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Along the lines of a previous paper (Seno [2]), making use of an intuitive model, we con-
sider mathematically the relation between the efficiency of searcher’s two-mode searching
behavior and the target’s patchy distribution, and discuss the strategic adaptability of
two-mode searching. In this paper, the model is constructed by a time-discrete stochastic
process on S!, that is, on a circle. It can be regarded as a modification of Model 2 ana-
lyzed in Seno [2]. Differently from Model 2, the searcher’s present location is assumed to
be influenced by the past passage configuration. This modification yields some particular
results for the present model.

Also in the present model, if the patch size becomes sufficiently small, a two-mode
searching behavior is strategically adaptable for the searcher. In this model, two-mode
searching behavior has high strategic adaptability. Moreover, two-mode searching with an
outstanding behavior change is strategically rather adaptable. As for the target’s distri-
bution, it appears that a particular patchy distribution is likely to be adopted, depending
on the searcher’s searching strategy. This result obviously indicates that the target’s dis-
tribution may be adopted as its evolutionary strategy against the searcher, like a relation
between a patchy distributed prey and its predator.
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1. Introduction

In the previous paper (Seno [2]), making use of two simple mathematical mod-
els, we considered a coevolutionary game between the searcher’s searching behavior
and the target’s patchy distribution, and demonstrated a strategic adaptability of
two-mode searching (i.e., area-concentrated search) depending on the target’s dis-
tribution strategy. In this paper, we shall consider a coevolutionary game again
with an intuitive model constructed by a time-discrete stochastic process on st
that is, on a circle. The model can be regarded as a modification of Model 2 of
the quoted paper. The searcher’s present location is assumed to be influenced by
the past passage configuration, which is an essentially different assumption from
that for Model 2 in the previous paper. We shall see that this assumption carries
such a mathematical complexity that the model is not easily analytically tractable
anymore. We shall apply the Monte Carlo method to obtain some numerical results,
and derive some significative figures to illustrate our argument on the coevolution-
ary game. The results for the present model show some particular features different
from those of Model 2.
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2. Model and Analysis

The model is considered on S', that is, on a circle (Fig. 1). The modelling
space S' can be regarded as a mathematical translation of the space R' where
patches are all identical and regularly distributed. The searcher is assumed not to
be able to distinguish a visited patch from an unvisited one. In each patch, the
targets are assumed to be regularly distributed. Moreover, as the found target is
not removed, it is assumed that the searcher cannot distinguish the found target
from the encountered one.

Fig. 1. Scheme of model. The patch-searching process is terminated when
the searcher enters the region I on S;. The target-catching process
is subjected to a fixed-giving up step number strategy with n.. For
a more detailed explanation, see the text.

For a fixed number of targets within a patch, the higher density of targets will
be assumed to imply the smaller patch size. The efficiency of searching a patch and
that of catching targets in a patch are not independent.

Our model consists of two processes on S': i) patch-searching process; ii) target-
catching process. In each of these processes, the searcher is viewed as a point moving
discretely with a stochastic process. Following a discrete time scale, the searcher
discretely changes its site on S! by each step. The distance between a site and the
following site is assumed to be an exponential random variable. The direction of
each step is selected at random, that is, with the probability 1/2 the searcher jumps
to the next site in the clockwise or in the anticlockwise direction. The switching
rule between two processes is as follows (Fig. 1): The patch-searching process is
terminated when the searcher enters a region on S!. This is the moment when the
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searcher catches the first target. The target-catching process continues until the
number of steps between a catch and the next overcomes a critical number n..
This means that the searcher takes a “fixed-giving up time (i.e., number of steps)”
strategy (for example, see Iwasa et al. [1]).

The searching efficiency F is defined as follows:

M
T nitng’

where n; denotes the number of steps taken in the patch-searching process, n, that
taken in the target-catching process for catching M targets. We shall investigate the
optimal strategy to realize the highest efficiency for a fixed patch’s quality (distances
between nearest-neighbor patches and between nearest-neighbor targets).

As for the strategic tendency of targets’ distribution, we shall consider two
contrast types: “the counter-behaving target” and “the cooperative-behaving tar-
get”. The distribution is respectively directed to make the mean efficiency as low
as possible for the former and as high as possible for the latter.

Mathematical Statement

Patch-Searching Process: We consider this process on a circle of length A. On
this space, there is a connected region (an arc) of length I, which represents the
zone of patch. This corresponds to the situation in which the patch (segment) of
length [ is regularly distributed on (—o00, +00) of R! with distance A — I between
nearest-neighbor patches. At first, we must select the initial site zy of the searcher
out of the patch. It is assumed that the initial site is uniformly distributed out
of the patch. The next searcher’s step in subjected to the exponential distribution
with expected value A;, that is, with probability density function given by:

(1) h(de) = Texp <_§_)

For the patch-searching process, we shall use the following notations:
z€S;=[0,Al mod A

L zone of patch, S; DI=(A-1,4) mod 4
G: zone out of patch, S; DG =8; -I=[0,A~1]mod A
Pyin(g): probability of the searcher’s entrance by one step into the patch

from a point z out of the patch, independently of the point
reached in the patch

Py9(z — y): probability of the searcher’s one step from z to y out of the patch

Pr o (zp): probability of the searcher’s entrance by n steps into the patch
from the initial point zo out of the patch with a configuration
x = (29,%1,...,Zn-1) in G, independently of the point reached
in the patch

(nq): expected number of steps for the searcher to enter firstly the
patch, averaged with respect to the initial point and the config-
uration of searching.
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With these notations, the following two mathematical relations follow from the
Markov nature of the process:

(2) PT(z0) = ﬁ P{(x-1 = zx) Py (2n-1)
k=1

and

(3) (nl):ngxOdel/Gd:EZ--'./;;dxn—-ln'an(zO)-

By a cumbersome calculation based on the use of the probability density function
(1), we find the followings (Appendix):

iRy s 1 . 2z — A+1 A
(4) PP(z) = smh(ﬁ;) smh(—--————z)\1 ) sech(zl\l) ,

1 A -2z —y| A
g — = — - —
(5) Pz —y) o™ cosh< 7. ) sech(zAl) .

Then, through the relation (2), we obtain:

- () () ).

(6) 3
2z, 1 —A+1 3 A—2]3;k—a:k+1|
cosh( CTW ) H cosh( o .

k=0

Target-Catching Process: The searcher is assumed to catch the first target at
the moment when it begins the target-catching process. We shall assume that the
total number of targets is IV in each patch, and that the targets are regularly
distributed in it. Therefore, the following relation is assumed to hold:

) Nd=1,

where d is the distance between the nearest-neighbor targets. In addition, we shall
assume an effective distance r between the searcher and the target, within which
the searcher can find and catch the target. Thus, only if the searcher arrives at
a site whose distance from the target is less than r, it catches the target. For
mathematical simplicity, we shall ignore any handling time: In other words, the
searcher is assumed to catch the target at the moment when it reaches a site whose
distance from the target is less than r.

Following the above modelling assumptions, the searcher’s initial site in the
target-catching process is the center of target’s region which has length 2r (see
Fig. 1). Now we shall regard the center point of target’s region as the origin on
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S!. Further, after catching a target, the searcher is assumed to begin always its
next target-catching process from the center of target’s region. The searcher’s step
is subjected to the exponential distribution with expected value Az, that is, with
probability density function:

(8) fi(47) = - exp (—j‘—) |

As mentioned before, the searcher is assumed to take a fixed-giving up step strategy:
If the searcher fails to find any target after n. steps, the searcher gives up its target-
catching process then changes its behavior to the patch-searching process. In nature,
the searcher may stochastically go out of the patch, and the smaller the patch size
is, the larger such probability must be. This aspect shall be neglected in our model
for mathematical simplicity, though it is likely that it may be more or less critical
for our following argument.

Below we list up the notations for the target-catching process:

z€s;=[0,d mod d

i: target’s region, s; D i=1i; Ui =[0,r)U(d — r,a) mod d

g: region out of target,s; Dg=s; —i=[r,d —r] mod d

ne: fixed-giving up step, i.e., the behavior-switching step number in
the target-catching process

Py (2): probability of the searcher’s catching the target by one step from

a point z out of the target, independently of the point reached
in the target’s region

Ppout(z): probability of the searcher’s one step to a point 2z from the origin
that is the center of target’s region

P9(z — w): probability of the searcher’s one step from z to w out of the
target’s region

P, probability of the searcher’s catching the target by n steps with
a configuration z = (29,21,...,2n—1) in g

Pm gyt probability of the searcher’s catching a target after n steps, av-
eraged with respect to the configuration of searching

Peay: probability of the searcher’s catching a target by.less than n.
steps, averaged with respect to the configuration of searching

2°(s): probability of the searcher’s failure to catch any target after n.

steps, averaged with respect to the configuration of searching and
the point reached after n. steps

(na < n.):  expected number of steps for the searcher to catch another target
after catching one, averaged with respect to the configuration of
searching, conditional on the number of steps being equal to or
less than the fixed-giving up step number n.

(na): expected total number of steps in the target-catching process
before the searcher gives it up
(M): expected number of targets caught in the target-catching process

before the searcher gives it up.
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With these notations, the following relations are found (as for some non-trivial
relations, see Appendix):

n-—-1
(9) Py = P (z1) [[ P5(2k-1 = 2) Pa'™(2n1)
k=2
(10) Pn(z) = /dzl / de . ../dzn_lP"z
-4 -4 g
(11) Py = Py
n=1
(12) I°(zy =1~ Py
A Pn
(13) (na <y =3 2
Pc
n=1 (l)
(14) (M) = —
1 Pc(z)
(15) (na) = {{M) — 1}(nz < n) +n..

Making use of (8), we obtain (cf. Appendix):

in(,\ _ aN. (T 2z —d
(16) P, (z)_sech(zh)&nh()\z)cosh( N )

out _i _d__ 2z—d
(17) P, (z)-}‘zsech CTe cosh o )

In analogy with the result worked out for the patch-searching process, we also
obtain:

1 d- 2w — 2| d
1 g - — h PR A— — .
(18) Py9(z — w) g < ( 2 )sech(z}q)

Finally, we are led to the following expression:

1 " d " r d—221
pr, = —_ —_ i —
% 2(2}‘2) {SCCh(%\g)} smh(Az)cosh( T )x
(19) 2

d—22,, d—2|2x41 — 28]
h{ ———— _— .
cos ( 3" ) kI;Il cosh( 2
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Fig. 2. I-(E) relation. A3 = 0.1. a) N = 8; b) N = 15. Attached integer on
each curve indicates the giving up number n..

Efficiency: With the above results, we shall discuss the mean efficiency given
by:

_ (M)
(20) (B) = (n1) + (ny)”

We were unable to investigate this mean efficiency with any purely analytical way,
because of the difficulty to integrate (3) and (10). Thus, we have investigated it by
numerical calculations including numerical integrations. Practically we have used
the Monte Carlo method to calculate multidimensional integrals. On the grounds
of our numerical results, in the next section we shall discuss a strategic relation
between the searcher’s searching behavior and the target’s distribution.



512 H. SENO and A. BUONOCORE
Analysis

With the mathematical formulation obtained in the previous section, we can
find some characteristics of the efficiency (20) in some figures drawn by tiresome
numerical calculations. We shall select some parameters and give them fixed values:
A1 = 1.0, A—1 = 2.5, r = 0.0002. We shall focus on the patch size [, the total number
N of targets within a patch, the mean step length A, of searcher, and the giving
up step number n.. [ and N belong to the strategy of target’s distribution, and
A2 to that of searcher’s behavior. Note that, since our attention is on an “area-
concentrated search”, we shall consider only the case when Az < A;.

Figure 2 shows the relation among I, (E), and n.. Note that each curve has a
unique minimum efficiency point at [ = I*. (E) reaches 1 for a sufficiently small !
less than I*. For such an [, (n;) becomes very large because the patch size is so small
that it is very difficult for the searcher to find the patch. On the other hand, for a
fixed number of targets within a patch, a small patch size leads to a high density
of targets within the patch. This follows from the relation (7). Therefore, for a
sufficiently small / less than I*, (M) and (n2) become very large because the searcher
can easily find the target in the patch due to its high density and should continue
the target-catching process for a very long period. Indeed, when the patch size I
reaches 2rN, the distance between the nearest-neighbor targets reaches 2r. Then,
in the target-catching process, any searcher’s step tends to be in the target’s region.
Therefore, as | | 2rN, (M) and (n3) become infinitely large, while (n;) is finitely
large because the region g has still a positive measure on s;. Further, P¢,, and
(ny < n.) respectively reach 1, in agreement with their definitions. Therefore, the
efficiency reaches 1 when I reaches 2r N. This is unfavorable for the counter-behaving
target and favorable for the cooperative-behaving one. Thus, the counter-behaving
target must take a patch size I larger than 2rN, while the cooperative-behaving
target may take a patch size 2r N with which every nearest-neighbor targets touch
each other in the patch.
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Fig. 3. N-l. relation.

CONIECTURE 1. Keeping other parameters fized, there is a unique l, say l*,
at which the efficiency (E) takes its minimum value, say (E)min- (E)min is mono-
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tonically decreasing with respect to n., monotonically increasing with respect to N.
(E) is monotonic with respect to l as follows:

o(E)

T <0 when l <1
8(E) .
T >0 when I* < .

In case of Fig. 2, all the efficiency curves have a unique common cross point at [ = [,
independently of n.. Note that the efficiency curve is monotonically increasing with
respect to n. for any ! < [l. and decreasing for any I. < I. This value I, is a
monotonically increasing function of n (Fig. 3). However these characteristics are
vulnerable for a sufficiently small A, and a sufficiently small n. as for example
shown in Fig. 4. We include this characteristic by the following conjecture:

CONIECTURE 2. For a fized n., say n.sixea, there is such a critical value of
Az, say A§ that, if A§ < Ag, there is a uniquel, say l., such that the efficiency is not
contributed by ne (> nc fixea) : O(E)/Onc|i=i. = 0. A§ is a monotonically decreasing
function of n.gixed. Thus, for Xy > A§|n =1, a unique I, ezists for all positive integer
Ne.

Now and hereafter n. is expandedly considered as a real number. Focusing on
the case when A§ < Ag, we are led to some more mathematical conjectures.

CoNJECTURE 3. With A§ < A2 and such n. that there exists l., the following
tendency is satisfied:

O(E) >0 when 1 < I,
on.
M =0 when l =1,
on,
o(E)

<0 when [, < 1.
an.

Moreover, from Fig. 2 and Fig. 3, this /. has the following characteristics:

CoNJECTURE 4. One has always I* < l.. Moreover, for A§ < Az, A2 con-
tributes little to ., that is, 8l./8)A2 ~ 0. . is a monotonically increasing function
of N.

As for I*, from Fig. 5 and Fig. 6, we find the following:

CoNJECTURE 5. [* is affected little by Ay such as A§ < Xz, that is, O1* [OA; ~
0, but monotonically increasing with respect to n, that is, 8* /6n. > 0.

Now let us turn our attention on the complex case when A; < A§. From Fig. 3
and Fig. 4, we can obtain the following:

CONIECTURE 6. For A3 < A§ and such n. that there exists ., such l; is a
monotonically increasing function of Ay, that is, 8l./3X3 > 0.
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CONJECTURE 7. For Ay < A§ and such n. that there does not exist l., the
efficiency (E) is a monotonically increasing function of n., that is, 0(E)/0n. > 6,
independently of the value l.

As for I*, in this case, the similar conjecture to the above Conjecture 6 is
obtained from Fig. 6:

CoNJECTURE 8. For A3 < A3, I” is a monotonically increasing function Ag,
that is, O1* /8y > 0.

Further, from Fig. 6, we obtain the following conjecture about the efficiency
(B):

CONJECTURE 9. For A3 < A, (E) is a monotonically decreasing function of
A2, that is, 8(E)/8); < 0.



516 H. SENO and A. BUONOCORE
Considering some cases such as those shown in Fig. 4, we deduce the following, too:

CoNJECTURE 10. For Ay < A§, the behavior-switching number n. should be
selected in the following way, in order to realize the higher searching efficiency,
depending on the patch size l:

(i) large n. when 1 <1,
(i) moderate n. (> 1) when . <1<,
(ii) small n. when I, <1,

where I, is determined by such efficiency curves that have a common cross point at
1 =1, and ly is determined by a cross point between the highest efficiency curve
with I, and the highest efficiency curve without I..

In Fig. 4, the selected n. is more than 5 for the case (i), equal to 3 for (ii),
equal to 2 for (iii). As a consequence, in case of Fig. 4, a two-mode searching is
adaptable for A; < A§, independently of I.

(X 10~ 3%
70
s6 -

<E> i
42

28

14

. 1 3 ST | I 11 {
0.00 0.04 0.08 0.12 0.18 0.20

l

Fig. 7.  I-(E) relation for some N. nc = 4; Az = 0.1. The curve monotonically
increases with respect to N.

Incidentally, we notice that Fig. 7 shows that the efficiency is a monotonic
increasing function of N. This is intuitively trivial because the searching efficiency
should become higher when the total number of targets within a patch increases for
fixed other parameters. In other words, for a fixed patch size, the larger the total
number of targets within a patch, the smaller the distance between the nearest-
neighber targets, in agreement with the modelling constraint (7). In such a situation,
the searcher can easily find the target in the target-catching process. Then, for a
constant (n;), the searching efficiency of the target-catching process should become
higher. This is the reason for the above-mentioned monotonicity.
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3. Discussion

At first, we shall consider the case when there is no other constraints for the
target’s selection of its distribution way.

Resurt 1. If there is no constraint on the distribution, the counter-behaving
target takes I* as its patch size at the goal of coevolutionary game with the searcher’s
searching behavior, while the cooperative-behaving target takes a dense patchy distri-
bution (every nearest-neighbor targets touch each other in each patch) or a uniform
distribution.

In the coevolutionary game, the counter-behaving target’s distribution is di-
rected to reduce the searching efficiency (E). Thus, I* is strategically adopted as
the patch size optimal for the strategy of counter-behaving target’s distribution. As
for the case of cooperative-behaving target, the target tends to decrease its patch
size if | < I* or to increase it if I* < I, following Conjecture 1.

REesurT 2. For the patch size l < 1., the searcher takes a two-mode searching
as its optimal strategy.

This is a consequence of Conjectures 3 and 4. For the patch size {*, the search-
ing efficiency {E) is monotonically increasing with respect to n.. Moreover, since I*
is monotonically increasing with respect to n., if the searcher takes a large n., the
corresponding [* must be relatively large. These results show that, at the coevolu-
tionary goal, the counter-behaving target takes a special patch distribution against
the searcher’s two-mode searching and the cooperative-behaving target takes a uni-
form distribution against a simple-mode searching or a dense patchy distribution
against a two-mode searching.

Next, we shall consider a special case when there is a lower bound of the patch
size afforded to the target’s distribution: for example, the case when the higher
target’s density leads to the smaller shear of resource (food etc.) or to the more
serious intra-specific competition, so that very high density may violate the target’s
persistence. Hereafter we denote this minimal patch size Ini,. Besides, there may
exist an upper bound of patch size l,a... This situation is, for example, due to
a limitation of available space for the target’s distribution, or due to the mating
efficiency among targets.

RESULT 3. If lmin < 1Y < lnax then the counter-behaving target can take I*
as its patch size at the goal of coevolutionary game, while the cooperative-behaving
target takes lmin OF lmax at the goal. However, especially in case of the counter-
behaving target, if I* < lmia, the coevolutionary game leads the patch size to lyin.
If lnax < 1*, the game leads the patch size to lpax.

This follows from Conjecture 1. Further, by Conjectures 6 and 8, this result is
plausible for the case when Ay < A;, that is, when the searcher takes an outstanding
behavior change. It is shown that, when the available space for a patch is sufficiently
small, the counter-behaving target strategically tends to take its lowest density
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within the patch because it must take its largest patch size at the coevolutionary
goal. Note that, even if I* < l;, < I. at a moment of the game, it is likely that the
counter-behaving target may take [* as its patch size at the coevolutionary goal.
This is because of the following reason: If I* < I, < [, the target strategically
tends to take l,;,. In this case, the searcher strategically tends to take a two-mode
searching with a large n., in accordance with Conjecture 3. Since [* is monotonically
increasing with respect to n., I* tends to become relatively large in the game, and
it may occur for I* to go beyond I, at the coevolutionary goal.

On the other hand, focusing on the searcher’s searching behavior, according to
Conjectures 3 and 9, we obtain:

ResuLT 4. When A < A3 (a moderate behavior change), ifl. < lmin, 6 simple
mode searching is strategically adaptable for the searcher. On the other hand, when
A2 < A§ (an outstanding behavior change), if lo < lmin, the searcher is likely to take
strategically a stmple mode searching. Otherwise, the searcher strategically takes a
two-mode searching.

Therefore, if the target cannot be strategically afforded to take a sufficiently
small patch size, the coevolutionary goal of the searcher’s searching behavior is
likely to be a simple mode one, that is, to search without any change of its searching
behavior. This is because a sufficiently large patch results in an easiness of patch-
searching and a low efficient gain by the target-catching process due to a low density
of targets within the patch. However, note that I, monotonically increases with
respect to IV, that is, to the total number of targets in a patch, as mentioned in
Conjecture 4. Thus, for a sufficiently large N, the condition I, < Iy, is likely to be
violated. This leads to the following:

Resurt 5. If the number of targets in a patch is sufficiently large, that is, if
the target’s density within the patch is sufficiently high, the searcher is likely to take
a two-mode searching in the coevolutionary game.

As mentioned in the analysis section, since the searching efficiency is a mono-
tonically increasing function of N, the higher target’s density within the patch is
unfavorable for the counter-behaving target’s distribution. In this sense, Result 5
seems to be not so appropriate for the counter-behaving target. But a high target’s
density within the patch is likely to occur for a reason (for instance, the mating
efficiency among targets, etc.).

We notice that, because of Conjecture 2, these results may be very appropriate
for the searcher which takes a relatively moderate two-mode searching (i.e., A§ <
Az). As for a sufficiently outstanding two-mode searching (i.e., A2 < A§), the two-
mode searching is rather adaptable as the coevolutionary goal of the searching way,
as mentioned in Conjectures 7 and 10:

Resurr 6. A sufficiently outstanding two-mode searching is strategically
rather adaptable.

Moreover, from Conjecture 10 and Fig. 6, since the efficiency is higher with the
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sufficiently smaller A; for a fixed behavior-switching number, the searcher tends to
take strategically the smaller A;, that is, the more outstanding behavior change.
By this reason, Result 6 is plausible. However, we must note that, since I, and I*
are monotonically increasing with respect to Ay < A§, a simple mode searching may
become adaptable for a sufficiently small A; by the feature mentioned in Result
4. This seems to be because a too outstanding behavior change may reduce the
searching efficiency due to the high search-missing probability in the target-catching
process: Too small searching step distance (i.e., too small value of Ay, in the sense of
its expected value) increases the number of search-missing steps in the gap between
targets.

Also within the framework of the present model, it is shown that a two-mode
searching may be strategically adaptable for the searcher. Note that an appropriate
small patch size can be strategically selected by the target. Thus, a patchy distri-
bution of targets is very likely to be observed at the coevolutionary goal. Even if
the patch size is subjected to a selective constraint, a two-mode searching can be
adaptable as far as the possible minimal patch size is sufficiently small. This can
be expressed as follows: As far as the target’s density within a patch is sufficiently
high, the searching gain becomes sufficiently large by changing the searching be-
havior after a patch is found. Two-mode searching is not likely to be adaptable for
the patch of low target’s density. Contrarily, if the patch size cannot be sufficiently
small, the searcher strategically tends to take a simple mode searching. The reason
seems to be the following: It is relatively easy for the searcher to find a patch in the
space so that this easiness gives a sufficiently large gain to the searcher. Instead,
the target-catching process cannot give the searcher a sufficient gain because of
the time loss due to the relatively low target’s density within the patch. In case of
the counter-behaving target, only this case can cause a two-mode searching of the
searcher as the coevolutionary goal.

Appendix.

In this appendix, making use of the probability density function given in each
of two processes, we sketch the derivation of probabilities (4), (5), (16) and (17).
Relations (14) and (15) are also proved. '

. I
Pi@) = Y [(1/2) [ fulle = vlaos + mA)dy

m=0

+U/2) [ fil2 = Vhasctoss + mA)y

+oo
= Z [(1/2) Afl(lz - yldock + mA)dy

m=0

+(1/2) /I £1(A — |2 = Yletouk + mA)dy]
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+o00

= 2)[(1/2)‘£f1(|$— y| + mA)dy

m=

+(1/2) / (A~ |z — y] + mA)dy)

+oo
= (1/2\) Z exp(—mA/)\l)/dy [exp(—|z — y|/A1)

m=0 I

+exp(—A4/A1) exp(|z — y|/A1)]

= [(1/2A1)/{1 — exp(-A/M)}] /Idy [exp{~(y - z)/A1}
+ exp(—A/A1) exp{(y — z)/A\1}]

= sinh(l/2);) cosh{(2z — A + 1)/2A; }sech(A/2);)

where |2 —¥|ciock (| — ¥|antictlocx ) denotes the distance measured in the clockwise (the
anticlockwise) direction between = and y, and where |z — y| denotes the absolute
value of the difference between coordinates of z and y on S'. For the following
calculation for the target-catching process, the notations have the same meanings.

+-oc0
Plg(z - y) = Z [(1/2)f1(|2! - y’clock + mA) + (1/2)f1(lz - ylanticlock + mA)]
m=0
+o00
= (1/2) 3 [f1(12 — letoek +mA) + f1(A — |2 — Ylaoek + mA)]
m=0

+oo
= (1/2M) ) [exp{~(|z — y| + mA4)/ M}

m=0

+exp{—(4 - |z — y| + mA)/\1}]
= (1/2M1) [exp(~|z — y|/A1)

+exp{—(4 — |z~ y[)/M}]/[1 - exp(-4/A1)]
= (1/2X1) cosh{(A — 2|z — y|)/2A;: }sech(4/2A;)

+o0

P) = Y [1/2) [ falz = vhsoc + may
m=0 1
+ (1/2) /fZ(lz - y!anticlock + md)dy]

+o00
= Z [(1/2) f2(|z — ylaock + md)dy

m=0 i, Uia
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+ (1/2) f Ui f2(lz - y]nnticlock + md)d'y]
+o0
= Z [(1/2)/ fz(d - IZ - ylanticlock + md)dy
m=0 I
+ (1/2)/ f2(|z - ylanticbck + md)dy]
+ [(1/2)[ fz(lz - ylclock -+ md)dy

+/2) [ f2ld= I = taos + i)y
+ o0

= Z[u/z)/ f,(d—z+y+md)dy+(1/z)/ falz — y + md)dy]

m=0

+ [(1/2)/; fg(y—z+md)dy+(1/2)/i. fz(d—y+z+md)dy]

4o
=3 (W2 [ hld-z+y+mdiy+(/2) [ flz—y+mdis)

m=0

+ [(1/2)/: fo(d—r+y — z+ md)dy'

+ (1/2)/ hr—-y +z+ md)dy']

+oc0
- 2(1/2)/ dy[fa(d - 2+ y +md) + fo(z — y + md)
m=0 )

+ fod=r+y—z+ml)+ fo(r —y + 2 + md)]

+oo
= (1/22) 3 exp(~md/s) / dy[exp{—(d — 2)/Aa} exp(~y/Aa)

m=0

+ exp(—z/Xa) exp(y/Az) + exp{—(d — — z)/ Az} exp(—y/X2)
+exp{~(r + 2)/ A} exp(y/s)]

= [(1/2)/{1 - exp(~d/X2)}] [exp{~(d — 2)/ A2 {1 — exp(—r/A2)}
+exp(—z/X){exp(r/A2) — 1}
+ exp{—(d — r — 2)/ A }{1 — exp(—r/X3)}
+exp{~(r + 2)/ A H{exp(r/Az2) — 1}]

= sech{d/2A,) sinh(r/Aq) cosh{(2z — d}/2X;}
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+o0
P (2) = > {fa(z + md) + fo(d — z + md)}

m=0
+o00
= (1/A2) [ exp(—2/X2) + exp{(z — d)/A2}] Z exp(~md/\z)
m=0

= (1/22) [exp(~2/22) + exp{(z — d)/A2}] / [1 ~ exp(—d/X2)]
= (1/Xz) cosh{(2z — d)/2A2 }sech(—d/2)A;)

+o00 ne m—1
(M) = ‘; 2_3 m [[ Pia°m
m=0 (j:l,;f:,lm—l) k=t

+o00
=Y mege  (Poey)™ T = 1/(1 - Poyy).
m=1

Here, for mathematical convenience to calculate (n;) we shall begin by calcu-
lating the expected total number, say (ny)m, of steps for the searcher to catch M
targets and give up the target-catching process after n. steps, averaged with respect
to the configuration of searching, where the number of steps to catch another target
after one must be equal to or less than the giving-up step n..

ne m—1
(na)m = Yo (mtmt.tama+n) [| PAa )
n;=1 k=1

(=1,2,...,M~1)

= (M - 1)(Pc(z))M_2 . qc(z) . Z n- Pn(z) + (Pc(l))M_l (PN qc(z)

n=1
— (M _ 1)(Pc(,))M_1 . qc(z) . <n2 S nc) + (Pc('))M-l ‘N, - qc(z)
= (Pc(in))ﬁ'l_1 ' qc(z){(M - 1)("2 < nc) +nc}'

Then, the required expected total number of steps in the target-catching process
before the searcher gives it up is:

+o00

= Z (Pc(z))M“1 : qc(Z){(M - 1)<n2 <ne) + nc}
M=1
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+o00

= ¢°(ay(n2 < no) - { > (M- 1)(P°<z>)M_l} +1c 4%y /(1 = Pay)

M=1
=gy (n2 <ne) - Py /(1= Poy)? 4 e
= {P°)/(1 ~ P(a))Hny <) +1e
= {{M) - 1}(nz < n¢) + n..
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