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Along the lines of a previous paper (Seno [2]), making use of an intuitive model, we con- 
sider mathematically the relation between the ei¡ of searcher's two-mode searching 
behavior and the target's patchy distribution, and discuss the strategic adaptability of 
two-mode searching. In this paper, the model is constructed by a time-discrete stochastic 
process on S 1, that is, on a circle. Ir can be regarded a s a  modification of Model 2 ana- 
lyzed in Seno [2]. Differently from Model 2, the searcher's present location is assumed to 
be influenced by the past passage configuration. This modification yields some particular 
results for the present model. 

Also in the present model, ir the patch size becomes sui¡ small, a two-mode 
searching behavior is strategically adaptable for the searcher. In this model, two-mode 
searching behavior has high strategic adaptability. Moreover, two-mode searching with an 
outstanding behavior change is strategically rather adaptable. As for the target's distri- 
bution, it appears that a particular patchy distribution is likely to be adopted, depending 
on the searcher's searching strategy. This result obviously indicates that the target's dis- 
tribution may be adopted as its evolutionary strategy against the searcher, like a relation 
between a patchy distributed prey and its predator. 
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1. I n t r o d u c t i o n  

In  the  previous paper (Seno [2]), m a k i n g  use of two s imple  m a t h e m a t i c a l  mod-  
els, we cons idered  a coevo lu t ionary  game  be tween  the  searcher ' s  searching behav io r  
and  the  t a r g e t ' s  p a t c h y  d i s t r ibu t ion ,  a n d  d e m o n s t r a t e d  a s t r a t eg ic  a d a p t a b i l i t y  of  
two-mode  search ing  (i.e., a r e a - c o n c e n t r a t e d  search)  d e p e n d i n g  on the  t a r g e t ' s  dis :  
t r i b u t i o n  s t ra tegy .  In  this  pape r ,  we shaU c o n s i d e r a  coevo lu t iona ry  game aga in  
wi th  ah  in tu i t ive  m o d e l  cons t ruc t ed  by  a t ime-d i sc re te  s tochas t i c  process  on 81, 
t h a t  is, on a circle.  The  m o d e l  can  be  r ega rded  aL a modi f i ca t ion  of Model  2 of  
the  quo ted  p a p e r .  T h e  searcher ' s  p resen t  loca t ion  is a s sumed  to  be  inf luenced b y  
the  pa s t  passage  conf igura t ion,  which  is an  essent ia l ly  different  a s sumpt ion  f rom 
t h a t  for Mode l  2 in  t he  previous  pape r .  We shal l  see t h a t  th i s  a s s ump t i on  carr ies  
such a m a t h e m a t i c a l  complex i ty  t h a t  t h e  m o d e l  is not  eas i ly  ana ly t i caUy t r a c t a b l e  
anymore .  We shal l  a p p l y  the  Monte  Car lo  m e t h o d  to o b t a i n  some numer ica l  resul ts ,  
a n d  der ive  some signif icat ive figures to  i l l u s t r a t e  our  a rgumen t  on the  coevolut ion-  
a r y  game.  T h e  resu l t s  for t he  presen t  m o d e l  show some p a r t i c u l a r  fea tures  different  
f rom those  of Mode l  2. 
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2. M o d e l  a n d  Analys is  

The model is considered on S 1, that  is, on a circle (Fig. 1). The modelling 
space S 1 can be regarded a s a  mathematical translation of the space BL 1 where 
patches ate all identical and regularly distributed. The searcher is assumed not to 
be able to distinguish a visited patch from an unvisited one. In each patch, the 
targets ate assumed to be regularly distributed. Moreover, as the found target is 
not removed, it is assumed that  the searcher cannot distinguish the found target 
from the encountered one. 

IF 

Fig. 1. Scheme of model. The patch-searching process is terminated when 
the searcher enters the region I on $1. The target-catching process 
is subjected to a fixed-giving up step number strategy with n~. For 
a m o r e  detailed explanation, see the text. 

For a fixed number of targets within a patch, the higher density of targets wiU 
be assumed to hnply the smaUer patch size. The ei¡ of searching a pateh and 
that  of catching targets in a patch are not independent. 

Our model consists of two processes on S 1: i) patch-searching process; ¡ target- 
catching proeess. In each of these processes, the searcher is viewed as a point moving 
discretely with a stochastic process. Following a discrete time scale, the searcher 
discretely changes its site on S 1 by each step. The distance between a site and the 
following site is assumed to be an exponential random variable. The direction of 
each step is selected at random, that  is, with the probability 1/2 the searcher jumps 
to the next site in the clockwise or in the anticlockwise direction. The switching 
rule between two processes is as follows (Fig. 1): The patch-searching proeess is 
terminated when the searcher enters a region on S 1. This is the moment when the 
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searcher catches the first target. The target-catching process continues until the 
number of steps between a catch and the next overcomes a critical number no. 
This means that the searcher takes a "fixed-giving up time (i.e., number of steps)" 
strategy (for example, see Iwasa et al. [1]). 

The searching efficiency E is defined as follows: 

M 
E -  

nl "~n2 ~ 

where ni denotes the number of steps taken in the patch-searching process, n2 that 
taken in the target-catching process for catching M targets. We shall investigate the 
optimal strategy to realize the highest efficiency for a fixed patch's quality (distances 
between nearest-neighbor patches and between nearest-neighbor targets). 

As for the strategic tendency of targets' distribution, we shall consider two 
contrast types: "the counter-behaving target" and "the cooperative-behaving tar- 
get". The distribution is respectively directed to make the mean efficiency as low 
as possible for the former and as high as possible for the latter. 

Mathematical Statement 

Patch-Searching Process: We consider this process on a circle of length A. On 
this space, there is a connected region (an arc) of length 1, which represents the 
zone of patch. This corresponds to the situation in which the patch (segment) of 
length l is regularly distributed on (-co,  +oo) of R 1 with distance A - l between 
nearest-neighbor patches. At first, we must select the initial site Zo of the searcher 
out of the patch. It is assumed that the initial site is uniformly distributed out 
of the patch. The next searcher's step in subjected to the exponential distribution 
with expected value ~1, that is, with probability density function given by" 

1 (~) (1) f l (Az ) = ~-1-1 exp Az 

For the patch-searching process, we shan use the fonowing notations: 
z E Si = [0,A] mod A 
I: zone of patch, Sx D I = (A - I, A) mod A 
G: zone out of patch, $1  D G = $1  - I = [0, A - I] m o d  A 

Pila(z): probabUity of the searcher's entrance by one step into the patch 
from a point z out of the patch, independently of the point 
reached in the patch 

Plg(z ---, y): probability of the searcher's one step from z to y out of the patch 
P'*x(Zo): probability of the searcher's entrance by n steps into the patch 

from the initial point zo out of the patch with a configuration 
x - (z0, z l , . . . ,  z,~-l) in G, independently of the point reached 
in the patch 

In1/: expected number of steps for the searcher to enter firstly the 
patch, averaged with respect to the initial point and the config- 
uration of searehing. 
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With these notations, the following two mathematical relations foUow from the 
Markov nature of the process: 

n - - 1  

(2) Pn*(x~ = H PŸ -+ xk)P1i"(x,,-1) 
k = l  

and 

(,, ~.,~:~/o,.ojo,.,jo,.~.../o,.._,.....o,._ 
By a cumbersome calculation based on the use of the probability density function 
(1), we find the followings (Appendix): 

. ( l ) ( 2 x - - A + l ~  ( A )  
(4) P~n(x) = s m h  ~ sinh 2•1 ] sech ~ , 

(5) PŸ --* y) = ~ cosh 2),1 sech . 

Then, through the relation (2), we obtain: 

(6) 

�9 l 

cosn / ~~ ) IIr • 
k = 0  

Target-Catchin# Process: The searcher is assumed to cateh the first target at 
the moment when it begins the target-catching procr We shall assume that the 
total number of targets is N in each patch, and that the targets ate regularly 
distributed in it. Therefore, the following relation is assurned to hold: 

(7) Nd = I, 

where d is the distance between the nearest-neighbor targets. In addition, we shall 
assume ah effective distance r between the searcher and the target, within which 
the searcher can fmd and catch the target. Thus, only ir the searcher arrives at 
a site whose distaace from the target is less than r, ir catches the target. For 
mathematical simplicity, we shall ignore any hastdling time: In other words, the 
searcher is assumed to catch the target at the moment when it reaches a site whose 
distance from the target is less than r. 

Following the above modelling assumptions, the searcher's initial site in the 
target-catching process is the center of target's region which has length 2r (see 
Fig. 1). Now we shall regard the center point of target's region as the origin on 
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S 1. Further, after catching a target, the searcher is assumed to begin always its 
next target-catching process from the center of taxget's region. The searcher's step 
is subjected to the exponential distribution with expected value )~2, that is, with 
probability density function: 

(8) f2(Ax) = 7 - e x p  - . 
A2 

As mentioned before, the searcher is assumed to take a fixed-giving up step strategy: 
If the seaxcher fails to find any taxget after no steps, the searcher gives up its target- 
catching process then changes its behavior to the patch-searching process. In nature, 
the seaxcher may stochastically go out of the patch, and the smaller the patch size 
is, the laxger such probability must be. This aspect shall be neglected in our model 
for mathematical simplicity, though it is Iikely that  it may be more or less critical 
for our following argument. 

Below we list up the notations for the target-catching process: 
z e s l = [ 0 ,  d ] m o d d  
i: target's region, si D i = il U i2 -= [0, r) U (d - r, a) mod d 
g: region out of target, si D g = si - i - Ir, d - ti mod d 
no: fixed-giving up step, i.e., the behavior-switching step number in 

the target-catching process 
P2ia(z): probability of the searcher's catching the taxget by one step from 

a point z out of the target, independently of the point reached 
in the target's region 

P2~ probability of the searcher's one step to a point z from the origin 
that  is the center of target 's region 

P2g(z ~ w): probability of the searcher's one step from z to w out of the 
target's region 

P " , :  probability of the searcher's catching the target by n steps with 
a configuration z =-- (z0,zx, . . .  ,zn-1) in g 

P~(z): probability of the searcher's catching a target after n steps, av- 
eraged with respect to the configuration of seaxching 

P~(z): probability of the searcher's catching a target by~less than he 
steps, averaged with respect to the configuration of searching 

qC(s ) :  probability of the searcher's failure to catch any target after no 
steps, averaged with respect to the configuration of searching and 
the point reached after he steps 

(n2 _< n~/: expected number of steps for the searcher to catch another taxget 
after catching one, averaged with respect to the configuration of 
searching, conditional on the number of steps being equal to or 
less than the fixed-giving up step number he 

(n~.): expected total  number of steps in the target-catching process 
before the searcher gives it up 

(M): expected number of targets caught in the target-catching process 
before the searcher gives ir up. 
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With these notations, the following relations are found (as for some non-trivial 
relations, see Appendix): 

n--1 

(9) P"" = P2~ H P~(zk-x ---* z~)P2i"(z,~-l) 
k=2 

(lO) 

"f�91162 

(11) pe<,) = E P"<=) 
n = l  

(12) q~(z) = 1 - Pr 

(13) (n2 _< n~> = ~ nP"<z) 
.=1 Pe(=) 

1 
(14) (M) -- 1 _ Pe('-) 

(15) (n2) = {(M) - 1)(nz _< no) +no.  

Making use of (8), we obtain (cf. Appendix): 

(16) e~"(z)=sech ~ sinh ~ cos ~ ~ )  

1 d (17) p~.t(z) _= X_~2 sech(~_~2 ) cosh~__~_2 ) . { 2 z - d ' ~  

In analogy with the result worked out for the patch-searching process, we also 
obtain: 

(lS) P2,(z -~ ~1 = ~ cosh 21, ~ " 

Finally, we ate led to the following expression: 

\ 212 ] x 
(191 

h[d-2z.- l '~ "-' (d -2 , z .+ l - z . , )  
r176 ~ ) H  r176 21, " 

k----1 
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Fig. 2. 
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Efficiency: With the above results, we shall discuss the mean efficiency given 
by: 

(M> 
(20) (E> - (ni> + (ns)" 

We were unable to investigate this mean ei¡ with any purely analytical way, 
because of the diificulty to integrate (3) and (10). Thus, we have investigated it by 
numerical calculations including numerical integrations. Practically we have used 
the Monte Carlo method to calculate multidimensional integrals. On the grounds 
of our numerical results, in the next section we shall discuss a strategic relation 
between the searcher's searching behavior and the target's distribution. 
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Analysis 

With the mathematical formulation obtained in the previous section, we can 
find some characteristics of the efficiency (20) in some figures drawn by tiresome 
numerical calculations. We shall seleet some parameters and give them fixed values: 
Ax = 1.0, A - l  = 2.5, r = 0.0002. We shaU focus on the patch size l, the total number 
N of targets within a patch, the mean step length ~2 of searcher, and the giving 
up step number no. l and N belong to the strategy of target's distribution, and 
A2 to that  of searcher's behavior. Note that,  since our attention is on an "area- 
concentrated search", we shall consider only the case when )~2 < Ax. 

Figure 2 shows the relation among l, (E), and no. Note that  each curve has a 
unique minimum efficiency point at l = l*. (E) reaches 1 f o r a  sufficiently smaU l 
less than l*. For such ah l, (ni) becomes very large because the patch size is so small 
that it is very difficult for the searcher to find the patch. On the other hand, for a 
fixed number of targets within a patch, a small patch size leads to a high density 
of targets within the patch. This foUows from the relation (7). Therefore, for a 
sufficiently small l less than l*, (M) and (n~) become very large because the searcher 
can easily find the target in the patch due to its high density and should continue 
the target-catching process for a very long period. Indeed, when the patch size l 
reaches 2rN, the distance between the nearest-neighbor targets reaches 2r. Then, 
in the target-catching process, any searcher's step tends to be in the target's region. 
Therefore, as l $ 2rN, (M) and (n2) become infinitely large, while (ni) is finitely 
large because the region g has still a positive measure on si. Further, P~(=) and 
(n2 < nr respectively reach 1, in agreement with their definitions. Therefore, the 
effieieney reaches 1 when I reaches 2rN. This is unfavorable for the counter-behaving 
target and favorable for the eooperative-behaving one. Thus, the counter-behaving 
target must take a patch size l larger than 2rN, while the cooperative-behaving 
target may take a patch size 2rN with which every nearest-neighbor targets touch 
each other in the pateh. 
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CONJECTURE I. Keeping other parameters fized, there is a unique I, say I*, 
at which the e~ciency (E) takes its mŸ value, say ( E ) ~ . .  (E)~n is mono- 
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tonically decreasin9 with respect to n~, monotonically increasing with respect to N.  
(E) is monotonic with respect to l as follows: 

O<E> 
- -  < 0  when l < l* 

Ol 

O<E> 
- -  > 0  when l* <I .  

Ol 

In case of Fig. 2, all the efficiency curves have a unique common cross point at I = Ic, 
independently of nr Note that  the efficiency curve is monotonicaUy increasing with 
respect to n~ for any l < le and decreasing for any l~ < I. This value Ir is a 
monotonically increasing function of n (Fig. 3). However these characteristics are 
vulnerable for a suf¡ small Az and a sufficiently small n~ as for example 
shown in Fig. 4. We include this characteristic by the following conjecture: 

CONJECTUaE 2. F o r a  fixed nr say nc,tixed, there is such a critical value of 
Az, say AŸ that, if AŸ < A2, there is a unique l, say lc, such that the efficiency is not 
contributed by n~ (> nc,¡ : O(E) /Onclt=lo = O. )tŸ is a monotonically decreasing 
function of n c,~xed. Thus, for )tz > AŸ o=1, a unique lr ezists for all positive integer 
nc. 

Now and hereafter n~ is expandedly considered a s a  real number. Focusing on 
the case when A~ < A~., we ate led to some more mathematical  conjectures. 

With )tŸ < )t2 and such n~ that there ezists l~, the following CONJECTURE 3. 
tendency is satisfied: 

O<E> 
- -  > 0  when l < l~ 
Onc 

O(E) _ 0 when l = tc 
anc 

O(E___._)) < 0 when Ic < I. 
One 

Moreover, from Fig. 2 and Fig. 3, th i s /c  has the following characteristics: 

CONJECTURE 4. One has always l* < lc. Moreover, for AŸ < )~z, A2 con- 
tributes little to 1~, that is, OIJ�91 ,,~ O. Ir is a monotonically increasing f~nction 
of N .  

As for l*, from Fig. 5 and Fig. 6, we find the following: 

CONJECTURE 5. I* is affected little by A2 such as AŸ < A2, that is, Ol*/OA2 
O, but monotonically increasing with respect to nr that is, Ol*/Onc > O. 

Now let us turn our at tention on the complex case when A2 < AŸ From Fig. 3 
and Fig. 4, we can obtain the following: 

CONJECTURE 6. For A2 < A~ and such nc that there exists l~, such lr is a 
monotonically increasing function of A2, that is, Ol~/O)t2 > O. 
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CONJECTURE 7. FOT" A2 < AŸ and such no that there does not ezist lc, the 
efficiency (E) is a monotonically increasing function of n~, that is, O(E) / On, > O, 
independently of the value I. 

As for l*, in this  case, the  s imilar conjecture to the above Conjecture 6 is 

obta ined from Fig.  6: 

CONSECTUR~. 8. For A2 < A~, l* is a monotonically increasing /unction A2, 
that is, 01"/0)~2 > O. 

Further,  from Fig.  6, we obtain  the  fol lowing conjecture about  the  efficiency 

<E): 

CONJ~.CTUaE 9. For A2 < AŸ (E) is a monotonically decreasin9 /unction o/ 
Az, that is, O(E)/OAz < O. 
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Considering some cases such as those shown in Fig. 4, we deduce the following, too: 

CONJECTVRE 10. For A2 < A~., the behavior-switching number no should be 
selected in the following way, in order to realize the higher searching efficiency, 
depending on the patch size h 

(i) large nc when l < l~ 

(ii) moderate n~ (> 1) when le < l < l~, 

(iii) small n~ when la < l, 

where l~ is determined by such efficiency curves that have a common cross point at 
I = lc, and l,~ is determined by a cross point between the highest efficiency curve 
with le and the highest efficiency curve without l~. 

In Fig. 4, the selected nr is more than 5 for the case (i), equal to 3 for (ii), 
equal to 2 for (iii). A s a  consequence, in case of Fig. 4, a two-mode searching is 
adaptable for A2 < A~, independently of I. 

Fig. 7. 
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IncidentaUy, we notice that  Fig. 7 shows that  the ei¡ is a monotonic 
increasing function of N. This is intuitively trivial because the searching efficiency 
should become higher when the total  number of targets within a patch increases for 
¡ other parameters. In other words, f o r a  fixed patch size, the larger the total 
number of targets within a patch, the smaUer the distance between the nearest- 
neighber targets, in agreement with the modelling constraint (7). In such a situation, 
the searcher can easily fmd the target in the target-catching process. Then, for a 
constant In1), the seaxching efficiency of the target-catching process should become 
higher. This is the reason for the above-mentioned monotonicity. 
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3. Discussion 

At first, we shall consider the case when there is no other constraints for the 
target's selection of its distribution way. 

lq.ESULT 1. I… there is no constraint on the distribution, the counter-behaving 
target takes l* as its patch size at the goal o… coevolutionary game with the searcher's 
searching behavior, while the cooperative-behaving target takes a dense patchy distri- 
bution ( every nearest-neighbor targets touch each other in each patch) of a uniform 
distribution. 

In the coevolutionary game, the counter-behaving target's distribution is di- 
rected to reduce the searching efficiency (E). Thus, l* is strategically adopted as 
the patch size optimal for the strategy of counter-behaving target's distribution. As 
for the case of cooperative-behaving target, the target tends to decrease its patch 
size if ! < l* or to increase it if l* < l, foUowing Conjecture 1. 

RSSULT 2. For the patch size I < le, the searcher takes a two-mode searehing 
as its optimal strategy. 

This is a consequence of Conjectures 3 and 4. For the patch size l*, the search- 
ing efficiency (E) is monotonically increasing with respect to no. Moreover, since l* 
is monotonically increasing with respect to he, ff the searcher takes a large he, the 
corresponding l* must be relatively large. These results show that, at the coevolu- 
tionary goal, the counter-behaving target takes a special patch distribution against 
the searcher's two-mode searching and the cooperative-behaving target takes a uni- 
forro distribution against a simple-mode searching o r a  dense patchy distribution 
against a two-mode searching. 

Next, we shall considera special case when there is a lower bound of the patch 
size afforded to the target's distribution: for example, the case when the higher 
target's density leads to the smaller shear of resource (food etc.) of to the more 
serious intra-specific competition, so that very high density may violate the target's 
persistence. Hereafter we denote this minimal patch size l~i~. Besides, there may 
exist ah upper bound of patch size l~~~. This situation is, for egample, due to 
a limitation of available space for the target's distribution, or due to the mating 
ei¡ among targets. 

RESULT 3. Ir Imin ~_~ ~* ~ ~max then the counter-behaving �91191 can take I* 
as its patch size at the 9oal of coevolutionary 9ame, while the cooperative-behavin9 
target takes lmin of Im,x at the goal. However, especially in case of the counter- 
behaving target, i… l* < Imin, the coevolutionary game leads the patch size to Imi=. 
Ir Im~x < l*, the game leads �91 patch size to lm~x. 

This foUows from Conjecture 1. Further, by Conjectures 6 and 8, this result is 
plausible for the case when A2 << Al, that is, when the searcher takes ah outstanding 
behavior change. It is shown that, when the available space for a patch is sui¡ 
smaU, the counter-behaving target strategically tends to take its lowest density 
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within the patch because it must take its largest patch size at the coevolutionary 
goal. Note that, even if l* < l~n < le at a moment of the game, it is likely that the 
counter-behaving target may take l* as its patch size at the coevolutionary goal. 
This is because of the following reason: If 1" < l~n < Ic, the target strategically 
tends to take l~n. In this case, the searcher strategically tends to take a two-mode 
searching with a large no, in accordance with Conjecture 3. Since I* is monotonicaUy 
increasing with respect to no, 1" tends to become relatively large in the game, and 
it ma)' occur for 1" to go beyond l~n at the coevolutionary goal. 

On the other hand, focusing on the searcher's searching behavior, according to 
Conjectures 3 and 9, we obtain: 

R~.SULT 4. When A~ < A2 ( a moderate behavior change), if l~ < Imi~, a simple 
mode searching is strategically adaptable •or the searcher. On the other hand, when 
A2 < AŸ ( an outstanding behavior change), if l~, < l ~ , ,  the searcher is likely to take 
strategically a simple mode searching. Otherwise, the searcher strategically takes a 
two-mode searching. 

Therefore, ff the target eannot be strategically afforded to take a suŸ241 
small pateh size, the eoevolutionary goal of the searcher's searching behavior is 
likely to be a simple mode one, that is, to seareh without any ehange of its searching 
behavior. This is beeause a suffieiently large patch results in ah easiness of patch- 
searehing anda  low emeient galn by the target-eatehing proeess due to a low density 
of targets within the pateh. However, note that le monotonieally inereases with 
respeet to N, that is, to the total number of targets in a pateh, as mentioned in 
Conjeeture 4. Thus, for a suŸ241 large N, the eondition Ic < Imi~ is likely to be 
violated. This leads to the following: 

I~SUr.T 5. I / the number of targets in a patch is su~ciently large, that is, i/ 
the target's density within the patch is sufficiently high, the searcher is likely to take 
a two-mode searching in the coevolutionary game. 

As mentioned in the analysis section, sinee the searchi.g ei¡ is a mono- 
tonically increasing funetion of N, the higher target's density within the patch is 
unfavorable for the eounter-behaving target's distribution. In this sense, Result 5 
seems to be not so appropriate for the counter-behaving target. But a high target's 
density within the patch is likely to oecur fo r a  reason (for instanee, the mating 
efficieney among targets, etc.). 

We notiee that, beeause of Conjecture 2, these results ma)" be very appropriate 
for the seareher whieh takes a relatively moderate two-mode searchi.g (i.e., A~ < 
A~). As for a sui¡ outstanding two-mode searchi.g (i.e., A2 < AŸ the two- 
mode searching is rather adaptable as the coevolutionary goal of the searching way, 
as mentioned in Conjectures 7 and 10: 

RESULT 6. A sufficiently outstanding two-mode searchin9 is strategically 
rather adaptable. 

Moreover, from Conjeeture 10 and Fig. 6, sinee the eflieieney is higher with the 
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sufficiently smaUer A2 for a fixed behavior-switching number, the searcher tends to 
take strategicaUy the smaller A2, that is, the more outstanding behavior change. 
By this reason, Result 6 is plausible. However, we must note that, since le and l* 
are monotonically increasing with respect to A2 < )~~, a simple mode searching may 
become adaptable f o r a  suf¡ small 2~2 by the feature mentioned in Result 
4. This seems to be because a too outstanding behavior change may reduce the 
searching efficiency due to the high search-missing probability in the target-catching 
process: Too smaU searching step distance (i.e., too small value of )~2, in the sense of 
its expected value) increases the number of search-missing steps in the gap between 
targets. 

Also within the framework of the present model, it is shown that a two-mode 
searching may be strategically adaptable for the searcher. Note that ah appropriate 
small patch size can be strategically selected by the target. Thus, a patchy distri- 
bution of targets is very likely to be observed at the coevolutionary goal. Even if 
the patch size is subjected to a selective constraint, a two-mode searching can be 
adaptable as far as the possible minimal patch size is suf¡ small. This can 
be expressed as follows: As far as the target's density within a patch is suf¡ 
high, the searching gain becomes sui¡ large by changing the searching be- 
havior after a patch is found. Two-mode searching is not likely to be adaptable for 
the patch of low target's density. Contrarily, ir the patch size cannot be suf¡ 
small, the searcher strategically tends to take a simple mode searching. The reason 
seems to be the following: Ir is relatively easy for the searcher to find a patch in the 
space so that this easiness gives a sufficiently large gain to the searcher. Instead, 
the target-catching process cannot give the searcher a sufficient gain because of 
the time loss due to the relatively low target's density within the patch. In case of 
the counter-behaving target, only this case can cause a two-mode searching of the 
searcher as the coevolutionary goal. 

Appendix .  

In this appendix, making use of the probability density function given in eaeh 
of two processes, we sketch the derivation of probabilities (4), (5), (!6) and (17). 
Relations (14) and (15) are also proved. 

p i.(~) = ~ [(1/2)~Ÿ - vlo,oc~ + mA)du 
tn~-0 

+ (1/2) ~… - ~/laaticlock "~- mA)dy] 
-~-oo 

= ~ [(1/2) f fl(l* - yldo~k + mA)~~ 

+ ( 1 / 2 ) ~ f l ( A  - [x - Ylr + mA)dy] 
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: ~ [(1/2) f i . f x ( [x  - Yl + mA)dy 
m----0 

+ (1/2) j~x/I(A - [x - Yt + mA)dy] 

+oo 

= (1/2~1) ~ exp(-mA/,\~) fxdy [ e x p ( - I x  - Yl/ ,Xx) 
'm=0 

+ exp(-A/Aa) exp(Ix - Yl P' ,)]  

= [(1/2)u)/{1 - exp(-A/A1)}] fIdy[exp{-(y - x)/&a} 

+ exp(-A/A1 ) exp{(y - z)/A1 }] 

= sinh(//2Az ) cosh{(2x - A + / ) /2Al  }sech(A/2A1) 

where ] z -  Y]clock ([x -- Y[anticlock) denotes the distance measured in the clockwise (the 
anticlockwise) direction between z and y, and where Iz - Yl denotes the absolute 
value of the difference between coordinates of z and y on S a. For the following 
calculation for the target-catching process, the notations have the same meanings. 

+ov 

Pag(Z "-4 Y) = E [(1/2)f l([z - Ylr + mA) + (1/2)f1(]z - Y[..tir + mA)] 
m : 0  

+oo 

= (1/2) ~ [A(Ix - ylr + mA) + … - I x  - Uldook + mA)] 
m----0 

-t-c~ 

= (1/2,Xl) ~ [ exp { - ( [ z  - Yl --t- mA)/Aa} 
'n'�91 

+ e ~ p { - ( A  - Iz - Yl + ,~A)p,1}]  

= (1/2~,1) [exp(- Ix - yl/,Xx) 

+ e x p { - ( A  - Ix - y l ) / .X l } ] / [1  - e~p(-Ap,~)]  

= (1/2~ a) cosh{(A - 21~ - ul)/2~x }sech(A/2)u) 

-4-0o 

P, " (z )  = Z [(1/2) f . r~( Iz  - yl~lo~ + md)dy 
'mm0 

§ (1/2) ~f~.(Iz - yl~~,~dor § md)dy] 

-~-oo 

= ~ [(1/2) ~~ .r~(I; - ul~o~ + ma)ay 
m=O Ui2 
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+ (1/21 fi, ui2 /2(Iz - Y]a.tidor + md)dy] 

+oo 
= ~ [(1/2/f~, f , (d - Iz - vl,.*ir + md)dy 

m = 0  

+ (1 /2 /L , /2 ( Iz  - vl.=,i<lock + md)dy] 

+ [(1/21 L, /2( Iz  - Yldor + rndldY 

+ (1/21 L , / 2 (d  - Iz - Ylr162 + md)dy] 

+oo 
: :~ E(I/~//,, s,(~- = +,, + m<,/<,,, + i1/~)/.. , ,(~-, + m~/~,,l 

) l ' i ~  0 

+ E(II~)/,,,,(,-=+ m~)~,+(,i~)S,,,,(~-,+=+,,~>~,1 
+oo 

: ~ c(,/,)/,, s,y + (1/,)/,. ,,(:-,,+.,~)~,,1 
i ' n= ( }  

+ [(1/2) f~~ Ÿ - r + y' - = + md)dy' 

+ (1/2)  fi~ f , .(r - y' + z + md)d~'] 
+~ 

= Z ( 1 / 2 )  L d Y [ / 2 ( d - z - t - y + m d l + / 2 ( z - y + m d )  
lino--0 11 

+ f2(d- r + y -  z + rol) + f 2 ( r -  y + z + red1] 

+oo 
= (112~,,.) ~_, exp(-md/Ml li, dy [exp{-(d- z)/A2} exp(--,ylA2) 

n'�91 

+ e x p ( - z / A ~ )  exp(y /Al )  + e x p { - ( d  - r - z l /~ ' - )  e x p ( - y / A 2 )  

+ exp{-(,-  + z11~2} exp(y/A2)] 

---- [ (1 /2 ) / {1  - exp( -d /A2)} ]  [ e x p { - ( d  - z ) /A2}{1  - e x p ( - r / A 2 ) }  

+ exp(-z/A,){exp(r/Azl - 1} 

+ e x p { - ( d  - r - z)/A~.}{1 - e x p ( - r / A 2 ) }  

+ exp{- (r  + z)/)~2}{exp(r/A~.) - 1}] 

= sech(d/2A21 sinh(r/A2) cosh{(2z - d)/2Aa} 

521 
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p ou,(~) = Z {Ÿ + red) + Ÿ - z + red)} 
rn--=0 

+cr 

= ( l /A2) [exp( -z /A2)  + exp{(z - d)/A,}] Z exp(-md/,~~.) 
r n = 0  

= ( l /A2)[exp(-z /A2)  + exp{(z - d)/A2}]/[1 - exp(-d/A2)] 

: (I/)~2)cosh{(2z - d)/2)~2}sech(-d/2)~2) 

-[-oo he m--1 

<~> : 5 ;  ~ m II ~<;;r 
m : O  n j = l  k = l  

(]=1,2 . . . . . . .  1) 

-~-oo 

: ~ m .  qr (p~<:)),,~-i : 1/(1 - pe(.)).  

Here, for mathematical convenience to calculate (n2> we shall begin by calcu- 
lating the expected total number, say (n2)M, of steps for the searcher to catch M 
targets and give up the target-catching process after he steps, averaged with respect 
to the conŸ of searching, where the number of steps to catch another target 
after one must be equal to or less than the giving-up step nc. 

<n2>M = 
he in--1  

�9 " "  (s)~ ~s) 
n j = l  k = l  

( j=1,2 ..... M-- I )  

he 

= (M - 1 ) ( P ~  �9 r  ~ n .  P " +  + ( P ~  . .o. r  

= (M - l)(pc(z))M-I �9 q~(,) �9 <n2 _< n~> + (pe(s))M-I "no" q~(:) 

= p~ )M- ,  ( ( : )  .q~<,>{(M-l)(n~ <_nr162 

Then, the required expected total number of steps in the target-eatching process 
before the searcher gives it up is: 

J c ~  

M = I  

-~-oo 

(p~( , ) )M-x .  qr - 1)<nz < nc> + he} 
M = I  
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=q~(z)<n2 <_n~). (M-1)(P~(z)) M-' +n~.q~(,)/(l-P~(,)) 

= ~ �9 - P  (,>) + n ~  q <z)(n2 _< n~) P~<~>/(1 ~ 2 

= { P ~ ( , ) / ( 1  - P ~ < , ) ) } ( n ~  <_ n~> + n~ 

: {<M> - i}<~~ _< .~> + .~. 
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