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ABSTRACT 

Seno, H., 1988. Effect of a singular patch on population persistence in a multi-patch system. 
Ecol. Modelling, 43: 271-286. 

Environmental heterogeneity conditions the structure of population dynamics. In this 
paper, by means of a mathematical model we study the effects of a singular (different kind 
of) patch on the persistence of a population distributed over patches in a one-dimensional 
environment. It is assumed that there is migration between any two adjacent patches, and 
that there is a constant rate of leakage in the migration process. The population in the 
singular patch is assumed to have growth and emigration rates different from the correspond- 
ing rates in the other patches. By means of the eigenvalue estimation, it is quantitatively 
studied how population persistence is influenced by: (a) the location of the singular patch, (b) 
the difference in the growth and emigration rates from the corresponding rates in the other 
patches, and (c) the total number of patches in the system. 

INTRODUCTION 

Populations in nature are influenced by environmental patchiness (Wiens, 
1976); for example, the distribution of resources, geography, disturbance 
regime. Various theoretical studies on the effect of such patchy environ- 
ments on population have been developed following a great deal of field 
research (see Levin, 1976a, b, 1986, for review). For example, Kierstead and 
Slobodkin (1953) and Okubo (1982) studied plankton patchiness, using 
diffusion equations (see also Okubo, 1980). They studied the persistence of a 
population within an isolated patch and established a critical patch size 
below which the population becomes extinct (see also Skellam, 1951). 
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DeAngelis et al. (1979), Kawasaki and Teramoto (1979), Allen (1983a, b, 
1987) and Vance (1984) analyzed the population dynamics in a patchy 
environment, making use of 'multi-patch' (spatially discrete) systems. Allen 
(1987) discussed the critical patch number with a spatially discretized 
reaction-diffusion model. On the other hand, with the same type of system, 
May (1974) and Levin (1976b), Zeigler (1977), Travis and Post (1979), 
Hirata (1980) and Post et al. (1983) studied community dynamics. Stochastic 
versions of such models have also been studied by many researchers (for 
example, Bailey, 1968; Renshaw, 1972; Richer-Dyn and Goel, 1972; Roff, 
1974a, b, 1975). 

The system corresponding to the case when patches have generally 
different parameters has been mathematically investigated by many re- 
searchers, for example, Chau (1985). Further, DeAngelis et al. (1979) studied 
the general conditions for the persistence of population in the context of 
'M-matrix'. But their results are either too complicated or too general to be 
of practical use for a detailed analysis of dependency of population per- 
sistence on parameters in a system. 

In this paper, we shall study an aspect of the persistence of population in 
a multi-patch system containing a patch within which emigration and 
growth rates are different from the corresponding rates within the other 
patches. We shall call such a patch a 'singular' patch. The singularity of a 
patch may be regarded as an effect of disturbance in an ecological system, as 
was discussed by DeAngelis et al. (1985), or of constant harvest, or of some 
artificial environmental change. Cohen (1972) studied a general linear 
multi-patch system involving a continuously time-varying rate of leakage 
from each patch. He showed that the leakage from each patch has no 
influence on the distribution of substance in the system if and only if the 
rate of leakage is the same in all the patches. Thus, the existence of a 
singular patch in the system must influence the distribution of a population 
and its persistence. We shall study quantitatively how the existence of a 
singular patch influences the persistence of population in a linear multi-patch 
system. It will be shown that Allen's (1987) result is suitable but not 
necessary for our model, though it is applicable to any general multi-patch 
system. 

Our purpose is to analyze one starting point of the theoretical study of the 
effect of spatial structure of environment on the population dynamics. The 
results can be seen to be applicable to other models of various contexts such 
as the multi-membrane system, island biogeography, and the theory of 
information flow. 

THE MODEL 

We consider a one-dimensional spatially discrete model based on the 
following assumptions (see Fig. 1): 
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Fig. 1. Scheme of the system considered. The system contains N patches. The 1st and the 
Nth patches are called the 'edge' patches. The k th  patch is the 'singular'  patch. Two 
subsystems can be defined on the right and left side of the singular patch. Arrows indicate the 
flows of population density. The detail explanation is given in the text. 

(1) There are N patches in one dimension. 
(2) Each patch is relatively isolated, but a single-species population 

migrates between any pair of adjacent patches. 
(3) A portion of the migrants leave the system at a constant rate and 

never return ('leakage'). Another portion migrates evenly into each of the 
two nearest-neighbor patches except for the case of the two 'edge' patches 
(the 1st and the Nth  patch). Half of the migrants from each 'edge' patch 
leave the system and never return. 

(4) Within each patch, the population grows in a malthusian manner. 
(5) The population in the singular patch has rates of growth, emigration, 

and leakage different from those in the remaining patches, which have the 
same rates. 

The leakage of migrants, regarded as a function of the risk of migration, 
may depend on the surrounding environment. Because emigration from each 
patch is random and non-biased, half of the emigrants from an edge patch 
leak out of the system. 

Population dynamics is assumed to be governed by the system of ordinary 
differential equations: 

d n / d t  = M-  n 

where n = (na, n z . . . . .  F/N_I, F/N) T and n i is the population density of the 
i th patch at time t; M is an N × N matrix whose /j-element is rnij, and: 

m i i = R - P  ( i 4 = k ) ,  m k k = R ' - - P  ' 

mi+l ,  i = m i _ l ,  i = P S / 2  (i 4= k )  

ink+a, k = mk_a, k = P ' S ' / 2  

otherwise, m~j = 0 

R, P, and S are the rate of population growth within a patch, of emigration 
from a patch, and of immigration into the nearest-neighbor patch, respec- 
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tively; 1 -  S is the leakage rate of the migrants. Populations within all 
patches, except for the k th patch, have the same rates, whereas the popula- 
tion of the k th  patch is assumed to have growth rate R', emigration rate P', 
and leakage rate 1 - S' .  

Obviously, the total population is less vulnerable in either of the following 
two cases: (a) the population in the singular patch has a higher growth rate 
or a smaller emigration rate than the populations of the other patches; and 
(b) it has a smaller leakage rate than other populations. To the contrary, the 
population becomes more vulnerable when the rates have the opposite 
tendency. The higher the growth rate within a patch, the lower the emigra- 
tion rate from it. This will indeed be the best strategy with respect to our 
system for the persistence of the total population. If the emigrants from a 
patch of a higher growth rate have a smaller rate of leakage, the strategy will 
become more effective. We shall see these aspects quantitatively in the 
following analysis. 

Population in our system either grows infinitely or becomes extinct as 
t ~ m. This behavior is determined by the eigenvalues of matrix M (Bell- 
man, 1970). If and only if all the eigenvalues have negative real parts, then 
the extinction of population occurs independently of its initial distribution. 
Population instead increases infinitely when at least one eigenvalue has a 
positive real part. We shall estimate the maximum real part of the eigen- 
values of M and discuss quantitatively the dependence of population per- 
sistence on the parameters: location of the singular patch, different quality 
of a singular patch, and total number of patches in the system. 

The above system of ordinary differential equations often appears as a 
linearized system about an equilibrium point (especially about the trivial 
solution) in the analysis of local stability of equilibria, or as a comparative 
system used to estimate a kind of global stability of solution (Allen, 1987). 
Thus our results, although obtained for a simple linear system, are also of 
interest for the analysis of nonlinear systems. 

ANALYSIS OF THE MODEL 

We shall solve the characteristic equation G ( X ) =  d e t ( M -  XE)=  0 for 
the eigenvalue estimation, where E is the unit matrix. May (1973) applied a 
useful technique in order to expand the following N × N determinant: 

det 

'oa 1 0 
1 ~o 1 

0 

0 

1 ~o 1 
0 --- 0 1 ~o 

sin{(N + 1)0} 
sin 0 

(1) 
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where the parameter o~ is related to 0 through o~ = 2 cos 0; 0 is a complex 
value in general. This determinant corresponds to G(X) when R'  = R ,  
P '  = P, and S '  = S, and the condition that all the eigenvalues have negative 
real parts is cos(~r/(N + 1)} < ( P -  R ) / S P  (see May, 1973, appendix II). 
We can expand G(X) for arbitrary R',  P '  and S' ,  applying the above 
technique to it: 

G(X ) = (PS /2 )  N- 1 ( p , s , / 2 )  g( 0 )/sin20 (2) 

g(0) = w '  sin(k0) s i n ( ( N - k  + 1)0) 

- s i n ( ( k -  1)0) s i n { ( N -  k + 1)0} (3) 

- sin(k0 ) sin( ( U - k )0 } 

2(R - P - X ) / S P  = 2 cos 0 (4) 

2( R '  - P '  - X ) / S ' P '  = o~' (5) 

The eigenvalue estimation using this general result, too long and mathemati- 
cally cumbersome to be reported here, is given in Seno (1988). Here we shall 
limit ourselves to mentioning its main implications for the considered model. 
First we shall consider two special cases: (a) the central patch is singular; 
and (b) the edge patch is singular. Then we shall analyze the general case. 
We shall always assume that R < P  and R ' <  P ' .  Indeed, if R > P or 
R ' >  P '  in at least one patch, then the population of any patch will 
eventually increase and no extinction occurs. This is because the population 
of a patch overcompensates for the loss due to emigration. 

Singular central patch case 

Let N = 2 m + l a n d  k = m + l i n ( 3 ) :  

g(O) = sin{(m + 1 )0 ) [~ '  sin{(m + 1)0} - 2 sin(toO)] (6) 

We can solve g(O)= O, and can show the existence of 2m + 1 distinct 
roots Oj ( j  = 1, 2 . . . .  ,2m + 1) such that: 

( j  = 1, 2, . . . ,  m) 

( j = 1 , 2  . . . . .  m - l )  

02j = j~r / (m + 1) 

02S < 02j+a < Ozj+2 (7) 

0 < 0 1 < 0 2  when 2 m / ( m + I ) - 2 S P / S ' P ' < a  (8a) 

02m < 02m+1 < V when a < - 2 m / ( m  + 1) + 2 S P / S ' P '  (8b) 

01 = iq, 1 when a < 2 r n / ( m  + 1) - 2 S P / S ' P '  (8c) 

02m+,='rr+iq,2,,+l w h e n - 2 m / ( m + I ) + 2 S P / S ' P ' < a  (8d) 

where i is the imaginary unit, and if1, (~2m+l are positively real. The constant 
is given by: 

ot= 2( R ' -  P ' -  ( R -  P ) ) / S ' P "  (9) 
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Using the above roots and equation (4), it is easily proved that the 
eigenvalues of M are all real and that the maximum eigenvalue ~ m a x  is given 
by: 

{~ -- P + SP cosh ~2m+l (10a) 

when 2 S P / S ' P ' -  2 m / ( m  + 1) < a 

)~ma~ = P - S P  cos 02m+1 (10b) 

when a < 2 S P / S ' P '  - 2 m / ( m  + 1) 

The condition for all the eigenvalues to be negative, ~max < 0 is instead 
(Seno, 1988): 

hc(0*)  </3 '  (0 < fl < 1) ( l l a )  

hc(~r + i * * )  < fl '  (1 < fl) (11b) 

where we have set 

hc(0) = - s i n ( m O ) / s i n (  (m  + 1)0 } (12) 

and where fl = ( P - R ) / S P ,  f l '  = ( P '  - R ' ) / S ' P ' .  Note that both fl and fl '  
are not negative, since R < P, R'  < P ' .  Finally 0* and q,* satisfy - c o s  0* 
= fl (0 _< fl < 1) and cosh q~* =/3(1 </3), respectively. 

Singular edge patch case 

By virtue of the symmetric nature of our system, we can assume that the 
1st patch is singular. Setting k = 1 in (3), we have: 

g(0) =s in  0[o~' s i n ( N 0 ) -  s i n ( ( N -  1)0 }] (13) 

We shall solve g(0) = 0. 
In a way similar to that for the former case, N distinct real eigenvalues 

are obtained, and the condition for ?'m~x < 0 is: 

he(0* ) < f l '  ( 0<13<  1) 

he(,rr + i~b*)</3' (1</3)  

with he(0) defined by 

h e ( 0 ) =  - s i n ( ( N -  1 ) O } / s i n ( N O )  

and 0* and e?* are the same as before. 

General case 

Because of the symmetric nature of the system, we shall consider the case 
when 1 < k < ( N +  1)/2. The roots of g(O)= 0 can be investigated by a 
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Fig. 2. Critical curves in the f l -f l '  plane for the population persistence. The curve h c is of the 
singular central patch case, he of the singular edge patch case, and h k of a general case. In 
each case, the region above the critical curve is that of the extinction of population and the 
region below it is that of the persistence. Population can necessarily persist in the region 
where fl < 0 o r  f l '  < 0. 

procedure similar to those used in the two special cases. The resulting 
condition which assures that all the eigenvalues are negative is: 

hk(O* ) < fl' (0_< fl_< 1) (14a) 

hk(~r + iq,* ) < f i '  (1 < fl) (14b) 

where 

h k ( 0 )  = - s i n { ( k -  1 ) 0 } / s i n ( k 0 )  - s i n { ( U -  k ) 0  } / s i n { ( U -  k + 1 ) 0 }  

Note  that, for a fixed fl, hk(0 ) is a monotonic  function of k, increasing 
when 13 < cos{ ' ~ / ( N  + 1)} and decreasing when cos{ " ~ / ( N  + 1)} < fl (Fig. 
2). Due to this monotonicity,  the parameter region can be divided into the 
following four sets: 

where at least one positive eigenvalue exists independently of  (A) the region 
k; 

(B) the region where all eigenvalues are negative, independently of  k; 
(C) the region where all eigenvalues are negative when 3 k * < k, and at least 

one positive eigenvalue exists when k < k *; 
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( D )  the  r e g i o n  w h e r e  at l eas t  o n e  p o s i t i v e  e i g e n v a l u e  e x i s t s  w h e n  3 k  * * < k ,  
and  all  e i g e n v a l u e s  are n e g a t i v e  w h e n  k < k * * 

T h e s e  four  sets  are  b o u n d e d  b y  the  c u r v e s  f l '  = h e ( -  ) a n d  f l '  = h e ( -  ) in the  
f l - f l '  p l a n e  ( s ee  Fig.  2).  

/,." 
z z z Y" 
o~ ,~ ¢o . . . / / / . ,  

, /  

.,." 
/ 
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/ 
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k/N+ 1 : fixed 

0 ////''' /~ 
Fig. 3. Critical curves for different total numbers of patches in case of: (a) the location of a 
singular patch k = 2 fixed, and (b) the ratio k / ( N  + 1) = 1 / 2  fixed. In both cases, the critical 
curve will converge to a curve as N-- ,  ~ .  For a fixed k, the limit curve approaches 
( 2 k - 1 ) / 2 k  at B =1.  For a fixed k / N ,  it approaches 1 at B =1.  In each case, the limit 
critical boundary for the population persistence consists of the limit curve and the semi-in- 
finite line B = 1, whose connecting point is the limit point mentioned above. 
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Next we shall turn our attention to the dependence of condition (14a,b) 
on the total number  of patches. The asymptotic line fl = cos( ,~ / (N - k + 1)} 
approaches fl = 1 as the N increases (see Fig. 2). If we let N ~ oc with fixed 
k, the asymptotic line monotonically approaches fl = 1 and the critical curve 
fl '  = hk('~ + iq~*) monotonically converges to (see Fig. 3a): 

fi '  = s inh( (k  - 1)q,* }/sinh(k~?* ) + exp( -q,* ) 

On the other hand, if we keep the ratio k / N  constant, then fl' = h~,(v + iqs* ) 
monotonically converges to fl '= e x p ( - ~ * )  as N---, ~ (Fig. 3b). In each 
case, the critical curve monotonically converges to a limit curve. This 
indicates that when the parameters fl and fl' lie between two critical curves 
of the total patch numbers N c - 1 and No, then either all the eigenvalues will 
be negative if the total patch number  N satisfies N < Nc, or at least one 
positive eigenvalue appears if N c < N (see Fig. 3). 

DISCUSSION 

We shall discuss the influence of a singular patch on the persistence of 
population migrating over N patches under  the extinction condition of a 
subpopulation: R < P, R ' <  P ' .  Note that a larger fl (or f l ' )  indicates a 
worse environment. We have arrived at the following results: 

(1) The more centrally located a singular patch is, the greater is its effect 
on the population persistence. In some cases, there exists a critical location 
of a singular patch. Population can or cannot  persist depending on whether 
the location of a singular patch is more central than the critical location or 
not. It seems reasonable to assume that the persistence seriously depends on 
the location of a singular patch. 

The location of a local qualitative change of environment may be critical 
for the persistence of a population. Under  identical kinds of change, a 
population becomes extinct in some cases and persists in others. More 
generally speaking, this is a case when the effect of a local environmental  
change on the population persistence has a close relation to the spatial 
environmental  structure. 

Explanation. The following cases occur: On one hand, the population cannot  
persist if the location of a singular patch is more central than the critical 
location and, for the population of a singular patch, fl '  is larger than ft. 
Hence, the environment of a singular patch is worse than that of others. On 
the other hand, the population can persist if it is more centrally located than 
the critical one and fl '  is smaller than ft. The environment of a singular 
patch is thus better than that of others. These are cases (C) and (D) 
considered in the previous section (see also Fig. 2). 
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(2) When the edge patch is not singular, two subsystems containing only 
identical patches can be defined, and a singular patch is located between 
them. Population will persist independently of a singular patch under the 
condition that the population of the larger subsystem can persist if the 
subsystem is isolated. 

Even if a part of an environment qualitatively changes to the worse, the 
change might have no effect on the population persistence if the remaining 
part of the system has a sufficient environment for its persistence. This 
indicates a kind of population tolerance to local environmental changes. 

Explanation.  The line/3 = cos{ ~r / (N  - k + 1)} in Fig. 2 is the asymptote of 
the critical curve/3'  = hk(0* ). If/3 < cos{ ~ / ( N  - k + 1)}, then the popula- 
tion will persist independently of fl', i.e. independently of the singular 
patch. The condition for the persistence in the isolated system containing 
identical N -  k + 1 patches, which corresponds to the larger subsystem 
mentioned above, is/3 < cos{ ~r / (N  - k + 1)}. 

(3) In some cases, there exists a critical total number of patches. If the 
total number of patches is below the critical number, a population cannot 
persist. Even though the environment of a singular patch is the worst, it is 
possible that population persists if the number of available patches is 
sufficiently large, that is, larger than the critical number. 

In an environment with a critical total number of patches, a population 
can be regarded as relatively less tolerant to a spatial environmental change, 
since the population may become extinct if an environmental disturbance 
reduces the number of available habitats. 

Explanation.  This result has already been mentioned in the previous section. 
A critical total number of patches N c will exist when fl and fl '  satisfy the 
following conditions: 

hk(0*)  IN=N  1--< /3' < (0_</3_<]) 

h k ( ' ~ + i 4 ~ * ) [ U = U _ l  < /3 '  <hk(~r+ie~,*)[U=N~ (1< /3 ) .  

Note that No is defined differently in cases (a) and (b) in Fig. 3 (see also Fig. 
4). 

Remark .  The critical patch number N A derived by Allen (1987) can be 
restated in our case as: 

N A = arccos { - min(/3, /3') ) / [  v - arccos { - min(/3, /3') )] 

The correspondence between the two models is valid only when S P  = S ' P '  
in our model. This is because the population in her model obeys the 
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Fig. 4. Graphs of critical total patch number depending on # and # '  in case of: (a) the 
location of a singular patch k = 1 fixed, and (b) the ratio k/N = 1/2 fixed. The region above 
the each curve is of the population extinction, and the region below is of the persistence. 
When /~ < 1, each curve has an asymptote N = k - 1  + '~/Arccos(/~). The dotted curve is the 
critical total patch number in the case when all the patches are identical. 

d i f fus ion process  in p r o p o r t i o n  to the gradient  of  p o p u l a t i o n  dens i ty  be- 
tween two adjacent  patches,  whereas  in ou r  mode l  the p o p u l a t i o n  emigra tes  
in p r o p o r t i o n  on ly  to the dens i ty  of  the source  pa t ch  itself. As for  ou r  
model ,  the cond i t ion  N < N A is a suff icient  (bu t  no t  necessary)  cond i t ion  
for  the popu l a t i on  ext inct ion,  as we can see in Fig. 4. In ou r  model ,  there  
exists a crit ical pa tch  n u m b e r  also in the case when  a p o p u l a t i o n  can  persis t  
i ndependen t ly  of  the total  n u m b e r  of  pa tches  if every  pa t ch  is identical .  This  
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is essentially due to the existence of a singular patch which has a relatively 
worse environment. 

(4) There are other cases for which there is no critical total number of 
patches so that population can persist independently of the number of 
patches ( > 3) even though it could not persist if all patches were identical or 
isolated. This is because a singular patch has a relatively and sufficiently 
better environment. In this case, the effect of a singular patch essentially 
stabilizes the population persistence for the spatial environmental change, 
that is, the change of available habitat number. 

On the other hand, although a singular patch effects the whole system 
independently of the total number of patches, the singularity of a patch 
contributes less to the population persistence as the total number of patches 
increases. In a large system, a local environmental change might not matter 
for the persistence of a population in it. 

Explanation. This result follows from the dependence of the critical curve on 
the total number of patches (Fig. 3). On the one hand, the region of 
population extinction in fl < 1 decreases as the total number of patches 
becomes larger, to vanish as N---, ~ .  The condition fi < 1 is sufficient for 
the persistence in the case of an infinite number of patches. Note that this 
condition is also necessary for the persistence when all patches are identical. 
On the other hand, in the region 1 < fl, where a population becomes extinct 
if all patches were identical, a singular patch influences the system indepen- 
dently of the total number of patches (Fig. 3). Indeed, if the growth in a 
singular patch can overcompensate for the leakage of the emigrant, which 
means fl ' < 1, the singular patch will make the system persistent even in case 
of an infinite number of patches with 1 < ft. 

These results are sensitive to the boundary condition of the system: the 
'edge effect' mentioned by many authors (for example, Othmer and Scriven, 
1971; Renshaw, 1972; May, 1973; Allen, 1987). The boundary condition in 
our model has already been mentioned in the third assumption on modeling: 
the 'absorbing' boundary. This boundary condition is not absolutely unre- 
alistic, because some organisms, especially those that move only by an 
external random force, can be regarded to disperse randomly (Okubo, 1980): 
for example, some subjects dispersing through membranes, seed dispersal, 
plankton dispersal, an epidemic. The 'absorbing' boundary condition has a 
negative effect on the persistence of population in the system considered, 
because, under this boundary condition, half of the migrants from each 
'edge' patch leave the system and never return, which is the 'largest' leakage 
from the system. But, as the total number of patches increases, the effect of 
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this boundary condition, that is, of the leakage of half emigrant from the 
'edge' patch, becomes relatively less significant, compared with that of the 
total net leakage of a portion of migrants between every two adjacent 
patches. In other words, in a large number of patches the leakage during the 
migration between every two adjacent patches becomes relatively more 
significant for the population persistence. 

In contrast, another typical boundary condition is the 'reflecting' condi- 
tion such that half of the migrants from each 'edge' patch return to the 
patch. In this case, an analysis similar to that of this paper is possible. 
However, it turns out to be much more complicated because this case 
ultimately implies the existence of three types of patches. Although this is 
still an open problem, it should be emphasized that it is an interesting one 
because some organisms may be regarded as identifying their habitat space 
and not exiting from it. For example, territory recognition, the geographical 
or temperature limitation of habitat, and a potential barrier for the organisms 
subjected to an environmental potential. Incidentally, if the boundary condi- 
tion is 'cyclic', that is, if the first patch is one of the two neighboring patches 
of the Nth patch, the location of a singular patch makes no contribution to 
the population persistence because the topological relation among the patches 
is identical whatever patch is singular. But it is unlikely that patches may be 
spatially arranged in a cycle, though the migrating relation among patches 
might become cyclic like some cyclic chemical reactions. This boundary 
condition may sometimes make the mathematical analysis so easy that it has 
been used in the following sense (Turing, 1951; Othmer and Scriven, 1971; 
May, 1974). In case of a sufficiently large number of patches, the eigenval- 
ues of those three boundary cases become close to each other (May, 1973, 
1974, appendix II). Hence, the result of the absorbing boundary case is 
approximately applicable to the other boundary case when the total number 
of patches is sufficiently large, though the result may essentially depend on 
the boundary condition when it is small. In some cases, the system with a 
large size may be analyzed in this sense: for example, a mult i-membrane 
system, a large cellular network, a widespread epidemic, and generally, a 
spatially discretized compartmental system. 

In other cases, the 'edge' effect may be important to discuss theoretically 
population dynamics, because, of course, not a few systems in nature seem 
to have such a small size that this effect is not negligible: for example, an 
infectious endemic, and an archipelago. 

In the case of epidemics in a group of some relatively isolated susceptible 
units such as towns or animal herds, our results can be interpreted as 
follows: For the purpose of stopping the outbreak through the group, 
immunization is more effective when it is done for the more centrally 
located unit. But, if this susceptible group is very large, a local immunization 
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cannot be effective, while some treatment for the infectors between units is 
more effective. In contrast, even if an epidemic breaks out  in a unit, its 
outbreak may not matter for the whole group if the source unit is located in 
the edge or if the group size is sufficiently large, while it may become serious 
if it is located in the central part of the group. 

Further, we can interpret our results in another practical case: the 
artificial local change of environment for a populat ion such as some plank- 
ton inhabiting a multi-patch system, or some birds inhabiting in an archi- 
pelago. Suppose that a patch or an island is polluted for some reason. The 
more centrally located the patch or the island is, the more serious the 
pollution is for the population persistence. And even if the pollution does 
not seem serious when it is pointed out, it may become serious after some 
disturbance reduces the number of available patches or islands. In another 
case, suppose that its population is decreasing and an artificial environmen- 
tal change is projected in order to preserve the organism. The more effective 
way is to make an artificial enrichment of environment of the patch or the 
island which is more centrally located in the system, or to increase the 
number  of available patches or islands. 

A similar interpretation is possible in various contexts such as a cancerous 
cell in a mult i-membrane system through which some organic or inorganic 
matters diffuse, and an agitational or antisocial communi ty  of many com- 
munities among which some information propagates. 

The discussion in this paper, as well as that in Allen (1987), sheds some 
light on populat ion persistence. This has been seen to depend on the total 
number  of patches available for the habitat. Moreover, it has been shown 
that population persistence is seriously influenced by  a qualitatively differ- 
ent patch in a system. An experimental study by Fahrig and Merriam (1985) 
clearly indicates the importance of such aspects for the populat ion dy- 
namics, too. The study of island biogeography and that of a cellular-like 
system in which a subject disperses should pay attention to the number  of 
islands (cellular components) and the qualitative relationships among them. 
It is of course clear that our model is too simple to allow for some direct 
comparisons with specific data. But even some simple models may  make 
some debating points clear. The one-dimensional model has been the start- 
ing point of mathematical study of biological phenomena;  we expect the 
same to happen for the model considered in this paper. 
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