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Purpose of this paper is to consider mathematically the relation between the efficiency of 
two-mode searching behavior and the target's patchy distribution. Two-mode searching 
includes patch-searching and target-catching. Two intuitive models ate presented: Model 
1 constructed by a Wiener process on R1; Model 2 by a time-discrete Markov process 
on S 1, that is, on a circle. These two different models give different results depending on 
the characteristics of each model. We apply our results to a coevolutionary game between 
the searcher's searching behavior and the target's distribution. Compared with a simple 
mode searching, the superiority of two-mode searching is shown to depend seriously on 
the target's distribution. 
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1. I n t r o d u c t i o n  

It  is well-known tha t  various species of insects behave in a two-mode way to 
search the target (e.g., food, mate,  or host) distributed patchily in space. Such 
a behavior is frequently called "area-concentrated search". An insect searches a 
patch of targets with a relatively large motion which is adaptable to the spatial 
scale of patch distribution; then, after finding the first target,  it reduces its scale 
of motion to search another  target  in a relatively near region. Successively, obeying 
some criteria, the searcher re-changes its behavior to search another patch. Such 
a criterion typically belongs to one of the following three types: (a) fixed-time 
strategy, i.e., the searcher stays for a fixed period of t ime in each patch encountered; 
(b) fixed-number strategy, i.e., the searcher stays until it catches a fixed number of 
targets in each patch encountered; (c) fixed-giving up t ime strategy, i.e., the searcher 
stays in each patch encountered as long as the time interval between a catch and 
the next catch does not exceed a fixed value. A variety of mathemat ica l  models 
have contributed to the understanding of such a behavior within the framework of 
evolutionary s trategy (Murdie [10], Murdie ana  Hassel [11], Cowie and Krebs [2], 
Iwasa et al. [5], Knoppien and Reddingius [8]). 

In this paper,  we shall mathematical ly  demonstrate  that  a two-mode searching 
may  become an adaptable  strategy of searcher in a coevolutionary game between 
the searching behavior and the target 's  distribution. The searcher is assumed to 
behave always to realize the possible highest mean searching efficiency. If the target  
distribution is assumed to be directed to make the efficiency as low as possible, this 
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coevolutionary game can be called a minimax game between the searcher and the 
target (Stewart-Oaten [16]). If the distribution is assumed to be directed to make 
the mean efficiency as high as possible, this game can be regarded cooperative. We 
shaU call the former type of target "the counter-behaving target" and the latter 
"the cooperative-behaving target". 

We shaU deal with two analytically tractable models on a one-dimensional 
space: Model 1 constructed by a Wiener process; Model 2 by a time-discrete Markov 
process. Though the purpose of modelling is the same, they should be independently 
considered because of the difference between the underlying assumptions. Indeed, 
the performed analysis will disclose that some features are very interestingly ditfer- 
› between two models. 
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2. Modelling Assumption 

Tar~et: Both patches and targets ate respectively assumed to be uniformly, 
that is, regularly distributed on the space and in the patch, and all identical to 
each other. We set AS the distance between the nearest-neighbor patches and AL 
between the nearest-neighbor targets and l the length of patch zone (the possible 
longest distance between two targets in a patch). Each patch contains N individuals 
of target. Thus, it is naturally assumed that N A L  = l. These assumptions may seem 
to be too ideal, compared with other models that take hato account the quaUtative 
difference among patches (e.g., Iwasa et al. [5]). But,-purpose of our models is 
to demonstrate mathematicaLly the set-up of a coevolutionary game between the 
searcher's searching behavior and the target distribution. A s a  starting point of a 
mathematical consideration, such a simplification should be allowed. Moreover, to 
consider some real phenomena or more sophisticated models, it is frequently worth 
while knowing what results ate implied from such simple models. 

In almost all the previous papers, the target cUstribution has not been con- 
sidered a s a  strategy available or beneficial for the target against the searcher's 
searching, while it has been one of environmental factors which have ah effect on 
the searching efficiency. Moreover, for instance, it may be very easy to accept the 
assumption that each counter-behaving target takes the position to minimize the 
risk to be found, such as in selfish herd of Hamilton [4], than the assumption of 
minimizing the total searching efFiciency. In this paper, we can consideras follows: 
Considered targets are offsprings of a single parent individual who chooses the dis- 
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tribution. In the prey-predator relation, the lower searching efficiency contributes 
to the higher survival rate of offspring, consequently to the higher inheritance rate 
of its parent 's gene. Another way to consider is that  targets located in a patch are 
strongly related to each other and by kin selection mechanisms each target behaves 
on the benefit of the total, that  is, depending on the total searching efficiency. The 
former may correspond to the case when targets are immobile eggs, while the latter 
to the case when they a r e a  kind of movable juveniles. 

We shaU assume a restriction for the target distribution: The area available for 
the target distribution is limited. Thus, the larger is the size of patch, the smaller 
is the distance between patches. Moreover, the larger is the size of patch, the larger 
is the distance between targets f o r a  fixed number of targets in the patch. In this 
paper, this restriction is assumed to be given by: 

(H) LiS + N A L  = A, 

where A can be regarded a s a  given share of space per patch. The target must select 
its distribution pat tern under this restriction. As for a prey-predator relation, ir is 
very likely that  the prey distribution may be restricted by the spatial resource 
distribution. For example, when a plant is the prey, it may be restricted by light 
intensity, humidity, etc. When the preys are a kind of insects settling or eggs laid 
on a plant, it is obviously restricted by the available area on the plant. 

We shaU also take account of the target size, say b. The existence of a non-zero 
target size excludes that  the patch size can be zero. That  is, when we discuss the 
effect of the target size, the size wiU be seen to p l a y a  role in restricting the target's 
selection of AL: More precisely b < AL. The size b may be regarded a s a  minimal 
necessary share of space per target, too. 

Searcher:. In our model, the searcher's searching consists of two processes on 
a one-dimensional space: patch-searching process and target-catching process. In 
each process, the searcher is viewed a s a  point moving on the space. The switching 
rule between two processes is as foUows: The patch-searching process is terminated 
when the searcher encounters a certain point or enters a certain region of the given 
space. It is regarded as the moment when the searcher finds a patch and catches a 
target. On the other hand, the target-catching process continues from this moment 
until the searcher's gain satisfies a given criterion in this process. 

The searching efficiency E is defined as follows: 

M 
E - - -  

TI + T~ ' 

where T1 denotes the time taken in the patch-searching process, T~ the time taken in 
the target-catching process for catching M targets. A higher efficiency means a bet- 
ter  searching behavior for the searcher. We shall investigate the optimal strategy to 
realize the highest efficiency f o r a  fixed patch's quality (distances between nearest- 
neighbor patches and between nearest-neighbor targets). As mentioned above, since 
a functional relation between the target density in the patch and the patch size will 
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be hypothesized, the efficiencies of searching a patch and of catching targets in a 
patch are not independent. In some previous analytical models, it seems that  there 
was little consideration on a relation between the easinesses of finding a patch and 
of catching a target  within a patch, that  is, on a functional relation between Ti and 
T2. For example, the t ime T1 was assumed to be independent of 7"2 and was aver- 
aged with respect to a stochastic ensemble (Iwasa et al. [5]). Taking such a relation 
into consideration, others tried to discuss a relation between the prey distribution 
and the predator 's  searching strategy (e.g., Cain [1]), though their models were not 
analytically tractable but computer-simulated. 

We shall not make any assumption on the size of the searcher, though it may 
be possible to introduce such a searching capacity like the disc model (Koopman 
[9], Paloheimo [13], [14], Royama [15], Nackman [12]). Searching is assumed to be 
independent of the searcher's size and only depending on its searching capacity (for 
example, the sensibility of sensillum). 
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Scheme of Model 1. Model consists of a patch-seaxching process and 
a taxget-catching process. These processes ate modeled with two in- 
dependent Wiener processes of the infinitesimal vaxianee ~~ and cr~ 
respectively. For a more detailed explanation, see the text. 

3. M o d e l  1 

Model 1 is considered on a one-dimensional space R 1 (Fig. 1). In each of 
two processes, the searcher is assumed to be a point moving continuously on R 1 
as a Wiener process, that  is a s a  Brownian motion (about which, for example, 
see Cox and Miller [3]). Moreover, we shall assume that  there is no drift, which 
means that  the searcher mores completely at random without any biased direction. 
Wiener process may be a zero-th approximation of the real movement.  As shown 
in Fig. 1, the patch-searching process is terminated when the searcher encounters 
a point on Ii. 1. On the same moment,  the searcher finds a target  within a patch. 
On the other hand, the target-catching process continues from this moment  until 
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the searcher catches targets whose number is given a s a  searcher's strategy, say M. 
This assumption means that the searcher takes a "fixed-number" strategy. We shall 
see that the efficiency E is a function of M and show that  there can ex i s t a  unique 
M, say M*, which realizes the highest mean efficiency for a fixed patch's quality. 
The searcher's strategy is identiŸ with the number M of caught targets. And the 
searcher is assumed to take always the optimal value M = M* for any fixed AS 
and AL. 

We shall not appeal to the infinitesimal variance of Wiener process as the 
searcher's strategy. Trivially, in our model used Wiener process, a larger varianee 
always results in a shorter mean first-passage-time, and consequently in a higher 
efficiency. But, naturally since the searching velocity cannot become intinitely large, 
the variance is assumed to be a finite constant which simply expresses a character- 
istic of searcher's random motion. Ir is implicitly assumed that  the variance for the 
patch-searching process is greater than that  for the target-catching process, because 
the patch size is in general relatively smaU compared to the space scale with which 
patches are dist¡  

Patch-Searching Process: For this process, we shall assume the Wiener process 
with infinitesimal variance al 2. The searcher is assumed to begin its search at the 
origin on R 1 (Fig. 1). Two points are set at z = - S  and x = S as nearest-neighbor 
two patches. Thus, AS = 2S. It may seem to be more natural to consider that 
the starting point is randomly distributed out of a patch. But the starting point is 
not important to discuss the searching efficiency in our foUowing argument. Indeed, 
even if the starting point was taken into consideration, it would contribute only a s a  
constant which does not affect our arguments. Moreover, supposed that the starting 
point is uniformly distributed (this is a natural assumption and the searcher does 
not know the position of the patches at all), the mean starting point is located at 
the center between the two patches. 

The moment generating function (m.g.f.) of T1 is given by that  of the first- 
passage-time with symmetric absorbing boundaries (L.M. Ricciardi, private com- 
munication): 

(1.1) G~ = cosech L ~i v 2j" 

From this m.g.f., we can obtain the mean time (TI): 

[ ~  : (~s] 2 
(1.2) (T1}= - OA Jx=0 \ 2 ~ 1 /  " 

Target-Catching Process: The searcher is assumed to cateh one target at Tz = 
0, that is, at the moment when the searcher begins the target-catching process. 
The searcher searches the next neighbor target by the Wiener process with ah 
infinitesimal variance az 2 which is less than al  z. The caught target is assumed to 
be removed. Thus, aSter repeatedly targets are caught, there wiU be a wide region 
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with no target (see Fig. 1). We do not necessarily consider this removal as target's 
absolute disappearance, instead can consider it as its quality change to become 
useless for the searching searcher so that,  for example, the target may be regarded 
�91 the host undergone the polyparasitism. In this case, the removed target for a 
searcher is the existing and useful target for another. 

Since the searcher undergoes the Wiener process in this region, the mean period 
(ti) for catching the ( j + l ) - t h  target after the j - th  is shorter than (ti+l) for catching 
the (j + 2)-th after the (j + 1)-th. The m.g.f, of period ti for catching the (j + 1)-th 
target after the j - th  one is given by that  of the first-passage-time with absorbing 
boundaries at z = AL and z = j A L  (L.M. Ricciardi, private communication): 

(1.3) g~,s = 
sinh [(j + 1 ) ~ ]  

Then, the mean time ( t i )  is given by: 

(1.4) (ti) = ----~-JA=0 = j  \ a2 / " 

Lastly, we can find the mean time (T2) to catch M targets: 

(1.5) <T2> = t i = ~.= (ti> = ~ \ a2 / 

Here note that ti and tk (j # k) are independent to bring the above second equality. 

Ef f ic iency:  Making use of the above results, we can find the mean efficiency: 

M M 
(1.6) (E>M-- (TI)+(T2>-- 1(z~S~2+~(-~'2)4- \ , , i] I Z~L 2M(M_I) 

The sub-index M indicates that the searcher takes a strategy with the behavior- 
switching number M. 

Analysis: Calculating O(E>M/aM, we find that there is a tmique M*, which 
maximizes the mean ef¡ 

1 ASa2 
(1.7) M* - 

~ L  a l  

Note that  M* is a real number, whereas the searcher can take only a positive integer 
number as the behavior-switching number. If this M ~ is less than or equal to 1, the 
available optimal behavior-switching number of the searcher is obviously 1. Further, 
even when 1 < M* < 2, the searcher must take the behavior-switching number 1 if 
the efficiency for M = 1 is higher than that  for M = 2 (i.e., (E>2 < (E>I). By this 
argument, we prove the following lemma: 
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LEMMA 1.1. Ir 

1 a2 A L  
(1.8) 2 ~1 < z~S' 

then, the searcher's optimal behavior-switching number is 1 ( that is, the searcher's 
optimal behavior is not to use any two-mode searching but to search with a simple 
mode). 

(1.8) means also that  M* < v@ Unless (1.8) is satisfied, a two-mode searching 
can realize the highest mean efficiency with an optimal behavior-switching number, 
say Mopt, which is a unique positive integer [M*] or [M*] + 1. Here [M*] means 
the largest integer less than or equal to M*. As the qualitative result is the same, 
for mathemat ical  convenience we shall hereafter focus on the case when M = M* 
instead of M = Mopt. When M = M*, the efficiency is given as: 

(1.9) (E)M. = v/2 AL A S  1 - -  . 

(~2 (~2  
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Coevolutionary game between the searcher and the counter-behaving 
target: a) b = 0; b) b > 0. The game reaches its equilibrium at a 
point indicated a s a  circle in the figure. Arrows show the direction of 
strategy chaage of target. In case of the cooperative-behaving target, 
the direction is opposite. The target distribution is restricted on a 
line. Curves respectively correspond to different seaxching efliciencies 
depending on the searcher's behavior-switching number. Upper curve 
has a lower ei¡ In (b), shown is the case when the effect of 
target size changes the equilibrium differently from that in (a). 

Note that ,  as shown in Fig. 1, the target-catching process is assumed to s tar t  
from a point middle in a patch. If  M* is greater than the number  of targets in a 
patch N,  our previous results are not applicable. Indeed, ir N _ M*, the searcher 
certainly goes out of the patch in the target-catching process, when one of nearest- 
neighbor targets is located with a distance more than ZIS. Taking account of such 
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a situation is mathematically very complicated. Our above calculation about the 
target-catching process is obviously valid only when M* < N. Further, even when 
M* < N, if the searcher catches the target at the edge of patch during the target- 
catching process, from that moment our calculation for the target-catching process 
is not applicable. Thus, here we can reliably consider only the case when the number 
of targets in a patch is so large that  M* < N and the searcher cannot reach the 
edge of a patch before catching M* targets. 

i) b = 0: At first, we consider the case when the target size is negligible, that is, 
there is no target size effect. In this case the lower bound for AL is zero. Fig. 2(a) 
shows the behavior of (1.9) for some values of <E>M. and that  of (I-I) for a set of 
parameters al ,  f2, N,  and A. The target must select its distribution pattern only 
on a unique line appeared in Fig. 2(a). 

In case of the counter-behaving target, the coevolutionary game leads to a 
tangential point between (H) and (1.9) as shown in Fig. 2(a), where the behavior 
confliction between the searcher and the taxget is balanced. By means of (1.9), it 
is easily seen that  such a tangential point always exists and is unique. The point 
gives the following strategic goal: 

v/~ + Nf2/fl  
(1.10) AS* = A.  

v~ + 2Nf2/f~ 

(1.11) AL* = A .  a2 / f ,  
v~ + 2Nf2/fl 

(1.12) M* = v/2 + f 2 N .  
f i l  

As obviously seen that v/2 > M*, we obtain the following result, applying Lemma 
1.1 to the above coevolutionary goal ponit: 

RESU[.T 1.1. At the coevolutionary goal in case o] the counter-behaving target 
with negligible body size, two-mode searching behavior is always adopted versus the 
targets' patchy distribution. 

On the other hand, in case of the cooperative-behaving target, the following 
result can be easily obtained by inverting those arrows in Fig. 2(a) and using Lemma 
1.h 

LEMMA 1.2. When the target size is negligible in case of the cooperative- 
behaving target, ir 

AL* < ALo, 

then the coevolutionary goal consists of the target's uniform distribution in space 
and the searcher's simple mode searching. Otherwise, the goal consists o… the target 
distribution as patchy as possible and the searcher's two mode searching. 

AL0 denotes a selected distance between nearest-neighbor targets at the initial of 
game. AL* is given by (1.11). We obtain Fig. 4. From the figure, further we can see 
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that ,  if A <_ 4ALo, then the coevolutionary goal always consists of a simple mode 
searching versus the targets '  uniform distribution. This is because, if A _< 4AL0, 
the region for the two-mode searching is contained in the region where N < 2 in 
Fig. 4. Any two-mode searching with N < 2 is always nonsense. We obtain the 
following results from Fig. 4: 

o_~1 o__! 
(~2 02 

lA "/'2- b 
simple mode 

Utwo.mode ~ flit~ 
dense patch 

N 
0 I~- 0 

2 ~Lo 

Fig. 3. Coevolutionary goal when b = Fig. 4. 
0 in case of the cooperative- 
behaving target. Even when 
b > 0, if v/2b _< zŸ then the 
result is the same. In case of 
"dense patch", every nearest- 
neighbor targets touch each 
other in the patch. 

simple mode 

p~ch ~ 

N 

Coevolutionary goal when b > 
0 in case of the eounter- 
behaving taxget. 

RESULT 1.2. At the coevolutionary goal in case of the cooperative-behaving 
target with negligible body size, i… the target density is sufficiently low in the patch 
at the initial of coevolutionary game, a simple mode searching behavior is adopted 
versus the targets' uniform distribution. 

RESULT 1.3. At the coevolutionary goal in case of the cooperative-behaving 
target with negligible body dize, in order that a two-mode searching behavior is 
adaptable versus the targets' patchy distribution, the target density rnust be suffi- 
ciently high in the patch, and the patch size must be sufficiently small. The adopted 
two-mode searching has a relatively moderate change of behavior. 

Here, for the searcher's behavior, we used the word "moderate" to mean a smaU 
difference between 0.1 and 0"2 under the condition that a2 < 0.1. 

ii) b > 0: The patch size cannot become less than bN. When the patch size is 
bN, every nearest-neighbor targets touch each other with no gap. This restriction 
of patch size is likely to change the coevolutionary goal shown by (1.10), (1.11) and 
(1.12). As easily seen from Fig. 2(b), if and only if b < AL*, those results are valid 
even when b > 0 in case of the counter-behaving target: 
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LEMMA 1.3. When the target size is not negligible in case of the counter- 
behaving target, ir 

A 1 0 1 
(1.13) N < 

- 2b x/2 a2 ' 

the coevolutionary goal is given by (1.10), (1.11) and (1.12). 

As for the case of the cooperative-behaving target, we obtain: 

LEMMA 1.4. When the target size is not negligible and the condition (1.13) is 
satisfied in case of the cooperative-behaving taryet, ir 

AL* < ALo, 

then the coevolutionary goal consists of the target's uniform distribution in space 
and the searcher's simple mode searching. Otherwise the target distribution is as 
patchy as possible, so that every nearest-neighbor targets touch each other. Then 
the searcher's behavior is: 

a simple mode searching when 

a two-mode searching when 

vf2~-~2 + 2 N  _< ~- < 2 ~ + N ;  

2a--1- + N a 2  < ~-, 

where we used Lemma 1.1 and the assumption (H). AL* is given by (1.11). 

Next, we consider the case when the coevolutionary goal in case of the counter- 
behaving target is different from the previous result due to the target size effect. 
In Fig. 2(b), we show such a situation. If (1.13) is unsatisfied, the coevolutionary 
goal expressed by (1.10), (1.11), and (1.12) is not attainable. The substituted goal 
is expressed as follows: 

(1.14) AS* = A - bN 

(1.15) AL* = b 

(1.16) M * - v ~ l  a2 ( A - N )  " a l  

By virtue of Lemma 1.1, in the same way as before, we obtain Fig. 4 and Fig. 5 
via Lemmas 1.3 and 1.4. From Fig. 4, we can easily find that,  when 0.25 < b/A, a 
simple mode searching is always adopted versus the targets' patchy distribution: 

RESULT 1.4. Even when the target size is not negligible in case of the counter- 
behaving target, if ir is sufficiently large compared to the available total area per 
patch, the coevolutionary goal consists of a simple mode searching behavior versus 
the targets ' patchy distribution. 

As for the adaptability of two-mode searching, we obtain: 
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Coevolutionary goal when 0 < b <_ z• < ~/2b in case of the 
cooperative-behaving target. When v~b < AL0, the result is the 
same as Fig. 3. 
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Scheme of Model 2. The patch-searching process is terminated when 
the seareher enters a patch region on S I. The target-eatehing proeess 
is objected to a fixed-giving up step number strategy with he. For a 
more detaUed explanation, see the text. 
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RESULT 1.5. At the coevolutionary goal in case of the counter-behavin9 tar- 
get with a non-ne91i9ible body size, in order that a two-mode searchin9 behavior is 
adaptable versus the tan3ets' patchy distribution, the ta¡ size must be sufficiently 
small compared to the available total atea per patch and each patch must contain 
a sufficiently small number of tan3ets. The adopted two-mode searching has a rel- 
atively moderate change o/ behavior. An outstanding behavior change o/two-mode 
searching is adaptable only when the tan2et size is sufficiently small. 

Next,  we see Fig. 5. It  shows only the  case when ALo < v/2b. If  .r <_ ALo, we 
obta in  Fig. 3 again. From Fig. 3 aud  Fig. 5, we obtain:  

RES•LT 1.6. At the coevolutiona~ 9oal in case of the cooperative-behavin 9 
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target, even when the target size is not negligible, i] it is su1~ciently small, the 
size ef_fect is weak. The Iarger is the target size, the less adaptable is the two-mode 
searching behavior. 

As for the adaptable  two-mode searching behavior in this case, we obtain the same 
result as Result 1.3. 

As a whole, as for the target distribution at the coevolutionary goal, we can 
obtain: 

RmSUCT 1.7. At the coevolutionary goal, the counter-behaving target takes a 
patchy distribution, while the cooperative-behaving target is very likely to take a 
uni… distribution. 

4. M o d e l  2 

Model 2 is considered on S 1, that  is, on a circle (Fig. 6). We assume that  the 
searcher cannot distinguish the visited patch from the unvisited one. Moreover, as 
the found target  is not assumed to be removed in Model 2, it is assumed that  the 
searcher cannot distinguish the found target  from the encountered one. Thus, the 
modelling space S 1 for Model 2 can be regarded a s a  mathemat ica l  translation of 
the space R 1 where patches are uniformly distributed. In each of two processes, 
following a discrete time, the searcher discretely changes its site on 81 at each 
step. The searcher's site is selected at each step on S 1 at random independently 
of the previous site. The process corresponds to a Bernoulli process. The searcher 
is assumed to take a "fixed-giving up t ime (i.e., number of steps)" strategy. Note 
that ,  in Model 2, the diŸ between searcher's two behaviors is not practically 
evident. Indeed, as we shaU see, these two processes are mathematical ly  identical. 
Therefore, we can say that  Model 2 is simply a combination of two processes with a 
mathemat ical  connecting rule, while such model may be still intuitively meaningful 
as a metaphor.  We shall see that  Model 2 leads us to a particular result different 
from those for Model 1. 

Patch-Searching Process: We consider this process on a circle of length A. On 
this space, there is a connected region (an arc) of length l (< A), which represents 
the zone of patch. This situation corresponds to that  when the patch (segment) 
of length I is uniformly distributed on R 1 with distance AS = A - 1 between the 
nearest-neighbor patches. Note that ,  as in the case of Model 1, A can be regarded 
a s a  share of space per  a patch. We shall use the following notations for Model 2: 

p~n: probabil i ty of the searcher's entrance by one step into the patch. From 
the assumption for the process, we easily find P~" = ( l /A)(bN/ l )  

(ni): expected number  of steps for the searcher to enter the patch, 
where b can be regarded as the target  size or the necessary space share per target 
as in Model 1, while it can be regarded as the searcher's searching capacity. It  is 
taken into consideration that  the searcher misses to find the patch even ir it enters 
the zone of patch because the searcher arrives at a point in the gap between targets 
and cannot encounter the target  in the zone. In mathemat ica l  terms, we introduce 
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the missing probability by assuming P~" = (l/A)(bN/l) instead of P~" = I/A, then 
the missing probability is given by (l - bN)/l. With these notations, the following 
is easily found: 

oo 

(2 .1)  (ni>= E k ' P i n ( 1 - P i n )  k - '=  ~n" 
k = l  

Target-Catching Process: We shall use the foUowing notations: 
P~": probability of the searcher's catching the target in one step. From the 

assumption for the process, this probability is given by p~n = b/AL = 
bN/l 

in . P~,k. probability of the searcher's catching the next target by k steps after 
catching a target 

P)~- probability that after catching a target the searcher's catches the next 2,C" 

target by a number of steps less than or equal to no 
(n2): expected total number of steps in the target-catching process before the 

searcher gives it up 
(M): expected number of targets caught in the target-catching process before 

the searcher gives it up. 
Note that P~~ < Pi n because I < A. With these notations, the following relations 
ate found: 

(2.2) P~,~k = p~n. (1 - p~n)~-I 

no 

(2.3) P~,~ = y]~ P~,~ = 1 - ( 1  - p~n),~c 
k = l  

(2.4) (M) = ~ k - ( p ~ , ~ ) k - s .  (1 - P~,~) - i _ p )n .  
/~----1 2 ,c  

Since the process is Markovian, we get: 

k j=l (2.5) M----1 k i : l  

1 1 
= p~o ( 1 _  pl~)~o +~o. 

The last equality follows by a careful but fundamental caleulation of summation 
and by the Markovian nature of process. 

Efficiency: With the above results, we shall discuss the efficiency given by: 

(2.6) <E) - (,~,> + <n,> 

Analysis: Calculating O(E)/Onc, we obtain the following: 
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Fig. 7. 
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Fig. 8. 
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(E) ln~=n~ < (E)lsimple region in the p~~n p~. space. The considered 
region has the boundary composed of a curve and the line p~n =/~~a. 
The curved boundary is given by (2.8). The considered region shrinks 
as no increases in (2.8), and vanishes at the limit no ~ +co. The 
shadowed region is nonsense because A < I. 
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LEMMA 2.1. _Por no > O, the efficiency (E) is a monotonically increasing 
… of no. 

Thus, considering only the two-mode searching, the searcher tends to take the larger 
no. Moreover we find that the efficiency (E) is a monotonically increasing function 
of p~n and of P~n for nr _> 1. This is natural  because both probabilities p1n and 
p~n express the easiness of searr 

We remark that  it is beneficial for the searcher to take a simple mode searching, 
only when the efficiency with a simple mode searching (i.e., he = 0) is larger than 
that with the two-mode searching for nr _> 1. Since the simple mode searching of 
this model is a simple BernouUi process, the efficiency is easily obtained as follows: 

bN in 
(2.7) (E)]simple - A - Pi �9 

The condition (E)] ,~=,  c < (E)],imple can be obtained from (2.6) and (2.7) (see Fig. 
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7): 

(2.8) 1 -  (1 -  p~=)no < P~"" 
no (1 - P~" ) "~  + l / e d  o 

Now we assume a fixed finite available space A, which brings the constraint 
for the variable p~n = bN/A: For fixed b and N, p~n = const. From (2.7), this 
means that  the efficiency by the simple mode searching is constant. In Fig. 8, as no 
increases for a fixed Pin, the efficiency monotonicaUy asymptoticaUy reaches P~n 
from below. With respect to the value P~~ for a fixed P~*, the lowest efficiency is 
realized when P~" = P~'~, that  is, 1 = A: 
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Some sehematic routes of eoevolutionary game in Model 2. The eo- 
evolutionary goal for the searcher is: a) two-mode searching; b) sim- 
ple mode searching. The same symbol in the figure is corresponding 
to the same patch size. Vertical black arrows show the efliciency re- 
duction due to a strategic expansion of target's patch size. Other 
black arrows show the efliciency increase due to a strategic incre- 
ment of searcher's giving up step number. Vertical white arrows in 
(b) show the efliciency increase due r o a  strategic adaptation of sim- 
ple mode seaxching, �91 giving u p a  two-mode searching. 

LEMMA 2.2. For fized b a n d  N,  the lowest searching efficiency is realized 
when l = A ( a uniform distribution of targets in space). 

Further, Fig: 8 shows us that:  
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LEMMA 2.3. For any uniform distribution o… targets, the efficiency is higher 
when no = O, that is, when the searcher selects a simple mode searching, instead of 
any two-mode searching. 

As far as the searcher takes a two-mode searching, the counter-behaving target tends 
to increase its patch size. Ir the target continues this tendency, its distribution be- 
comes uniform in space. Then a simple mode searching becomes the best strategy 
of the searcher's searching way. By this argument in case of the counter-behaving 
target, the coevolutionary goal is a simple mode searching versus a uniform distri- 
bution. Contrarily ir is possible that the searcher takes a simple mode searching for 
a patchy distribution of targets at a moment in this coevolutionary game because, 
as the patch size is increasing, the searching ei¡ can become higher for the 
simple mode searching than for a chosen two-mode searching (see Fig. 9b). However, 
note that the efficiency is independent of the patch size I when the searcher takes 
a simple mode searching. Thus, once the searcher takes a simple mode searching, 
the target's effort to reduce the efficiency by changing the patch size becomes null. 
Instead, reducing the total number N of targets in a patch becomes effective for 
this purpose. In such a case, the total number N is likely to become 1 at last. This 
means the targets' uniform distribution, too. 

RESULT 2.1. At the coevolutionary goal in case of the counter-behaving target, 
the searcher takes a simple mode searching versus the targets' uniform distribution. 

As for the case of cooperative-behaving target, Lemma 2.2 shows us that the 
target tends to be distributed as patchily as possible. Then as P~~ becomes larger 
than p~n, the searcher takes a two-mode searching from Lemma 2.1. Consequently, 

RESULT 2.2. At the coevolutionary goal in case of the cooperative-behaving 
target, a two-mode searching behavior is adaptable versus the target distribution as 
patchy as possible. 

5. Discussion 

Model h It is shown that the counter-behaving target, which tends to reduce the 
seaxching efficiency, always adopts a patchy distribution at the coevolutionary goal. 
In case of the cooperative-behaving target, which tends to increase the seaxching 
et¡ a targets' uniform distribution is very likely to be adopted versus a simple 
mode searching behavior of searcher. Seaxcher's two-mode searching behavior is 
always adopted against the counter-behaving target, while it is adaptable against 
the cooperative-behaving target only when the target size and the patch size are 
sufficiently smaU and the target density is sui¡ high in the patch. Sui¡ 
large target size leads the searcher's behavior to a simple mode searching. 

As mentioned by Knoppien and Reddingius [8], the searcher's movement on 
R 1 may be regarded as an approximated projection of the movement in the higher 
dimensional space, that is in the real space. As for the start of target-catching 
process from a point middle in a patch, we can imagine as foUows: In the patch- 
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searching process, the searcher searches a patch with flying. After finding a patch 
located two-dimensionally on a place, the searcher reaches it at a random middle 
point and starts to walk on the place in order to catch targets. Indeed, it is very 
likely that the patch is of 2-dimension and the searcher's searching undergoes in the 
3-dimensional space. Some may feel that  the target-catching process should start 
from a target located at the edge of patch. This is another possible assumption on 
the model. For example, as discussed by Hamilton [4], within a group of preys, the 
individuals in peripheral tend to be attacked more frequently by predators than 
those in the middle of the group. Note that,  in this case, the patch distribution and 
the searcher's behavior must be of the same dimension. Also in this case, we can 
derive the efficiency corresponding to (1.6), substituting the following for (T2): 

(T2) = ~ \ ~~ / ~ - / .  

This is a little more complex than (1.5) and brings fastidious features of mean 
searching efficiency. Thus, here we put aside this case as an open problem and limit 
our argument on Model 1, avoiding ah unnecessarily too comptex argument, while 
it may be worth being analyzed. 

Model 2: The coevolutionary goal consists of a simple mode searching behavior 
and the counter-behaving targets' uniform distribution, or of a two-mode searching 
behavior and the cooperative-behaving targets'  patchy distribution. 

Let us incidentally consider the case when the patch size has an upper bound, 
say lm~x (< A), due to some biological reasons: for example, since a large patch 
size means a low target's density in a patch, a too large patch size may lead to 
a too small mating ei¡ among targets. Since the counter-behaving target's 
tendency is to expand the patch size, the patch size tends to reach lm~x. As far 
as lm~x < A, the searching efficiency f o r a  two-mode searching with a sufficiently 
large no becomes higher than that  for the simple mode searching (see Fig. 8). Thus, 
the searcher can make the searching ei¡ as high as possible by a two-mode 
searching. At the coevolutionary goal, a two-mode searching must be chosen for 
the patch size l~~x. On the other hand, this upper bound has no effect on the 
cooperative-behaving target. 

Next, let us consider another possibility that a two-mode searching may be 
selected by the searcher at the consequent situation in the coevolutionary game 
against the counter-behaving target. As far as the chosen two-mode searching has 
a higher searching ei¡ than that  gained by the simple mode searching, the 
searcher's behavior-switching number no tends to increase (Lemma 2.1). If the 
behavior-switching number becomes so large, is it always easy for the searcher 
to take a simple mode searching even at the moment when the searching efliciency 
becomes higher fo ra  simple mode searching than for the previous two-mode search- 
ing? In other words, can the searcher with a large behavior-switching number be 
afforded to take a jumping change of strategy such a s a  large no ~ no = 0? 
Provided that  the searcher's strategy change is due to the natural selection, a mu- 
tant  with a simple mode searching must appear among searchers with a two-mode 
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searching with a large behavior-switching number. Such a mutat ion may cause a 
too large cost, that  is, may have a very small probability. In this sense, it seems 
to be dii¡ for the searcher to come to take a simple mode searching after it 
has adopted a two-mode searching with a large behavior-switching number. Fur- 
ther, as the behavior-switching number becomes larger and the patch size becomes 
larger, the differenee between the efficiency of two-mode searching and that of sim- 
ple mode searching becomes smaller (see Fig. 8). If the difference is so small that  
the cost of strategy change such as a large no --* no = 0 is larger than  the gain by 
the change, the searcher is likely not to change its two-mode searehing to a simple 
mode searching. By these arguments, we may say that  the adaptability of a simple 
mode searching depends on the moment when it is adopted by the searcher in the 
coevolutionary game against the counter-behaving target. Even ir a simple mode 
searching can realize a higher searching ei¡ the searcher is likely to take a 
two-mode searching. In this case, the two-mode searching may be regarded as an 
attainable final strategy, i.e., may become a coevolutionary goal for the searcher. 

By Lemma 2.1, once the searcher takes a two-mode searching for a uniform 
distribution of counter-behaving targets, the behavior-switching step number no 
must tend to become monotonicaUy large (see Fig. 9a). In a mathematical sense, 
it in¡ increases, that  is, no -* +oo. Note that,  in such a limiting case, the 
searcher's behavior is not any two-mode searching anymore but  can be regarded a s a  
simple mode searching. This is because infinite n~ means that  the searcher in¡ 
continues the target-searching process once it enters the process. Thus, in this case, 
the searcher comes to take a simple mode searching at any time, irrespectively 
of the previous patch-searching process. Indeed, as shown in Fig. 8, in the limit 
nc --* +oo, the searching ei¡ asymptoticaUy reaches that  f o r a  simple mode 
searching. Therefore, it is meaningless to consider the case of unrealistically large 
n~. Thus, though there is no constraint on increasing n~ in Model 2, there might be 
a trade-off relation which defines ah upper bound for increasing n~. For example, 
fo ra  prey-predator relation, sinee the caught prey must be removed from the patch, 
the patch quality decreases as the target-catching process proceeds. In this case, a 
too large no may be unfavorable for the searcher, because a large n~ means that  the 
searcher must continue the target-catching proeess even after the patch quality has 
decreased so much that  also the gain in the process has become very low. As for a 
host-parasite relation, a large nc leads to a strong possibility of polyparasitism which 
may reduce the ¡ of each juvenile laid down in the host. A s a  consequence, 
putting together biological concepts mentioned in the above arguments, we can 
state again that  a two-mode searching may be adaptable also in Model 2. 

Although Model 2 was described as a pair of one-dimensional processes, the 
results can be translated as those f o r a  higher-dimensional model. Indeed, as lar as 
only the expected values are considered in the an�91 the contents of calculation 
are the same, independently of the spatial dimension. For example, assuming that  
the expected arca size of a patch is I and the expected arca shared per patch is 
A in 2-dimensional space, we can find that  the expected number of steps for the 
searcher to e n t e r a  patch is the same with (2.1). As for the second searching mode, 
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so it is. 
Particularly we remark the opposite results between two models: Coevolu- 

tionary goals have the opposite tendencies. Briefly, this consequence is due to the 
difference of modeUing structures. In Model 2, the expected number of steps for 
the searcher to en t e r a  patch is independent of the patch size, so that the patch- 
searching process is in fact independent of the patch size. This is an important 
contrast between two models. Further, as far as non succeeding to catch a target, 
the distance from the patch or the target is nonsense for the searcher in Model 2, 
while ir directly contributes to the probability to find the patch of the target in 
Model 1. The neglection of searcher's searching spatial configuration can be consid- 
ered as the reason of the above-mentioned contrast. Indeed, if the searcher's present 
site has a probabilistic relation with the previous one in Model 2, the model shows 
very interesting features: the existence of optimal patch size to reduce the searching 
efficiency as low as possible in case of the counter-behaving target; the adaptability 
of two-mode searching versus such a patchy distribution. As for this modified and 
more complex (thus, partially computer-aided) model, we will report in another 
article. At last, we can say that the advantage of patchy distribution to reduce 
the searching efliciency, which has been discussed by Caln [1] and other computer- 
simulated works, may be really the matter of spatiaUy heterogeneous structures. 

We have assumed that  the target distribution strategy is restricted by (H), 
which is a linear relation between the patch size and the distance between nearest- 
neighbor patches. However, this linearity is of course not necessary. Indeed, ir may 
be possible to consider another non-linear type of relation between them. Then, 
results change quantitatively, but it can still be shown by a similar argument that  
a two-mode searching is adaptable a s a  coevolutionary goal. 

In our models, the inside and the outside of a patch are assumed to be rigorously 
distinguished. This assumption has been explicitly or implicitly introduced also in 
the previous models, in which the possibility that the searcher may go out of the 
patch in the target-catching process has been systematically neglected. In some 
cases, such a possibility may have a significant effect on the considered searching 
efficiency. Knoppien and Reddingius [8] focused on this point and analyzed a model 
which includes an ambiguous patch boundary, that  is a boundary such that the 
inside and the outside of a patch are not necessarily distinguished. In some cases, 
such a model may be more realistic with respect to the concept "patch". But in 
other cases, it seems that  a model with a clear boundary of patch may be adaptable: 
For example, in the case of the relation between a leaf-miner and its parasitoid 
(Kato [6], [7]), a leaf can be regarded a s a  patch. Further, also in the case of the 
relation between a crowd of eggs and the predator, the boundary of egg-patch may 
be easily distinguished since eggs ate gregariously laid, for example, as those jellied 
by a frog, o r a s  those arranged densely by ah insect. While there is a variety of 
biological definitions of the concept "patch" (Wiens [18]), it may be necessary to 
make clear which factor of real nature is neglected or emphasized by the introduced 
mathematical patch structure. 

Undoubtedly our models are too simple to be compared directly with real 
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phenomena. But, as f�91 as similar mathematical models �91 concerned, any more 

realistic assumption has the drawback of leading to a much more dil¡ mathe- 

matical analysis. It appe�91 that any more realistic model is suitable for computer 

simulation rather than for analytical investigation. We believe that, to consider 

the real phenomena or the sophisticated models, it should be worth while knowing 

what results �91 brought from those simplified models in which only a few factors �91 

picked up and others �91 neglected or averaged up into p�91 It is expected 

that, as metaphors, our models wiU give some intuitive contributions to consider 

the real phenomena and to compose and analyze other sophisticated models. 
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