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Abstract 

Shoaling by juveniles of a cichlid fish Lepidiofumprologus elongatus in Lake Tanganyika, central Africa, is 
considered by means of a mathematical model with a density-dependent diffusion equation. The spatial size of 
shoaling is assumed to be determined by the balance between two counteracting forces: aggregation and dispersion. 
The data on the spatial size of shoaling and the group size are analyzed by the model. Then those tendencies of 
aggregation and dispersion are quantified. The result gives qualitative information to understand shoaling. 
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1. Introduction 

In the last decades, some density-dependent 
diffusion equations were investigated to reveal 
some of their interesting features that are differ- 
ent from those of density-independent diffusion 
equations (Shigesada et al., 1979; Mimura, 1980; 
Namba, 1980; Teramoto and Seno, 1988; Seno, 
1989, 1991~). For a review of prototypes of stud- 
ies on density-dependent diffusion equations, see 
Okubo (1980). 

In some cases, it is very difficult to deal analyt- 
ically with dynamical aspects of density-depend- 
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ent diffusion systems, so that simulation by com- 
puters is inevitable. On the other hand, although 
the dynamical aspect is worth while investigating, 
the stationary solution may sometimes be suffi- 
cient to give interesting results contributing to the 
understanding of a biological phenomenon 
(Teramoto and Seno, 1988; Seno, 1990, 1991a,b). 
Despite that very few biological systems can be 
regarded as being stationary, a stationary solution 
in a model may be useful as an approximation to 
consider a quasi-stationary biological system. 

As an application of density-dependent diffu- 
sion model for the real phenomenon, we deal 
with a type of fish grouping. Fish grouping is very 
commonly observed in nature. It is often called 
“shoaling” or “schooling” (see Fig. 1). Each 
grouping might have its behavioral reason in the 
biological sense (Shaw, 1978; Partridge, 1982; 
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Fig. 1. Category of fish grouping (after Pitcher, 1986). 

Pitcher, 1986). Following Parr (1927), Breder 
(19541, and Okubo et al. (1977), we consider the 
stabilized shoal size in terms of the balance of 
two counteracting forces: aggregation and disper- 
sion (see Fig. 2). However, different from the 
authors mentioned, we do not consider the shoal 
size to be the result of the two counteracting 
forces among individual fishes. Instead, our pur- 

Fig. 2. Modelling of biological aggregation pattern formation. 

pose is to discuss shoal size as resulting from two 
counteracting forces on each individual (Seno, 
1990, 1991b). Our model is applied to analyze the 
data for the shoaling of the juveniles under 
parental guarding of cichlid fish, Lepidiohmpro- 
Zogus elongutus, in Lake Tanganyika, central 
Africa. The result gives qualitative information to 
consider shoaling. 

2. Modelling assumptions 

Aggregating force. An aggregating force is as- 
sumed to be directed to the center of an aggre- 
gating group. We can consider an environmental 
potential which has its minimum at the center 
and produces a force directed to it (see Fig. 2). 
The environmental potential mathematically em- 
bodies the tendency of aggregation, for example, 
to reduce the vulnerability to predation. 

Dispersing force. We can assume that the density- 
dependence of diffusivity is a consequence of 
intraspecific competition for food among fish in 
the shoal. At a site in the shoal, the higher the 
density, the stronger is the tendency to avoid 
staying there. 

Group size. The total number of shoaling individ- 
uals is assumed to be conserved for a considered 
group, realizing a quasi-stationary situation. No 
reproduction, no migration, and no predation are 
assumed during the considered period which is 
sufficient for the shoal to be stabilized under 
balance of the two counteracting forces. 

3. Model 

First, we consider a shoal in 2-dimensional 
space, since the aggregating force is assumed to 
be directed to the shoal center and its strength is 
assumed to depend only on the distance from the 
center. Our model is described as follows (Seno, 
1990, 1991b): 

an(x, t> 
at 

= -divJ(x, t) (1) 
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grad n(x, t) 

-n(x, t) *grad U(x). (2) 

where grad is a differential operator that, operat- 
ing upon a function of several variables, results in 
a vector, the coordinates of which are the partial 
derivatives of the function. Also div is a differen- 
tial operator that gives the scalar product of the 
given vector and the vector whose components 
are the partial derivatives with respect to each 
coordinate. In both cases, their concrete forms 
depend on the selected coordinate system (e.g., 
see Arfken, 1970). n(n, t) is the population den- 
sity at spatial site x at time t. The 2-dimensional 
vector J(x, t) represents the flux of population 
density at spatial site x at time t, which is the 
2-dimensional vector. The first term of the right- 
hand side of Eq. 2 represents the density-depend- 
ent diffusion force, that is, the dispersing force, 
which becomes stronger as the density gets higher. 
6 is a constant which means the diffusivity when 
rr is equal to a constant K, which represents a 
conventional reference density (Okubo, 1980). 
The power m is the index of strength of density- 
dependency of the diffusion, that is, the index of 
strength of the tendency to avoid crowding: the 
larger the index m, the stronger is this tendency. 
The second term means the aggregating force 
directed to the shoal center, due to the environ- 
mental favorability for the fish population. U = 
U(r) is a scalar function of only the distance r 
from the shoal center. 

To consider the size of the stabilized shoal, we 
investigate the stationary solution n(x, t + m) = 
n *(t-j of our model, given by solving J = 0. In 
addition, the conservation of the total population 
in the 2-dimensional shoal implies the following: 

n*(r).r dr=N=constant, 

where N is a constant of group size, and the 
factor 2~ results from integration with respect to 
the angle expanded by the shoal around the cen- 
ter. r * is an unknown constant which denotes the 
edge of the population distribution rz *(I), that is, 
the radius size expanded by the shoal. Since the 

population density should be zero at the edge of 
the shoal, the following relation is required: 

n*(r*) =o. 

The existence of such a finite r * is a characteris- 
tic of density-dependent diffusions (Okubo, 1980). 
At last, following Seno (1990), we can obtain 

rnKrn 

i I 
l/m 

n*(r)= - 
6 

.{u(r*) - U(r)}l’m, 

where r * is the unique positive solution for 

[*{U(r*) - U(r)}“m.r dr 

N 6 1’m =_. - 
i I 2r rnKrn . 

In the case of 3-dimensional space, the same 
argument can be applied, while the aggregating 
group is regarded as having the shape of a 3-di- 
mensional ball. The aggregating force directed to 
the center of the ball works on each individual in 
it. The resulting equation is fundamentally the 
same as in the 2-dimensional case, except for the 
following conservation relation to determine the 
stationary shoal size r * : 

[*{U(r*) - U(r)j1”“.r2 dr 

N 6 1’m =_. ~ 
( 1 4%- rnKrn ’ 

In order to analyze the data sampled in the 
field, the environmental potential ZJ in our model 
requires a specific form, as follows: 

( 

y.krY 
U(r) = _y.krY if;=;; 

> 

where k is a positive constant. y is a real con- 
stant. When 1 < y, the aggregating force is the 
stronger in the location further from the shoal 
center and is zero at the center: the long-distance 
force. On the other hand, when y < 1, the aggre- 
gating force has the inverse tendency, so that the 
force is the weaker in the location further from 
the center and is the strongest at the center; the 
short-distance force. If y = 1, the aggregating 
force has a positive strength independent of the 
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0-y 
Fig. 3. Parameter dependency of the stationary distribution 
n* and the strength of aggregating force F (for detailed 
explanation, see text). 

distance from the shoal center: the position-inde- 
pendent force. We do not consider the case when 
y=O; then n*= 0 for any r, which means all 
individuals disperse. The above tendencies are 
emphasized more as the absolute value I y I gets 
larger. The fish distribution in the shoal is deter- 
mined by those parameters y and m (Seno, 1990; 
see Fig. 3). Eventually, the relation between the 
shoal size r * and the group size N can be ex- 
pressed in the following form: 
,. * a Nr/(d+Y/m) > (3) 

that is, 

log N = d + y 
( ) 

. log r * + constant, 
m 

where d = 2 and d = 3 in the 2-dimensional and 
3-dimensional case, respectively. We will use this 
proportional relation to investigate the data of 
the juvenile shoaling of the cichlid fish, Lepidio- 
lamprologus elongates, in Lake Tanganyika, cen- 
tral Africa. 

4. Shoaling of Lepidiolamprologus elongatus 

The shoaling considered in this paper is of 
juveniles under parental guarding of the sub- 

strate-brooding cichlid fish, Lepidiolamprologus 
elongatus, endemic to Lake Tanganyika, central 
Africa. Breeding parents of this species guard 
their brood through the fertilized egg, yolk-sac 
embryo ( = larva), and free-swimming juvenile ( = 
fry) stages. After yolk absorption (about 10 days 
after spawning), juveniles appear out of a shelter 
hole and form a shoal in water column right 
above the shelter during daytime, where they 
feed on zooplankters (Nakai et al., 1991; Nakai, 
1994). At night, the juveniles rest on the bottom 
around the shelter hole (Nakai, personal observa- 
tion). Since most of the breeding pairs succes- 
sively utilize the same spawning/brooding sites 
all year round (Nakai, 19941, the shoals of juve- 
niles are continuously formed in almost the same 
location. The shoals usually disappear 3 months 
or more after spawning when the juveniles reach 
sufficient body size for independence from their 
parents (Nagoshi, 1985). 

The present analysis deals with shoals of juve- 
niles aged O-60 days, when the brood seldom 
suddenly decreases in size nor wholly disappears 
(except for “slaughter” on broods, see below), but 
usually keeps a relatively stable size, even though 
the brood size gradually decreases day by day 
probably due to predation. Here, we should men- 
tion that the daytime predation on broods was 
sufficiently infrequent for the assumption of “no 
predation” during the period considering the bal- 
ance of two counteracting forces. The spatial size 
of each shoal was directly measured in the field, 
and the number of juveniles in the shoal, that is 
the brood size, was later counted on the photo- 
graph taken at the same time as measurement of 
the spatial shoal size. Since each shoal of juve- 
niles was continuously observed after being 
spawned, the exact age of the shoal was known. 
Accordingly, the age of the shoal was represented 
as the number of days after appearance of the 
shoal. 

5. Analysis of data 

Although it is expected that some photographs 
of the shoal will give the information of distribu- 
tion of fish in the shoal, we now deal only with 
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the data of the spatial shoal size and the brood 
size, which are easier to be estimated than the 
fish distribution in the shoal. We use Eq. 3 and 
estimate the slope of the line fitted to the graph 
of log(spatia1 shoal size)-log(brood size) (Figs. 4 
and 51, and lastly calculate the value of y/m by 
the least square method. As easily seen in Fig. 4, 
those plots by the 2-dimensional model do not 
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seem to show any significant linear correlation 
between log(spatia1 shoal size) and log(brood 
size), while those by the 3-dimensional model do 
(Fig. 5). This means that the 3-dimensional model 
could reflect better the spatial characteristics of 
the considered shoal. 

The result is shown in Fig. 6. It is shown that 
the value y/m does not seem to have any signifi- 
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Fig. 4. Data of the shoaling of the cichlid fish, Lepidiolumprologus elongatus, in Lake Tanganyika, central Africa. The vertical axis is 
of the group size, while the horizontal is of the spatially horizontal shoal size, that is, the 2-dimensional extension length of the 
shoal. The data is grouped with respect to the age represented by the number of days after the appearance of shoal. 
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Fig. 5. Data of the shoaling of cichlid fish, Lepidiolamprologus elongatus, in Lake Tanganyika. The vertical axis is of the group size, 
while the horizontal is of the 3-dimensional shoal size, which is the radius of a ball corresponding to the shoal. The radius (r) is 
calculated regarding the shoal as a ball which has the volume equivalent to that of the ellipsoid of revolution given by the 
3-dimensional data on the size of shoaling. 

cant variation in the later period (10 + days after ity to predation specific to the period. The juve- 
the appearance of shoaling), while it takes a niles of O-9 days of age (younger juveniles) have 
significantly different value in the earlier period a semi-transparent and less pigmented body of 
(age O-9 days). This might mean that the ratio about 7-10 mm total length (for description, see 
(the strength of aggregating tendency)/(the also Mihigo, 1986). When the guarding parents 
strength of dispersal tendency) is almost constant are temporally absent, the juveniles are immedi- 
during the period of shoaling except for the ear- ately subject to predation by almost all fishes 
lier, relatively short, period. residing or foraging around them. That is, the 

This significantly different result for the shoal younger juveniles should be defended against any 
of O-9 days of age might be due to the vulnerabil- approaching fish which is regarded as a “poten- 
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Fig. 6. y/m estimated for the data of the shoaling of the 
cichlid fish, Lepidiolamprologus elongatus, in Lake Tan- 
ganyika. The result of t-test is overlaid: * P < 0.01; * * P < 
0.02; * * * P < 0.03; non-significant in the age O-9 class of 
Z-dimensional model case. 

tial predator” for the juveniles of this period. The 
juveniles older than approximately 10 days after 
yolk absorption (older juveniles) gradually be- 
come beige-colored and well-pigmented, and 
reach the large body size sufficient to be free 
from predation by many potential predators, al- 
though some fish still exist specialized in hunting 
those juveniles under parental guarding (= 
“brood predators” in Nakai, 1994, or “fry eaters” 
in Hori, 1987). This difference in vulnerability to 
predation between the younger and the older 
juveniles may explain our result. 

However, we should note that, since the least 
square method to estimate the slopes of fit lines 
was applied all the plots, the distinct result for 
the shoal of age O-9 days might be just an arith- 
metic ghost due to specifically distributed values 
of some of the data. Indeed, as seen in Fig. 5, the 
slope around 1.0 seems to be fit also for that of 
age O-9 day. If so, it would result that the ratio 
(the strength of aggregating tendency)/(the 
strength of dispersal tendency) is almost constant 
around -2.0 over the whole period in which the 
shoal exists. 

It should be remarked that, with the 3-dimen- 
sional model, y results in a positive value around 
1 and less than 1 for the shoal of O-9 days of age, 
and negative values for those of 10 + days. This 
means that, for the shoal of O-9 days, the aggre- 
gating force has the tendency of short-distance, 
whereas the strength decreases very slowly in the 
distance from the shoal center. The latter is be- 
cause y is near 1. As mentioned above, for the 
juveniles of age O-9 days, the vulnerability to 
predation is so much higher than for the older 
juveniles, that each individual juvenile is under a 
high risk. Thus, it would be essentially necessary 
for each individual to have the memory of the 
direction to the shelter, which is now the shoal 
center. In addition, the informational communi- 
cation among juveniles would be still premature 
for the younger shoal, that is, the behavior as a 
group would not be yet founded. In such a case, 
each juvenile must behave by itself, not relying on 
the information from the others in the shoal. 
Therefore, each individual must have the aggre- 
gating tendency almost independent of its posi- 
tion in the shoal. On the other hand, for the 
older juveniles, the vulnerability to predation be- 
comes lower, and the informational communica- 
tion among juveniles has been sufficiently 
founded. Then, juveniles can rely on the informa- 
tion from the others and can behave relatively 
free from the memory of the direction to the 
shelter. This can be a reason for the result of y 
for 10 + days of age. As mentioned before, this 
argument might be applied also for O-9 day age. 
If so, it might be concluded that the informa- 
tional communication among juveniles is founded 
in the very early period after the foundation of 
shoal. 

The main purpose of the present work is to 
analyze the relation between the spatial shoal 
size and the brood size, through the mathemati- 
cal model assuming the balance of two counter- 
acting forces. Although the quantity of y/m might 
be expected to characterize some intrinsic ten- 
dency of shoal and to give an indication of disap- 
pearance of shoal, it could not be in the frame- 
work of the present analysis. In fact, all shoals of 
juveniles eventually disappeared as they grew, but 
other reasons can be considered for such disap- 
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pearances. “Slaughter” on broods, which may be 
accidentally caused not by brood predators 
(daytime visual predators) but by nocturnally for- 
aging predators, may explain some cases (see also 
Nakai et al., 1990). No indication for such acci- 
dental disappearances caused by a solely external 
factor would be detected beforehand. Other shoal 
disappearances may be attributed to qualitative 
change of the parents with a brood of sufficiently 
grown juveniles, who must prepare for the next 
spawning or must protect their newly spawned 
brood against their previous one, because large 
(previously-cared) juveniles can be a strong 
predator on the newly appearing juveniles which 
are vulnerable to almost all fish. Then, we should 
take the “parental” force into account, which will 
oblige the shoal of juveniles to move away or 
disappear. In the present model, the effect of 
such parental force might be regarded as involved 
in those parameters m and y. 

However, in the present analysis, the juveniles 
dealt with were young enough to neglect such 
later disappearances caused by the parental force. 
Further, the shoals of juveniles could be formed 
only under safety warranted by parental guard- 
ing; they became almost demersal without guard- 
ing such as experimental removal of parents or 
their independence. In addition to the above 
circumstantial evidence in the field, another ex- 
planation based on the characteristics of y and m 
is possible for the lack of indication of disappear- 
ance: y and m are contemporarily decreasing as 
the fish grows in the shoal. At any rate, disap- 
pearance of broods could not be easily indicated 
by the quantity of y/m nor be explained by the 
unbalance of the two counteracting forces as- 
sumed in the present model. 

It is still better to mention that we dealt with a 
variety of brood size (a part of small-sized broods 
being attributable to the accidental “slaughter”), 
and that the statistical operation may enshadow 
the variation of the quantity, that is, the data 
dealt with involve so various observed shoals that 
some disappear in the earlier age class than oth- 
ers. To get more information, making use of this 
model, the analysis on the density distribution in 
the shoal is necessary. 

6. Conclusion 

The model introduced in this paper is shown 
to have a potential to give some useful informa- 
tion on the shoaling dynamics. The shoaling of 
the juvenile cichlid fish, Lepidiolamprologus elon- 
gatus, is the case. It is indicated that the shoal in 
the earlier period has the intrinsic character dif- 
ferent from that in the latter period. 

The analysis presented in this paper is applica- 
ble to the shoaling of the other species. Then, it 
will be interesting to reveal the difference of 
intrinsic character among a variety of shoals and 
to approach the more detail nature of shoaling 
dynamics. Moreover, our modelling analysis may 
be able to be applied to the other aggregation 
phenomena, for instance, “flocking” of birds or 
“swarming” of insects. We expect that our analy- 
sis will be also useful to understand such phe- 
nomena. 
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