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We analyse a mathematical model of the population dynamics among a mimic, a corresponding model,
and their common predator populations. Predator changes its search-and-attack probability by forming
and losing its search image. It cannot distinguish the mimic from the model. Once a predator eats a model
individual, it comes to omit both the model and the mimic species from its diet menu. If a predator eats a
mimic individual, it comes to increase the search-and-attack probability for both model and mimic. The
predator may lose the repulsive/attractive search image with a probability per day. By analysing our model,
we can derive the mathematical condition for the persistence of model and mimic populations, and then
get the result that the condition for the persistence of model population does not depend on the mimic
population size, while the condition for the persistence of mimic population does depend the predator’s
memory of search image.
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1. Introduction

Batesian mimicry is such a phenotype that a prey species (mimic) resembles some warning signals
of another species (called model species) which is more or less unpalatable for the predator due to
its physiological or morphological defence. To reduce the predation pressure, the mimic species
benefits from the predator’s learning ability to avoid eating the unpalatable species after it eats the
model species by chance [3,11,14,16]. In general, the predator–prey interaction is affected by the
predator’s learning ability to create the search image for its prey and its memory, which have been
attracting observational/experimental/theoretical researches in behavioural, psychological, and
evolutionary ecology [6,10,18–20]. Mimicry is naturally one of the main subjects in such research.

The efficiency of mimicry significantly depends on the frequency of predator’s encountering the
model individuals, because the lower frequency makes the smaller probability for the predator to
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create the repulsive search image, that is, the smaller mimic benefit. The frequency is determined
by the model and the mimic population densities. Therefore, the efficiency of mimicry depends
on the population dynamics among the model, the mimic, and their predator, too. In this paper, as
a theoretical problem, we consider the population dynamics of model–mimic system, involving
the predator’s memory of the search image for its prey.

Tsoularis and Wallace [24] and Tsoularis [21–23] considered a type of mathematical model
with the predator’s learning and forgetting and discussed its effect on the predation rate, making
use of numerical calculations of the mathematical model, ‘learning automaton’ as it is called by
themselves. They mainly discussed the predation efficiency from the viewpoint of its optimality as
foraging strategy. Some other researchers have considered mathematical models with Monte Carlo
numerical simulation, too, mainly to discuss some evolutionary aspects of mimicry, for example,
mimic polymorphism [20], Batesian–Müllerian dichotomy [7–9], coexistence of co-mimic or
other palatable species [6,18,19], etc.

In this paper, we analyse a mathematical model of the population dynamics among a mimic, a
corresponding model, and their predator populations. The mathematical model was constructed
and preliminarily analysed in [17]. Predator changes its search-and-attack probability by forming
and losing its search image. Our mathematical model consists of the daily population dynamics
with ordinary differential equations, the seasonal population dynamics with difference equations,
and the annual population dynamics with difference equations. Analysing our model system, we
can get the result that the condition for the persistence of model population does not depend on the
mimic population size, while the condition for the persistence of mimic population does depend
on the model population size and the predator’s memory of search image. From these results, we
can give a mathematically explicit conclusion about the important role of the predator’s memory
of search image for the establishment of persistent model–mimic system.

2. Base modelling

We analyse a mathematical model consisting of the daily population dynamics with ordinary
differential equations, the seasonal population dynamics with difference equations, and the annual
population dynamics with difference equations (see Figure 1). Each predation season is composed
with the daily dynamics repeated in T days.

The predator population size is assumed to be kept constant, given by P, independently of the
model and the mimic population sizes. This means that the predator is assumed to be a generalist

Figure 1. Multi time-scale structure of population dynamics in our model.
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Figure 2. Pradator’s state transition due to eating the model or the mimic prey.

and have some other prey to keep the stationary population size, so that it can survive and sustain
its population even if the model and the mimic population go extinct.

The reproduction of model and mimic populations is assumed to occur in the period between the
subsequent predation seasons. There is no reproduction of model or mimic within the predation
season, so that the model and the mimic populations monotonically decrease during the predation
season due to the predation.

Differently from the previous models of population dynamics about model–mimic system with
either ordinary differential or difference equations system (e.g. [2,25]), our model can be regarded
as a hybrid system of them (for a similar modelling, see [15]). However, our system could not be
considered to be more complicated than the previous ones, because our modelling resulting in a
hybrid model is neither for increasing the complexity towards the reality nor for introducing any
new factor into the theoretical discussion, but rather for a mathematically tractable structure led
from a simplification of natural scheme in the population dynamics of model and mimic species.
We do not know any other mathematically tractable population dynamics model analysis about
model–mimic system involving the effect of predator’s behavioural change linked its memory of
search image.

2.1. Daily dynamics

We assume that the predator cannot distinguish the mimic from the model, so that the predator
searches and attacks them with a common probability. Once a predator eats a model individual
in a day, it comes to omit both the model and the mimic species from its diet menu, and then not
to search for nor attack them in the same day. In contrast, if a predator eats a mimic individual,
it comes to increase the search-and-attack probability for both the model and the mimic (see
Figure 2).

This kind of role of predator’s search image in the predator–prey relationship has attracted
many researchers in behavioural ecology (for a general review, see [10]). Although our assump-
tions including those given in the following sections would seem oversimplified in contrast to the
reality, we expect that our assumptions do not lose the principal nature of model–mimic popula-
tion dynamics, in order to theoretically elucidate some important issues in the establishment of
persistent model–mimic system.
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In the kth day of predation season, the predator frequency without any search image for the
model/mimic prey, that is, at the neutral state in terms of the search-and-attack probability, is
given by p0

k(t) (k = 1, 2, . . . , T) at time t after the beginning of the predation period (t = 0) in the
kth day of predation season. p0

k(t)P gives the corresponding predator population density at time t.
In the same way, the predator frequency with the higher search-and-attack probability after eating
a mimic prey is given by p+

k (t), and that with zero probability after eating a model prey by p−
k (t).

It is satisfied that

p0
k(t) + p+

k (t) + p−
k (t) = 1, (1)

for any t ∈ [0, τ ], where τ is the length of predation period in which the daily dynamics undergoes
in each day. The model and the mimic population sizes are given by mk(t) and xk(t) at time t ∈ [0, τ ]
in the daily dynamics.

In our model, the daily dynamics is governed by the following ordinary differential equations
(for the detail of modelling, see [17]):

dmk(t)

dt
= −P

{
p0

k(t) + p+
k (t)

c+

}
mk(t),

dxk(t)

dt
= −P

{
p0

k(t) + p+
k (t)

c+

}
xk(t),

dp0
k(t)

dt
= − {mk(t) + xk(t)} p0

k(t),

dp+
k (t)

dt
= p0

k(t)xk(t) − p+
k (t)

c+ mk(t),

dp−
k (t)

dt
=

{
p0

k(t) + p+
k (t)

c+

}
mk(t),

(2)

where parameter c+ is positive and less than 1, the inverse value of which indicates the increase
factor of predation rate by the formation of attractive search image due to the predation of the
mimic prey.

2.2. Seasonal dynamics

The model and the mimic population sizes at the end of kth day in the predation season are given
by mk(τ ) and xk(τ ). They give the initial population sizes for the next day: (mk+1(0), xk+1(0)) =
(mk(τ ), xk(τ )). This is the boundary/continuity condition for the dynamics of mimic and model
populations in the predation season. We ignore the death rate due to any other reasons except for
the predation in each day of predation season.

As for the frequencies in the predator population, we introduce the probability of losing the
search image, say, the forgetting probability. The predator loses its search image with a proba-
bility between subsequent days in the predation season. The predator with the higher predation
probability loses its attractive search image with probability 1 − σ+ per day, where σ+ means
the probability per day to keep the attractive search image (0 ≤ σ+ ≤ 1). The predator with the
zero predation probability loses its repulsive search image with probability 1 − σ− (0 ≤ σ− ≤ 1)
per day. So the parameter σ− means the probability per day to keep the repulsive search image.
With these assumptions, we give the relation between the predator frequencies at the end of kth
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day and those at the beginning of (k + 1)th day as follows:

p0
k+1(0) = p0

k(τ ) + (1 − σ+)p+
k (τ ) + (1 − σ−)p−

k (τ ),

p+
k+1(0) = σ+p+

k (τ ),

p−
k+1(0) = σ−p−

k (τ ).

(3)

Hence, if model and mimic populations do not exist, the frequency p0 asymptotically approaches
1 in a geometric manner day by day.

These conditions for the model/mimic populations and the predator frequencies essentially
govern their seasonal dynamics through each predation season of T days.

2.3. Annual dynamics

Let us consider the nth predation season. The initial population sizes of model and mimic are
given by m1(0) and x1(0) from the definitions for the daily dynamics. These initial population
sizes simultaneously define the initial population sizes for the nth predation season, now rewritten
by Mn,0 (= m1(0)) and Xn,0 (= x1(0)).

In our model, the reproduction of the model and the mimic populations is given by what is called
Beverton–Holt model (e.g. see [1]). Since the reproduction season is now assumed to be between
subsequent predation seasons, their population sizes (mT (τ ), xT (τ )) at the end of nth predation
season determine (Mn+1,0, Xn+1,0) = (m1(0), x1(0)) at the beginning of (n + 1)th predation season
with the following reproduction functions:

Mn+1,0 = rMmT (τ )

1 + βMmT (τ )
,

Xn+1,0 = rXxT (τ )

1 + βXxT (τ )
,

(4)

where rM and rX are, respectively, the intrinsic growth rate, βM and βX the intra-specific density
effect coefficient. rM/βM and rX/βX are, respectively, the carrying capacity for the model and the
mimic populations.

We assume that the predator completely loses the search image in the period between subsequent
predation seasons. Thus the initial condition for the predator’s frequencies according to the state
of search-and-attack probability is given by

(p0
1(0), p+

1 (0), p−
1 (0)) = (1, 0, 0) (5)

on the first day of any predation season, independently of their values at the end of previous
season.

3. Complete model

3.1. Mathematical nature of daily dynamics

To complete our modelling, we first consider some mathematical nature of daily dynamics for the
base model given in the previous section.

From Equation (2), we can easily find that d(log mk)/dt = d(log xk)/dt for any t ∈ [0, τ ]. This
means that the ratio xk(t)/mk(t) is constant independently of t, so that xk(t)/mk(t) = xk(0)/mk(0)
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for any t ∈ [0, τ ] and any k = 1, 2, . . . , T . Moreover, from the boundary/continuity condition that
(mk+1(0), xk+1(0)) = (mk(τ ), xk(τ )), we lastly have

xk(t)

mk(t)
= xk(0)

mk(0)
= un := x1(0)

m1(0)
, (6)

for any t ∈ [0, τ ] and any k = 1, 2, . . . , T in the nth predation season. The ratio un is an invariant
constant for the population dynamics in the nth predation season. Let us remark that, from the
definition, x1(0)/m1(0) = Mn,0/Xn,0, which is the ratio at the beginning of the first day in the nth
predation season.

Further, from Equation (2), we can find that d(mk + p−
k P)/dt = 0 for any t ∈ [0, τ ], too. Thus,

we have

mk(t) = mk(0) − {p−
k (t) − p−

k (0)}P, (7)

for any t ∈ [0, τ ].
With these features, the arguments in [17] give the following result about the mathematical

nature of daily dynamics:

In the daily dynamics given by Equation (2) for the nth predation season, the system has the nature to asymptotically
approach the equilibrium state as follows:

(mk(t), xk(t), p0
k(t), p+

k (t), p−
k (t)) −→

t→∞

{
E0(0, 0, p0∗

k , p+∗
k , p−∗

k ) if mk(0) ≤ {1 − p−
k (0)}P,

E+(m∗
k , unm∗

k , 0, 0, 1) if mk(0) > {1 − p−
k (0)}P,

(8)

for k ≥ 1.

3.2. Equilibrium state approximation (ESA)

To complete our modelling, we introduce a mathematical approximation for the state at the end
of each day in the predation season. Let us assume that the state (mk(t), xk(t), p0

k(t), p+
k (t), p−

k (t))
approaches the equilibrium state given by Equation (8) sufficiently fast. In other words, we assume
that the state at the end of kth day (mk(τ ), xk(τ ), p0

k(τ ), p+
k (τ ), p−

k (τ )) is sufficiently near the
equilibrium state given by (8). Then, as a mathematical approximation, we hereafter use the
equilibrium state given by (8) as the state at the end of kth day (i.e. at t = τ ).

With this equilibrium state approximation (ESA), we reset up the relation between the predator
frequencies at the end of kth day and those at the beginning of (k + 1)th day as follows (k ≥ 1):

p0
k+1(0) = lim

t→∞{p0
k(t) + (1 − σ+)p+

k (t) + (1 − σ−)p−
k (t)},

p+
k+1(0) = lim

t→∞{σ+p+
k (t)},

p−
k+1(0) = lim

t→∞{σ−p−
k (t)},

(9)

instead of Equation (3). Thus, the boundary/continuity condition for the dynamics of mimic and
model populations in the predation season of our complete model is consistently given by

mk+1(0) = lim
t→∞ mk(t),

xk+1(0) = lim
t→∞ xk(t).

(10)

At last, in our complete model, the daily and seasonal dynamics are given by Equation (2)
with Equations (1), (9) and (10), while the annual dynamics is by Equation (4) with Equation (5),
substituting limt→∞ mT (t) and limt→∞ xT (t), respectively, for mT (τ ) and xT (τ ).
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In our modelling, the ESA by Equations (9) and (10) is not simply an approximation, but is one
of the important steps in constructing our complete model. If we consider the daily dynamics of
base model (2) with (3), the extinction of model or mimic population within a predation season
never occurs even when the predator’s overgrazing makes the population very small. Subsequently
in this case, the extinction never occurs in any finite year. This is one of the mathematical nature for
many models with differential equations, which could sometimes be regarded as a mathematical
approximation or a mathematical idealization to the reality. On the other hand, this mathematical
treatment ignores some biologically practical aspects, for example, the demographic or environ-
mental stochasticity, the Allee effect, etc. For our model, we have chosen the ESA as a part of
modelling to introduce such effect of demographic or environmental stochasticity or Allee effect
which could cause the population extinction in a finite time due to sufficiently small population
size, as shown in the following sections.

4. Analysis

4.1. Daily dynamics

From Equations (8) and (9), as far as the mimic population persists, we have

(p0
k+1(0), p+

k+1(0), p−
k+1(0)) = (1 − σ−, 0, σ−). (11)

In contrast, once the mimic population goes extinct in the kth day with the equilibrium state E0

in Equation (8), which may be regarded as the consequence of predator’s overgrazing, we have

p0
k+1(0) = p0∗

k + (1 − σ+)p+∗
k + (1 − σ−)p−∗

k ,

p+
k+1(0) = σ+p+∗

k ,

p−
k+1(0) = σ−p−∗

k .

Subsequently in this case, since both mimic and model populations have gone extinct, the
system (2) gives no change of the predator frequencies during the subsequent day. Thus, we
have

p0∗
k+1 = p0∗

k + (1 − σ+)p+∗
k + (1 − σ−)p−∗

k ,

p+∗
k+1 = σ+p+∗

k ,

p−∗
k+1 = σ−p−∗

k .

Therefore, the predator frequencies geometrically approach (1, 0, 0) day by day after the extinction
of mimic and model populations, because of the predator’s losing the search image.

With Equation (8), the arguments in [17] give the following result about the persistence of
mimic and model populations:

The mimic and the model populations persist in the kth day if and only if mk(0) > (1 − σ−)P for k > 1 and
m1(0) > P. Then, (p0∗

k , p+∗
k , p−∗

k ) = (0, 0, 1) and m∗
k = mk(0) − (1 − σ−)P for k > 1 and m∗

1 = m1(0) − P. If and
only if mk(0) ≤ (1 − σ−)P for some k > 1 or m1(0) ≤ P, the mimic and the model populations go extinct in the kth
or the first day of predation season, and then we have the equilibrium state E0 with 0 < p0∗

k < 1, 0 < p+∗
k < 1 and

0 < p−∗
k < 1. After their extinction, (p0∗

k , p+∗
k , p−∗

k ) asymptotically approaches (1, 0, 0) as k increases.

As for a special case without the model population, when the system contains the mimic and the
predator, we can easily show that the mimic population goes extinct in the first day of predation
season (Appendix 1).
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We remark that, if the predator is absent, the population sizes of mimic and model are kept
constant throughout the predation season, due to ignoring any factors of their death other than
the considered predator’s predation. This means that the predation has the important role for the
above-mentioned dependence of mimic persistence on the model population.

4.2. Seasonal dynamics

Let us consider the case that the mimic and the model populations persist till the kth day of
predation season (k > 1). Then, from Equations (7)–(11), we have the following daily recurrence
relation about the initial model population sizes of subsequent days:

mj+1(0) = mj(0) − {1 − p−
j (0)}P for j = 1, 2, . . . , k − 1. (12)

Since p−
1 (0) = 0 and p−

j (0) = σ− for j > 1 from Equation (11), this recurrence relation gives the
following general form of mj(0):

mj(0) = m1(0) − {1 + (j − 2)(1 − σ−)}P for j = 2, 3, . . . , k. (13)

Therefore, since the necessary and sufficient condition that the mimic and the model populations
persist in the T th day (= the last day) of the predation season is given by mT (0) > (1 − σ−)P
from the result in the previous section, we get the following result about the seasonal dynamics:

The mimic and the model populations persist through the nth predation season if and only if

Mn,0 = m1(0) > mc := {1 + (T − 1)(1 − σ−)}P. (14)

Otherwise, the mimic and the model populations simultaneously go extinct in the keth day of the nth predation season,
where ke is given by

ke =
[[

Mn,0/P − 1

1 − σ− + 1

]]
. (15)

The symbol �x� means the smallest integer not less than x. The critical size mc defines the lower
bound for the initial population size according to the persistence of mimic and model populations
through the predation season. We remark that the critical size mc is determined by the predation
pressure given by P, the length of predation season T , and especially the faculty to keep the
repulsive search image given by σ−.

In the case that the mimic and the model populations persist throughout the nth predation
season, the model population size m∗

T at the end of the predation season is given by

m∗
T = mT (0) − (1 − σ−)P = m1(0) − {1 + (T − 1)(1 − σ−)}P

= Mn,0 − mc. (16)

As a consequence, the extinction of only one of mimic and model never occurs in the seasonal
dynamics of our model, while it is likely that both of them go extinct in a predation season.

A numerical example of the seasonal dynamics governed by Equation (2) with Equations (9)
and (10) is shown in Figure 3.

We note that the condition of extinction depends on the initial value of model population in
the predation season and the strength of predation pressure related to the predator’s memory of
repulsive search image. In short, the above-mentioned mimic extinction in the seasonal dynamics
is due to the extinction of model population by the high predation pressure with sufficiently poor
memory of repulsive search image. The extinction of model population is necessary for that of
mimic population.
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(a) (b)

Figure 3. A numerical example of the seasonal dynamics governed by Equation (2) with Equations (9) and (10) . (a)
(m1(0), x1(0)) = (52.4469, 26.2234); (b) (m1(0), x1(0)) = (26.2234, 13.1117). Commonly, T = 50, τ = 2.0, c+ = 0.1,
σ+ = 0.5, σ− = 0.1, P = 1.0, mc = 45.1. The mimic and the model populations persist through the predation season in
(a), while they go extinct at a day in (b).

4.3. Annual dynamics

From Equation (4) with Equations (9) and (10), the model and the mimic populations at the
beginning of (n + 1)th predation season, Mn+1,0 and Xn+1,0, are now given by the following
reproduction functions:

Mn+1,0 = rMm∗
T

1 + βMm∗
T

,

Xn+1,0 = rXx∗
T

1 + βXx∗
T

,

(17)

where

x∗
T = unm∗

T = x1(0)

m1(0)
m∗

T = Xn,0

Mn,0
m∗

T

from Equation (6). Then, from Equations (8), (14), (16) and (17), making use of the result
obtained in the previous section, we have the following difference equations to determine the
annual dynamics in terms of the model and the mimic population sizes at the beginning of
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predation season:

Mn+1,0 = rM[Mn,0 − mc]+
1 + βM[Mn,0 − mc]+ ,

Xn+1,0 = rX[Mn,0 − mc]+Xn,0

Mn,0 + βX[Mn,0 − mc]+Xn,0
,

(18)

where the symbol [ ]+ is defined as follows:

[x]+ :=
{

x for x > 0,

0 for x ≤ 0.

We note that the annual dynamics of model population is independent of that of mimic population,
while the latter depends on the former.

Analysing the first equation of (18), we can obtain the following result about the persistence of
model population (Appendix 2):

If and only if the following conditions are satisfied, the model population persists in any predation season, and
Mn,0 → M∗ = mc + λ+ = (rM − 1 − mc/λ+)/βM as n → ∞:

rM ≥ (1 + √
βMmc)

2, (19)

M1,0 ≥ mc + λ− = (rM − 1 − mc/λ−)

βM
, (20)

where

λ± := 1

2βM
{rM − (1 + βMmc) ± √

D},

D := {rM − (1 + √
βMmc)

2}{rM − (1 − √
βMmc)

2}.
(21)

Otherwise, the model population goes extinct in the neth predation season with Mne ,0 ≤ mc, where

ne := 1 +
[[

log{(1 − [M1,0 − mc]+/λ+)/(1 − [M1,0 − mc]+/λ−)}
log{(1 + βMλ+)/(1 + βMλ−)}

]]
. (22)

The symbol �x� is the same as before. λ± is positive whenever the condition (19) is satisfied.
Parameter dependence of the persistence of model population is shown in Figure 4, where we
also used the following condition mathematically equivalent to conditions (19) and (20) in order
to draw the boundary curve:

M1,0 > mc and rM ≥ M1,0(1 + βMM1,0 − βMmc)

M1,0 − mc
. (23)

Furthermore we can prove that, even if the mimic population is absent, the seasonal and the
annual dynamics for the model population is the same as shown above (seeAppendix 3). Let us note

Figure 4. Parameter dependence of the persistence of model population. Boundary curves are given by (19) and (20),
or by (23).
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that the above condition for the persistence/extinction of the model population is independent
of any parameter of mimic. This means that the extinction of model population in our system
can be regarded as the consequence of high predation pressure which depends on the faculty of
predator’s memory of repulsive search image. In our model, it is independent of the presence
of mimic population. In contrast, the persistence of mimic population depends on the model
population, as we will see in the following analysis.

As for the mimic population governed by the second difference equation of (18), let us consider
it here with Mn,0 ≡ M∗ = mc + λ+ for any n. This is because the model population dynamics is
independent of the mimic one. Besides, as we have already seen, if the model population goes
extinct, then so does the mimic population. So we now focus the mimic population dynamics
when the model population has reached its equilibrium state according to the annual dynamics
governed by the first difference equation of (18). Hence, instead of the second difference equation
of (18), let us consider here the following annual dynamics of mimic population:

Xn+1,0 = rXXn,0

1 + mc/λ+ + βXXn,0
. (24)

From this difference equation, we can obtain the following result about the persistence of mimic
population:

Only when the model population persists at its equilibrium state, if and only if the following condition is satisfied,
the mimic population persists in any predation season:

rX > 1 + mc

λ+
= rM

(
1 − M∗

rM/βM

)
, (25)

and then

Xn,0 −→ X∗ = 1

βX

{
rX −

(
1 + mc

λ+

)}
= βM

βX
M∗ + rX − rM

βX
(26)

as n → ∞. Otherwise, the mimic population goes extinct, that is, Xn,0 → 0 as n → ∞ for any X1,0 > 0.

Differently from the case of model population, there is no condition for the initial value X1,0.
Since λ+ > 0 whenever the model population persists, the condition (25) indicates it necessary
for the mimic population persistence that the intrinsic growth rate rX is greater than 1. Parameter
dependence of the condition (25), for the mimic population persistence is shown in Figure 5,
where we used also the following condition mathematically equivalent to the condition (25) in
order to draw the boundaries:

rX > 1 and

⎧⎪⎪⎨
⎪⎪⎩

rM < βMmc + 2rX − 1

or

rM >
rX

rX − 1
βMmc + rX.

(27)

Additionally, from conditions (23) and (27), we can easily prove that, if the following condition
is satisfied, the mimic population necessarily persists when the model population persists:

βMM1,0 ≤ rX(rX − 1). (28)

On the other hand, if

0 < rX(rX − 1) < βMM1,0, (29)

the persistence of mimic population depends on some other parameters of mimic and model
populations (see Figure 5).

We note that, unless the condition (25) is satisfied, the mimic population tends to go extinct,
though its extinction never occurs at any finite time as long as the model population persists. As
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(a) (b)

Figure 5. Parameter dependence of (a) the persistence of mimic population when the model population persists; (b) the
coexistence of mimic and model populations for the light colored region in (a). In (a), the light colored region is given
by (29). For the persistent region in (a), the mimic population can persist whenever the model population can. For the
extinct region in (a), the mimic population eventually goes extinct even when the model population persists. For the light
colored region in (a), the persistence of mimic population depends on some other parameters as shown in (b). In (b),
boundary curves are given by (23) and (27). For the light colored region in (b), the mimic population can persist with
the persistent model population. For the dark colored region in (b), the model population persists while the mimic goes
extinct. As rX → 1 + 0, the persistent region in (b) for the mimic population disappears. For the extinct region in (b), the
model and the mimic populations go extinct. q1 and q2 are respectively the smaller and the larger of 1 + βMM1,0 − rX
and (1 − 1/rX)βMM1,0. ρ1 and ρ2 are respectively the smaller and the larger of βMM1,0/(1 − 1/rX) and βMM1,0 + rX.

already shown in the seasonal dynamics, the mimic population goes extinct in a predation season
only when so does the model population. Thus, the mimic’s extinction in the above result means
the long-term tendency to go extinct. In such case, the mimic population size decreases not only
day by day in the predation season but also year by year in annual scale. This is the case that the
mimicry would not be the adaptive strategy for the species which has the faculty to mimic the
model species. So in such cases, the model–mimic system could not be established also in the
evolutionary context. Such mimic extinction in our model can be caused by too small (intrinsic or
net) growth rate of mimic population that could be regarded as the cost of mimicry. Only mimic
species with sufficiently smaller cost of mimicry in terms of the growth rate can coexist with the
model, and can establish the persistent model–mimic system.

Consequently, for our model, the establishment of persistent model–mimic system (as a pop-
ulation dynamics) requires that the conditions (19), (20), and (25) are simultaneously satisfied,
being shown as a parameter region in Figure 5.

4.4. Equilibrium population size ratio

When the model population is persistent under those conditions (19) and (20), we can show, from
Equation (6), that the ratio of their population sizes approaches a constant as n → ∞:

Xn,0

Mn,0
= xk(t)

mk(t)
= un −→ X∗

M∗ = βM

βX
· [rX − 1 − mc/λ+]+

rM − 1 − mcλ+
, (30)

where [ ]+ is defined as before. Numerical illustrations of mc-dependence of the equilibrium
population size ratio are given in Figure 6.

We can easily prove that mc/λ+ (= βMλ−) is monotonically increasing and mc + λ+ is mono-
tonically decreasing in terms of mc. Since mc defined in Equation (14) is monotonically decreasing
between its minimum P and maximum TP in terms of σ−, the results of our analysis indicate that
the persistence of model and mimic populations depends on the predator’s memory of repulsive
search image. Moreover, as shown in Figure 6, it is likely that the predator’s memory of repulsive
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(a) (b) (c)

Figure 6. mc-dependence of equilibrium population sizes at the beginning of predation season, that is, for the annual
dynamics (18). (a) rX = 1.2; (b) rX = 1.5; (c) rX = 2.5. Commonly, rM = 2.0. In case of (a), the mimic population is
extinct for a range of mc in which the model population is persistent. In cases of (b) and (c), the mimic population is
persistent as long as the model population is.

search image could determine the population size ratio between the mimic and the model popu-
lations. We note that the equilibrium population size ratio is not always decreasing in terms of mc

as indicated by (26) and illustrated by Figure 6(c) in case of rX > rM.

4.5. Establishment of persistent model–mimic system

For our model, when and only when the conditions (19), (20), and (25) are simultaneously satisfied,
the model–mimic system can be persistently established as a population dynamics, that is, both the
model and mimic populations are persistent to coexist. Since the right-hand sides of inequalities in
those conditions (19), (20), and (25) are monotonically increasing in terms of mc, the establishment
of persistent model–mimic system is harder as the value of mc gets larger. We note that the
dependence of those conditions on the predation pressure (i.e. on P) and the predator’s memory
of repulsive search image (i.e. on σ−) is only through mc.

Since mc is monotonically increasing in terms of P and decreasing in terms of σ−, this result
means that

the stronger predation pressure or the weaker memory of repulsive search image could make the establishment of
persistent model–mimic system harder. In other words, it is necessary for the establishment of persistent model–
mimic system that their common predator has so strong memory of repulsive search image as to provide the model
and the mimic populations with sufficiently weak predation pressure.

5. Concluding remarks

From the result of our model, we conclude that, as the predator’s memory of repulsive search
image is stronger, it is more likely for the model population to persist, and the equilibrium model
population size gets larger. This is because the stronger memory of repulsive search image is to
repel the predator longer from the model population so as to make the predation pressure weaker
for it. This feature can be adopted to the persistence and the equilibrium size of mimic population,
too.

Then, as for the establishment of persistent model–mimic system, we derive the conclusion that
it is necessary that their predator has so strong memory of repulsive search image as to provide
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the model and the mimic populations with sufficiently weak predation pressure. This conclusion
may be regarded to be consistent with the result of Speed and Turner [20] with a Monte Carlo
numerical simulation model that the mode of forgetting has a more significant effect on mimetic
relationships than the rate of learning.

In our model, the effect of the predator’s memory of repulsive search image on the population
dynamics is represented by parameter σ−. It is likely that the memory would be closely related
to the strength of stimulus given by the model to its predator. For example, the model’s higher
unpalatability (e.g. stronger toxicity) for its predator could make the predator’s repulsive search
image decline slower, to be kept longer or be more hardly lost. This argument implies that the
species of low unpalatability could not become the model for a mimic species from an evolutionary
viewpoint, so that such a low unpalatable species could not belong to any persistent model–mimic
system. Model species of a persistent model–mimic system would be required to be unpalatable
highly enough.

Our result also implies that the higher predation pressure in the habitat of model species would
be unfavourable for the establishment of persistent model–mimic system. From an evolutionary
viewpoint, in the habitat under high predation pressure, the mimic species fails to invade so that
the model–mimic system is hardly established.

In our result about the establishment of persistent model–mimic system, any relevance to
parameters σ+ or c+ of the daily dynamics does not appear. Parameter c+ representing the effect
of attractive search image formation on the predation rate affects the speed of temporal variation of
population sizes/frequencies in the daily dynamics. Furthermore, it affects the equilibrium values
of p0∗

k , p+∗
k , and p−∗

k when the model and the mimic populations go extinct to be (m∗
k , x∗

k ) = (0, 0),
too. However, as mentioned in the section to introduce ESA in our modelling, if the population
sizes/frequencies temporally change sufficiently fast towards the equilibrium state in the daily
dynamics, our result implies that the contribution of parameters σ+ or c+ to the condition for the
establishment of persistent model–mimic system would be little even without the introduction
of ESA (thus, with the seasonal dynamics with Equation (3) instead of Equation (9)). Our result
emphasizes the importance of predator’s memory of repulsive search image for the establishment
of persistent model–mimic system.

In our model, the model population may become extinct in some cases, and then so the mimic
population does, because the mimic population goes extinct in the absence of model population.
The extinction of model population in our model can be regarded as the consequence of high
predation pressure depending on the predator’s memory of search image. It is taken for natural
that the model population would be persistent against the predator in any established model–
mimic system. In other words, the system in which the ’model’ population became extinct in the
history of evolution cannot be identified now as the model–mimic system. The mimic population
with the model population under high predation pressure would be hard to persist, because the
high predation pressure may limit the model population size at so low level that the mimicry
would be maladaptive in such condition, as discussed, for example, in [4,5,13]. Extinction of
the mimic population in our model could be regarded as corresponding to such extinction. If the
model species of an established model–mimic system in a habitat could be observed in another
independent habitat without any mimic species, it might be due to the higher predation pressure
that makes the mimicry’s invasion hard in the latter habitat.

In the framework of our mathematical model, we do not take account of non-mimic subpopu-
lation belonging to the mimic species, although many mimic species have been observed to have
such non-mimic subpopulation. Since the predator in our model is a generalist with some other
prey species, such non-mimic subpopulation must have the predation pressure separately from
that for the mimic subpopulation. This is because we assume that the predator may generally dis-
tinguish the mimic from the non-mimic, although the predator in our model cannot distinguish the
mimic from its model. In such cases, the non-mimic may go extinct under the predation pressure.
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If the non-mimic were more cryptic than the mimic against the predator, the reduced predation
pressure may allow the non-mimic to persist. Although the net growth rate of mimic population
must depend on the non-mimic subpopulation, we focus the persistence of mimic subpopulation in
our mathematical considerations, so that the problem on the coexistence of mimic and non-mimic
is out of the scope of this paper.

In this paper, we consider a mathematical model with a hybrid system of differential and differ-
ence equations. However, as seen from those mathematical results we obtained, our system could
not be considered to be complicated, but be rather mathematically tractable, which has a struc-
ture led from a simplification of natural scheme in the population dynamics of model and mimic
species. As most of the previous theoretical works about mimicry, numerical simulation-oriented
modelling has been an easy choice of available theoretical consideration way in mathematical
biology, and been useful to give some perspectives for the development of theory for some bio-
logical problems. However, it is frequently difficult to design a rational and satisfactory numerical
scheme to derive results which could bring theoretically meaningful results, because of lack of
biological data to estimate the parameter values used in numerical calculations. This is the case
for the mimicry. In contrast, mathematical tractable model can give theoretically objective results,
which is not affected by the lack of biological data, although they may be over-simplified or too
abstract to bring some connection to observational/experimental research. Nevertheless, as his-
tory implies, such mathematical studies could be useful for developing the theoretical frameworks
to understand the nature. We expect that our model would be so. Indeed, we do not know any
other mathematically tractable population dynamics model about model–mimic system involving
the effect of predator’s behavioural change linked its memory of search image.
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Appendix 1. Dynamics without model population

In this appendix, we consider the system (2), (4), (9) and (10) without the model population, that is, with mk(t) ≡ 0 and
Mn ≡ 0 for any k, any t and any n. In this case, the system consists of mimic and predator, and the daily dynamics is
governed by

dxk(t)

dt
= −P

{
p0

k(t) + p+
k (t)

c+

}
xk(t),

dp0
k(t)

dt
= −xk(t)p

0
k(t),

dp+
k (t)

dt
= p0

k(t)xk(t),

(A1)

p0
k+1(0) = lim

t→∞{p0
k(t) + (1 − σ+)p+

k (t)},

p+
k+1(0) = lim

t→∞{σ+p+
k (t)},

(A2)

with (p0
1(0), p+

1 (0)) = (1, 0). Since the unpalatable model population is absent, there cannot be any predator with lower
search-and-attack probability, that is, p−

k (t) ≡ 0 for any k and any t. This means that p0
k(t) + p+

k (t) = 1 for any k and
any t.

From Equation (A1), we can find that

dxk

dp+
k

= P

(
1

c+ − 1

)
− P

c+
1

1 − p+
k

,

and hence,

xk(0) − xk(t) = P

(
1

c+ − 1

)
{p+

k (0) − p+
k (t)} + P

c+ log
1 − p+

k (0)

1 − p+
k (t)

. (A3)

Since dxk/dt < 0 for any p+
k ≥ 0 and xk > 0, xk(t) is monotonically decreasing in terms of t ≥ 0. On the other hand, since

xk(t) ≡ 0 is a specific solution for the first differential equation of (A1), xk(t) with any positive initial value xk(0) > 0
is bounded from below, because of the uniqueness of solution. Therefore, limt→∞ xk(t) = x∗

k ≥ 0 exists with x∗
k < ∞.

From Equation (A1) with the trivial boundedness such that p+ ≤ 1, making use of the analogous arguments, we find that
limt→∞ p+

k (t) = p+∗
k ≥ 0 exists, too. At the same time, this means that limt→∞ p0

k(t) = p0∗
k ≥ 0 exists.

Now, from Equation (A3), since p+
1 (0) = 0, we have

x1(0) − x∗
1 = −P

(
1

c+ − 1

)
p+∗

1 − P

c+ log(1 − p+∗
1 ). (A4)

From the third differential equation of (A1), x∗
1 = 0 or p+∗

1 = 1. However, it is impossible that p+∗
1 = 1, because the

right-hand side of Equation (A4) is positively infinite when p+∗
1 = 1 whereas the left-hand side is positively finite from

the above arguments. Therefore, we find that x∗
1 = 0.

Consequently, in case of no model population, the mimic population goes extinct in the first day of predation season.
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Figure A1. The function governing the discrete dynamics (A5) when the condition (19) is satisfied. λ− and λ+ are roots
of (A6) and given by (21).

Appendix 2. Annual dynamics of model population

Substitute xn for [Mn,0 − mc]+ in the first difference equation of (18), and consider the following one-dimensional discrete
dynamics for xn ∈ R:

xn+1 = rMxn

1 + βMxn
− mc. (A5)

Making use of what is called cobwebbing method (for instance, see [12]), it is easily proved that xn < 0 for some n > 0
even with any x1 > 0 unless the following equation of λ has real positive roots:

λ = rMλ

1 + βMλ
− mc. (A6)

Hence, the existence of real positive roots for the above equation of λ is necessary for xn > 0 for any n > 0. If and only
if the condition (19) is satisfied, the equation (A6) has two distinct real positive roots, λ+ and λ− given by Equation (21).
When Equation (A6) has two distinct real positive roots, making use of cobwebbing method again, we can easily find that,
if and only if x1 > λ−, we have xn > 0 for any n > 0 and xn → λ+ as n → ∞ (see Figure A1). If x1 < λ−, then there is
some n > 0 such that xn < 0. These arguments give the necessary condition (20) for the persistence of model population.

Alternatively, since the difference equation (A5) is directly solvable, and we can obtain the following general solution:

xn = λ+ + (λ+ − λ−)

{
x1 − λ−
x1 − λ+

(
1 + βMλ+
1 + βMλ−

)n−1

− 1

}−1

, (A7)

we can easily confirm the above-mentioned features of Equation (A5). Further, from this solution, we find that, when
x1 < λ−, xn is positive for n less than ne given by Equation (22), and xn is non-positive for n ≥ ne. Non-positive xn
corresponds to Mn,0 ≤ mc and subsequently to Mn+1,0 = 0 in Equation (18).

Appendix 3. Dynamics without mimic population

In this appendix, we consider the system (2), (4), (9) and (10) without the mimic population, that is, with xk(t) ≡ 0 and
Xn ≡ 0 for any k, any t and any n. In this case, the system consists of model and predator, and the daily dynamics is
governed by

dmk(t)

dt
= −Pp0

k(t)mk(t),

dp0
k(t)

dt
= −mk(t)p

0
k(t),

dp−
k (t)

dt
= p0

k(t)mk(t),

(A8)
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p0
k+1(0) = lim

t→∞{p0
k(t) + (1 − σ−)p−

k (t)},

p−
k+1(0) = lim

t→∞{σ−p−
k (t)},

(A9)

with (p0
1(0), p−

1 (0)) = (1, 0). Since the palatable mimic population is absent, there cannot be any predator with higher
search-and-attack probability, that is, p+

k (t) ≡ 0 for any k and any t. This means that p0
k(t) + p−

k (t) = 1 is satisfied for
any k and any t.

From Equation (A8), we can find that d(mk + p−
k P)/dt = 0 for any t ∈ [0, τ ]. Thus, we have Equation (7) again for

any t. Since dmk/dt < 0 for any p0
k > 0 and mk > 0, mk(t) is monotonically decreasing in terms of t ≥ 0. On the other

hand, since mk(t) ≡ 0 is a specific solution for the first differential equation of (A8), mk(t) with any positive initial value
mk(0) > 0 is bounded from below, because of the uniqueness of solution. Therefore, limt→∞ mk(t) = m∗

k ≥ 0 exists.
From Equation (A8) with the trivial boundedness such that p− ≤ 1, making use of the analogous arguments, we find that
limt→∞ p−

k (t) = p−∗
k ≥ 0 exists, too. At the same time, this means that limt→∞ p0

k(t) = p0∗
k ≥ 0 exists.

If m∗
k > 0, then, from Equation (A8), it is necessary that p0∗

k = 0 so that p−∗
k = 1. In this case, from (7), m∗

k =
mk(0) − {1 − p−

k (0)}P, which is valid when and only when mk(0) > {1 − p−
k (0)}P. In contrast, from (7), if m∗

k = 0, then
p−∗

k = p−
k (0) + mk(0)/P which is valid when and only when p−

k (0) + mk(0)/P ≤ 1, that is, mk(0) ≤ {1 − p−
k (0)}P.

Suppose that the model population persists till the kth day. Then, we have (p0
k(0), p−

k (0)) = (1 − σ−, σ−) for k1.
Therefore, if the model population persists through the kth day, we have the recurrence relation (12) with j = k. These
arguments are the same as those for the system (2), (4), (9) and (10) with the mimic population. Consequently, the seasonal
and the annual dynamics for the model population are not affected by the presence/absence of mimic population. In more
detail, although its temporal variation in the daily dynamics is affected by the presence/absence of mimic population, its
persistence in the seasonal and the annual dynamics is not.
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