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ABSTRACT 

Seno, H., 1990. A density-dependent diffusion model of shoaling of nesting fish. Ecol. 
Modelling, 51: 217-226. 

The shoaling of fish about a nest is considered by means of a mathematical model with a 
density-dependent diffusion equation. The size of the shoal is assumed to be determined by 
the balance between two counteracting forces: aggregation and dispersion. The parameter 
dependency of shoal size and density distribution within the shoal is investigated. Although 
the model is simple, it is expected to contribute to understand some other biological 
aggregations: swarm, flock, etc. The procedure of fitting data is discussed. 

INTRODUCTION 

Fish  g rouping  is ve ry  f requen t ly  obse rved  in na ture .  Each  g roup ing  might  
have  its behav iora l  r eason  in the biological  sense (Shaw, 1978; Par t r idge ,  
1982; Pi tcher ,  1986). I t  is o f t en  cal led ' shoal ing '  or  ' school ing ' .  Avo id ing  the 
semant ic  confus ion  be tween  these two terms,  we shall use the t e rm  ' shoa l '  to  
m e a n  a g roup  of  fish which r ema in  toge ther  for  social  reasons  ( K e n n e d y  an d  
Pitcher ,  1975; Pi tcher ,  1983), while ' s choo l '  is de f ined  as the  s t ruc tu red  
swimming  group  wi th  a synchron iza t ion  or  a polar iza t ion .  As is c lear  f r o m  
these def ini t ions,  school ing  can  be  r ega rded  as a co n cep t  i nc luded  wi th in  
tha t  of  shoal ing (Pi tcher ,  1986). Howeve r ,  we r e m a r k  tha t  fish g ro u p in g  
c a n n o t  be  called school ing bu t  can  be  cal led shoal ing  w h e n  ne i the r  the  
synchron iza t ion  n o r  the po la r i za t ion  is obse rved  or  ident i f ied  a m o n g  the 
behav iors  of  ind iv idual  fish. Shoal ing m a y  c o r r e s p o n d  to  "f locking '  of  b i rds  
or  ' swarming '  of  insects.  
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In this paper, with a mathematical model we shall consider the shoaling 
of fish about  the nest. In particular, we shall focus on the size of shoal, 
which seems to be highly correlated with some intraspecific factors, and 
moreover,  which can be regarded as a home range for the fish group with its 
nest. Although fish schooling has been studied with some mathematical  
models  (Breder, 1954; Okubo  et al., 1977; Okubo,  1980, 1986; Anderson,  
1981) there have been very few mathematical studies on the shoaling of 
nesting fish (Pitcher, 1986). It is expected that our analysis will become a 
starting point  of such studies and moreover, will give a stimulus to the 
theoretical study on fish shoaling. Further, we shall discuss the fitting way of 
our model  to a data on shoal. 

M O D E L L I N G  A S S U M P T I O N  

Following Parr (1927), Breder (1954) and Okubo  et al. (1977), we consider 
the stabilized shoal size in terms of the balance of two counteracting forces, 
aggregating and dispersing ones. However,  differently from them, we shall 
not  consider the shoal size to be the result of the two counteracting forces 
among individual fish. Instead, our purpose is to discuss shoal size as 
resulting from two counteracting forces on each individual. 

Aggregating force. An aggregating force is assumed to be directed to the 
nest. Thus, this force embodies a kind of fish's adhesion to the home range, 
for example, with the memory  of direction to the nest. We can consider an 
environmental  potential which has its minimum at the center of  the nest and 
produces a force directed to the nest. We shall investigate a special type of it 
in the following analysis. 

Dispersing force. A dispersing force is assumed to be given by  a density-de- 
pendent  diffusion (Mimura, 1980; Namba,  1980; Okubo,  1980; Teramoto,  
1982). Diffusion works to make the distribution expand in the space. 
Though this assumption might seem to neglect too many social aspects of 
shoaling, we can assume that the densi ty-dependency of diffusivity is a 
consequence of intraspecific competit ion for food among fish in the shoal. 
At a site in the shoal, the higher the density the stronger the tendency to 
avoid staying there. As far as the food distribution is spatially uniform and 
its depletion by  feeding does not have any significant effect on the fish 
dynamics, this assumption is natural because the individual fish must avoid 
a crowded place to get a larger share of food at another less crowded place. 
This tendency must  become more pronounced as the group size gets larger. 

Group size. The total populat ion of shoaling fish is assumed to be constant  
for a considered group. No  reproduction, no migration, and no predation 
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are assumed in the considered shoal. In such a case, the shoaling may be 
beneficial principally for proper  sharing of food, for effective sampling, or 
for information transfer among the individuals. Moreover,  even if there is 
predator  density around a shoal, we can consider that the effect may be 
implicitly included in a parameter  of environmental  potential because it 
determines the strength of fishes' adhesion to the home range related to the 
strength of predat ion pressure. 

MODEL 

We consider a shoal in 2-dimensional space. In other words, we focus on 
the horizontal nature of the shoal and do not explicitly consider vertical 
structure. Nest  of the type considered is assumed to occur in sufficiently 
shallow water, and the fish can be considered to spread out uniformly in the 
vertical dimension. Further, since the aggregating force is assumed to be 
directed to the center of nest, and its strength is assumed to depend on the 
distance from the center of nest, our analysis on the 2-dimensional model  
can be  actually regarded as that on the 1-dimensional one, as we shall see in 

the following section. 
Our model  is described as follows: 

On 
- div J (1) 

Ot 
m 

J =  -8(n)~;  grad n - n grad U (2) 

where 'grad'  is a differential operator  which, operating upon a function of 
several variables, results in a vector, the coordinates of which are the partial 
derivatives of the function. Also, 'div' is a differential operator  that gives the 
scalar product  of the given vector and the vector whose components  are the 
partial derivatives with respect to each coordinate. In both  cases, their 
concrete forms depend on the selected coordinate system (e.g., see Arfken, 
1970). n is the populat ion density at a site in the space and at time t. J is 
the flux of populat ion density which is the 2-dimensional vector. The first 
term of the right-hand side of (2) represents the densi ty-dependent  diffusion 
force, which becomes stronger as the density gets higher. ~ is the diffusivity 
when n is equal to x, which represents a conventional reference density. The 
power  m is the index of strength of density dependency of the diffusion. The 
second term means the aggregating force directed to the nest. U is a scalar 
function of only the distance from the origin which corresponds to the 
center of shoaling fishes' nest. This type of 1-dimensional densi ty-dependent  
diffusion system has been studied by  Shigesada et al. (1979), Shigesada 
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SHOAL @ 
Fig. 1. Model  of the fish shoal about a nest. The shoaling zone is a disk of radius r* .  
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(1980) and Teramoto and Seno (1988) as a model for insects' or cells' 
aggregation phenomena (also see Okubo, 1980). 

To consider the size of a stabilized shoal, we shall investigate the sta- 
tionary solution of our model. By our assumption, the stationary distribu- 
tion n* is a function of only the distance, r, from the origin, and the 
shoaling zone is modelled by a disk region (Fig. 1). It is given by solving 
J =  O: 

_ ~(_~_) m dn*  . dU 
drr n ~ = 0 (3) 

In addition, the conservation of total number  of population in the shoal 
implies the following: 

r *  

2~r fo n*r dr = N (4) 

where N is a constant of group size, and the factor 2¢r is resulted from 
integration with respect to the angle expanded by the shoal around the nest. 
r*  is an unknown constant which denotes the edge of the distribution n*, 
that is, the shoal size. Thus, the special following relation is required: 

n * ( r * )  = 0  (5) 

The existence of such a finite r* is a characteristic nature of density-depen- 
dent  diffusion (Okubo, 1980). By means of (3), (4) and (5) (Appendix A), we 
can obtain: 

n*=  [U(r*) -g(r ) ]  1/m (6) 

N 1/m 
f o r * [ u ( r * ) - U ( r ) ] l / m r d r = ~ - ~ ( m - ~ )  (7 )  

Equation (7) determines the shoal size r*.  
A special environmental potential is: 

U( r )  = sgn(v) kr ~ 
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where k is a positive constant. Although 3' is also a real constant, the 
characteristic of considered potential field so significantly depends on the 
sign of 3' that we shall consider separately the cases of positive and negative 

3': 

3 ' = a > 0  
In this case, the potential field produces increasing force with distance 

from the origin. Although this potential field of the harmonic oscillator 
seems to be unrealistic in some biological systems, especially at a far 
distance, it may be useful to discuss the relatively small scale of aggregation 
as an approximated field for such cases. Substituting this potential into (6) 
and (7), we obtain: 

n* = ( ~ - ) l / m [ 1 - -  (r--ff~)et] 1/m ( 8 )  

1/(2 + a/m ) 
al + 1/~ N 

= ( 9 )  
r* 2 ~ 1 / ~  B ( 2 , 1 + l )  

where ~ -= mx"ka/8, and B is the Beta function defined by: 

B(a,b)=f'x~-l(1-x)b-ldx ( 0 < a ,  b) (10) 
J0 

As easily seen in (8), the stationary distribution becomes more platykurtic 
(flatter) as rn gets larger, while it becomes more leptokurtic (steeper) as m 

IX 

0 1 

m 
Fig. 2. (m,  a ) -dependency  of densi ty  d is t r ibut ion  within shoal when  "y = a > 0. Each b o u n d a r y  
is included within the shadowed region. Depend ing  on  those parameters ,  the d is t r ibut ion  
shows a variety of pat terns .  
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gets smaller. In Fig. 2, we schematically show how the distr ibut ion pat tern  
depends  on the parameters  m and a. It is clearly shown that  those parame-  
ters reflect the density distr ibution within the shoal and that  an appropr ia te  
selection of them can realize a variety of dis tr ibut ion patterns.  F r o m  (9) we 
remark that: 
r* ~x N 1/(2+a/m) (11) 

T = - a < 0  
Contrary  to the previous case, the aggregating force does not  reach a far 

distance, and the individuals at a far distance have tendency to very low 
adhesion to the home  range. Besides, with this potential  function,  the 
potential  field diverges at the origin, and so does the stat ionary distribution.  
Al though such a distr ibution is unrealistic, this potential  funct ion can be 
useful to approximate  the density distr ibution relatively far f rom the nest. In 
the same way as before, we can obtain the stat ionary distr ibut ion and the 
shoal size in this case: 

n * = ( r ~ - ~ ) l / m { ( r - ~ )  a -  1} l/m ( 1 2 )  

1/(2 - a/m) 
a 1 + 1/m N 

r*  = (13) 
2 ~r rl' /m B ( 2a m'l l + m l )  

where ~ is as before. In Fig. 3, it is schematically shown how the distribu- 
t ion pat tern  depends  on m and a. 

IX rk 
0 1 

IT] 
Fig. 3. (m,  a ) -dependency  of densi ty  d is t r ibut ion  within shoal when  y = -  a <  O. Each 
bounda ry  is included wi th in  the shadowed region. 
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We note that, independently the sign of  y, the relation between the shoal 
size r* and the group size N can be expressed in the following form: 

r*  cx N 1/(2+v/'n) (14) 

DISCUSSION 

We have shown that the balance between two counteracting forces of 
aggregating and dispersing determines a unique size of the shoal. Our model 
may be useful as a rough description of shoaling. Indeed, although it is likely 
that each parameter  embodies  several biological factors which determine the 
shoal pattern, it is expected that some significant aspects of the fishes' shoal, 
or at least some debating points on it, may be revealed by fitting our model  
to the data. 

Assuming that the data of fish populat ion distribution n* and of total 
populat ion N are obtained for a shoal, we can then estimate the parameters 
in our model, m, a and '1, making use of the following relation given by  (3): 

log d ( n * ) "  I d r  = log n + (~' - 1) log r (15) 

where the left-hand side can be obtained as the data with its relation to the 
distance r from the center of nest. As for a possible practical way to obtain 
the relation corresponding to (15) from the data, see Appendix B. Here we 
discuss a way to estimate the parameters through (15): At first, the parame- 
ter m must be appropriately selected to satisfy a linear relation between the 
value of the left-hand side of (15) and log r. Next, making use of the graph 
of (15) for a selected m, we can determine ~, from the slope and ~9 from the 
cross point  with the axis. With all these selected parameters,  we can obtain 
the shoal size r*  through (9) or (13), and can compare it with the observed 
size. 

Selected values of m and "y can be tested through the relation (14). 
Indeed, by sampling shoal sizes with a variety of total population, we can 
obtain the data of relation between the spatial shoal size and the total 
populat ion in it. Then, making use of (14), we can compare the data to the 
result by our model  with a value T/rn .  

It is likely that some dynamical parameters  may change nonlinearly as the 
spatial shoal size expands. In such a case, since m and T might be  functions 
of r* ,  the adaptabil i ty of a set of m, y and ~/ determined from a data set 
might be restricted only for a special range of shoal size. 

As the parameters  m and y respectively represent the strength of 
densi ty-dependency of the shoaling fishes' diffusion and the strength of 
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adhesion to the nest, the estimation of those parameters is expected to show 
intuitively some aspects of the nesting fishes' shoal. 

Such data-fitting seems to be possible for some cases of larval nesting 
shoals: for example, smallmouth-bass nesting behavior has been studied in 
North  American lakes and streams, and observed is the shoaling of larval 
fish about the nest, a phenomenon that takes place during a period of a few 
weeks following hatching (D.L. DeAngelis, private communication). During 
this time, the male parent guards an area about the nest against possible 
predators on the nest. During hours of light, the larval fish forage for 
zooplankton. But we have not yet obtained data enough to carry out the 
fitting. 

Although our model was discussed with respect to shoals of fish about a 
nest, it can be applied to other biological aggregating phenomena:  for 
example, insects' swarming, animals' flocking, etc. With some mathematical 
models in the previous works (as for review, see Okubo, 1986), our model is 
expected to contribute to considering such biological aggregating phenom- 
ena. 
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APPENDIX A 

In this appendix, explained is the derivation of equations (6) and (7). To 
obtain the stationary solution for (1), it is required to solve (3). Equation (3) 
has a trivial solution n* = 0. But we shall focus on the non-trivial solution 
for (3) with assumption of its stability. When m = 1, the non-trivial solution 
has been proved to be globally stable as the stationary solution for (1) 
(Shigesada et al., 1979). After some modifications of (3), it is found to satisfy 
the following equation: 

d ( n * ) "  dU 
mK m d r  d r  

This can be easily solved: 

( n , ) m =  mKm 
- - - u - U +  C 

where C is determined by equation (5), and consequently (6) is obtained. 
Equation (7) is obtained by substituting (6) into (4). 
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Fig. 4. Division of shoaling zone into M rings. As for the detail explanation, see the text. 
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A P P E N D I X  B 

We explain here a possible practical way to obtain the relation (15), 
making use of a set of data on fish distribution within shoal. Assume that 
the distribution is stationary and that it is possible, with a sampling 
technique, to count the number  of individuals within a shoal. Approximat-  
ing the shoal with a disk region, let us divide the shoal region into a number,  
say M, of rings which have common center and width, say Ar, given by 
Ar = r*/M. Then, number  each ring as the 1st . . . . .  the M t h  (see Fig. 4). 
Put the counted population n* (i = 1, 2 . . . . .  M )  within each ring. It is 
clear that: 

M 

N =  E n *  
i=1 

Now, making use of well-known discretization for derivative, we approxi- 
mate the r-derivative as follows: 

dn___~* n * + l -  n* ( i =  1, 2, M -  1) 
d r  --" Ar " ' "  

At last, with a modification for convenience, the relation (15) gives the 
following approximated form: 

log n*+l - n* ( m -  1) log n* + -Ar =l°g *l+ ( 7 - 1 )  l ° g ( i + l ) A r - l ° g m  

where i -- 1, 2 . . . . .  M -  1. With a routine ment ioned in the main text, we 
can determine the parameters m, 3, and 7/through this relation with a set of 
data. 
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