tH2 - A)zn-k On-k,, -b2X; ‘I,_, 

o 
k,k Ok,n-k tLl -A)zk J2 

On-k,, On-k,n-k Jl (L2-A)zn-k 

= (HI-A)‘, Ok,n-k CL, -A)zk J2 

On-k,, (HI - A)Zk ’ II JI (L2-h)zn-k 
(A21 
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The first determinant of Eq. A2 is expanded as follows: 

145 

Ok,n-k 
(4 -AIL, 

=(H,-A)k-(H2-h)n-k. 

As for expanding the second determinant of Eq. A2, some tactical transformations are used. First, its 
first column is subtracted from every column over the second to the kth, and then the nth column is 
subtracted from every column over the k + lth to the n - lth. Next, those rows over the second to the 
kth are added to the first row, and those over the k + lth to the IZ - lth are to the nth. Then, expand it 
in terms of the first row. These steps carry the following determinants: 

JZ 
L, - AI,_, 

I I 
(L, -A -J,)z,_, / ok-l,n-k-l 

I 
I 
I 

-I- 

= {L, - A + (k - l)Jr} 

+ ( - l)“+‘w,. 

0 n-k-l,k-1 / (L,-A -J,)z&_, 

_-------------$---___-----___-- 
0. . . . . . . . . 0 I 0 . . . . . . . . . 0 

J* I 
Ji _----------------- 
J, 

i _----------------- 
L,-A+(n-k-l)J, 

J, I I 
I 

/ (&-A -Jl)zk-l j ok-l,n-k-l 

5, I 
I 
I 

-_____--~---__----- --__-;-----_-------___ 
Jl I I I I I I 

I o,-k-,,k-, 

f, I 

1 CL2 -’ - J2)zn-k-, 
I 
I 

<,,)~~i--,.-.-.-rr;;,--t---OTTT.-.-.I; 0 

Now, we expand the second determinant above in terms of the nth column: 

(The second determinant) = ( - 1)” . (n - k) J, . 
(-h --A -J,)zk-1 Ok-l,n-k-l 

o 
n-k-l,k-1 (&-A -J,)z,_k-, ’ 

Lastly, all determinants become triangular as seen above. For the expansion of triangular determinant, it 
is just necessary to multiplying the diagonal elements. Therefore, consequently, the characteristic 
equation 5 is obtained. 

Appendix B 

As for the condition for the local stability of the equilibrium state (O,O>, it is shown that those 
conditions 8, 9, 10, and 11 are satisfied. First, the conditions 8 and 9, Di > - l/(n - 1) (i = 1,2), are 
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clearly always satisfied since Di 2 1 (i = 1,2). Next, since Di a 1 (i = 1,2), the following inequality for Eq. 
10 can be estimated: 

k-l 
D, - - 

n-l 
+P D,- 

i 

n-k-l n-k k 

n-l I 
>-+p 

n-l 
- >o, 
n-l 

where 

s,p, 
p = SIP, . 

Thus, condition 10 is always satisfied. Next, since Di a 1 (i = 1,2), the following inequality for Eq. 11 can 
be estimated: 

k-l n-k-l 1 n-2 1 
DID, - -D,- 

n-l n-l DI - - >D,D,- 
n-l 

-D,-- 
n-l n-l 

=D,(D,-l)+& (D1-g+O. 

where D, 2 D, is assumed. For the case when D, <D,, the similar estimation can be carried out. 
Therefore, the condition 11 is always satisfied, too. 

As for the condition for the local stability of the equilibrium state (K,,O), in the same way as the 
above, it can be shown that the condition 9 is always satisfied. The conditions 8 and 11 are compared 
with each other. The condition 11 is given by Eq. 14, and the conditions 8 is explicitly as follows: 

Since 

n-k-l n-k-l 
D2- n-l 

>l- 
n-l > 0, 

the following inequality is obtained for Eq. 14: 

(B2) 

k(n - k)/(n - 1)2 k-l k-l 1 

D1> D,-(n-k-l)/(n-1) +a1+ 
->a,+- 
n-l n-l 

>O,-- 
n-l’ ( w 

Thus, the condition 8 is satisfied if the condition 11 is. The condition 10 is given by 

k-l n-k-l 
D,> -pD2+~,+- 

n-l +P n-l . 

If the righthand side of Eq. B4 is subtracted from that of Eq. 14: 

i 

k(n - k)/(n - 1)2 k-l n-k-l 

D,-(n-k-l)/(n-1) +a1+ 
--pD,+a,+- 

n-l +P n-l 

k(n - k)/(n - 1)” 

i 

n-k-l 

= D,-(n-k-l)/(n-1) +P D,- > 0. 
n-l ( B5) 

where Eq. B2 is used. Therefore, the condition 10 is satisfied if the condition 11 is. Lastly, the conditions 
for the local stability of the equilibrium state (K,, 0) are obtained by Eqs. 6, 7, and 11 as indicated in the 
main text. 
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As for the condition for the local stability of the equilibrium state (K,,O), it can be shown that the 
condition 8 is always satisfied. The condition 11 is given by Eq. 21, and the conditions 9 and 10 are by 

1 
D,>U,- - 

n-1 

k-l 
D,> -pD,+p 

n-l 

In the similar way as for (K,, 0), it can be proved that those conditions 9 and 10 are satisfied if the 
condition 11 is. 

As for the condition for the local stability of the equilibrium state (K,,, 0), by the same steps as the 
above, it can be proved that the conditions 8, 9, and 10 are always satisfied if the condition 11 is. 
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