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Abstract

We analyze a time-discrete mathematical model of host–parasite population dynamics with harvesting, in which the host can be

regarded as a pest. We harvest a portion of the host population at a moment in each parasitism season. The principal target of the

harvesting is the host; however, the parasite population may also be affected and reduced by a portion. Our model involves the

Beverton–Holt type density effect on the host population. We investigate the condition in which the harvesting of the host results in an

eventual increase of its equilibrium population size, analytically proving that the paradoxical increase could occur even when the

harvesting does not directly affect the parasite population at all. We show that the paradox of pest control could be caused essentially by

the interspecific relationship and the intraspecific density effect.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In agriculture, one of the serious problems has been the
pest outbreak. So pest management has been studied
empirically and theoretically (for reviews, see Metcalf
and Luckmann, 1975; Huffaker, 1980; Plant and Mangel,
1987; Lane et al., 1999; Hochberg and Anthony, 2000;
Hajek et al., 2007). In many cases pesticides have been
used against the pest. However, in some cases, the
pesticide is effective only in the early period of its
introduction and results in an outbreak of the pest in the
later period. Such a paradoxical phenomenon in the pest
control is often called the pest resurgence. Many investiga-
tions of the resurgence have been carried out (for instance,
see DeBach et al., 1971; Gerson and Cohen, 1989; Hardin
et al., 1995; Cohen, 2006). It could be caused by the
emergence of a pesticide-resistant strain of the pest or by
the decrease of its enemy population affected by the
pesticide (Morse, 1998).

Ito et al. (1962) experimentally investigated such a case: a
pest insect coexists with some species of spider as its

predators. The experimental field was divided into two
regions, one of which was sprayed with an insecticide,
while the other remained unsprayed. As a result, this
chemical treatment decreased not only the pest population
but also the spider population. The pest population
increased by a remarkable amount in several weeks after
spraying the insecticide. The primary cause of this
phenomenon was suggested to be the decline of the
predation pressure due to the reduction of the spider
population by the insecticide.
Some other researches showed that a small amount of

pesticide could increase the pest fecundity, whereas a large
amount of pesticide decreases the pest population (Morse,
1998; James and Price, 2002). Such a phenomenon is called
the hormesis or the homoligosis (Luckey, 1968; Morse,
1998). The hormesis would be the essential cause of some
resurgence (Morse, 1998).
One of the most well-known time-discrete models for the

host–parasite population dynamics is the Nicholson–Bailey
model (Nicholson and Bailey, 1935):

htþ1 ¼ lhte
�apt ,

ptþ1 ¼ mhtð1� e�apt Þ, (1)
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where ht and pt are the host and the parasite population
densities at the tth generation. l is the host (intrinsic) per
capita growth rate, a the parasitism efficiency, and m the
parasite reproductive rate by the parasitism. This system
has two equilibria: one at which both of host and parasite
go extinct and another at which they coexist. The former is
globally stable if lo1, and unstable if l41. The latter is
always unstable. If l41, the model is unstable and non-
permanent, since the host and the parasite populations
show excited oscillations with infinitely increasing ampli-
tude, asymptotically approaching an infinitesimally small
population size at their minimal extremum in time (Hassell
and May, 1973). The Nicholson–Bailey model and its
modified forms have been analyzed by many researchers
(for instance, see Beddington, 1975; Beddington et al.,
1975; Gurney and Nisbet, 1998; Lane et al., 1999; Hassell,
2000a).

In this paper, we analyze another time-discrete host–par-
asite system which is an extension of the Nicholson–Bailey
model, introducing the host intraspecific density effect and
the harvesting effect. We investigate the condition with
which the harvesting of the host results in an eventual
increase of its population, analytically proving that such a
paradoxical increase could occur even when the harvesting
does not directly affect the parasite population at all. We
show that the paradox of pest control could be caused
essentially by the native interspecific and the intraspecific
density effect.

2. Model

In general, parasites attack only one or a few of the host
stages (i.e., egg, larva, or pupa) (Godfray, 1994; Murdoch
and Briggs, 1996; Takagi, 1999). In our model, we suppose
that there is a season for the parasitism in each year. In
each year, the parasitism season has a given length T,
beginning at time t ¼ 0 and lasting until t ¼ T . See Fig. 1.

We harvest a portion r ð0prp1Þ of the host population
at a fixed moment t ¼ yT ð0pyp1Þ from the beginning (at
t ¼ 0) of the parasitism season (see Fig. 1). We assume that
the harvesting is repeated periodically every year. The
harvesting operation in our model may be regarded as the
repetitive application of some pesticides, pest-handpicking,
or infertile enemies (i.e., biopesticides, that is, the short-
time biological control, sometimes called ‘‘augmentation’’.

For example, see Huffaker et al., 1976; Takagi, 1999 or
Hajek et al., 2007).
Let ht and pt, respectively, be the host population density

and the parasite one at the beginning of the tth parasitism
season. Before t ¼ yT in the parasitism season, the host
population undergoes the density effect on ht. After
t ¼ yT , the density effect is on the host population of size
ð1� rÞht which has successfully escaped from the harvest-
ing. Making use of the modelling for the Nicholson–Bailey
model (1) with a Poisson distribution of successful
parasitism probability, we assume that, just after the
moment of harvesting, the non-parasitized and the para-
sitized host population densities are, respectively, given by
ð1� rÞhte

�ayTpt and ð1� rÞhtð1� e�ayTpt Þ, where a repre-
sents the parasitism efficiency including the efficiency of
searching and catching the host individual.
In our model, the target of the harvesting is the host

population, whereas it may affect also the parasite
population. We assume that the parasite population is
reduced by a portion f with the harvesting which targets the
host. Since the harvesting essentially targets the host, the
parasite removal portion f is assumed to be determined by
the host removal portion r: f ¼ f ðrÞ, satisfying that
0pf ðrÞp1, f ð0Þ ¼ 0, and df ðrÞ=drX0. The last assump-
tion of the non-negative r-derivative of f means that the
stronger harvesting of the host could cause the stronger
secondary effect on the parasite. The harvesting reduces the
parasite population density pt to f1� f ðrÞgpt.
Since the rest of the parasitism season has the length
ð1� yÞT after the harvesting, as the Nicholson–Bailey
model (1), we can give the non-parasitized host population
density by

ð1� rÞhte
�ayTpt � e�að1�yÞTð1�f ðrÞÞpt ,

and the parasitized host population density by

ð1� rÞhtð1� e�ayTpt Þ þ ð1� rÞhte
�ayTpt

�½1� e�að1�yÞTð1�f ðrÞÞpt �

at the end of the parasitism season. Then, with the
reproductive rate l0 of the host and m of the parasite, we
have the following system of the host–parasite population
dynamics:

htþ1 ¼ l0ð1� rÞhte
�af1�ð1�yÞf ðrÞgTpt ,

ptþ1 ¼ mð1� rÞht½1� e�af1�ð1�yÞf ðrÞgTpt �. (2)

Next, to incorporate the density effect on the host
population into l0, we assume that the density effect during
the juvenile period determines the host’s reproductive
success. Especially in our model, let us assume that the
cumulative density effect during the parasitism season
determines it. Making use of the Beverton–Holt type of
density effect (Beverton and Holt, 1957), the intensity of
density effect before the harvesting is assumed to be
proportional to ð1þ bhtÞ

�1, and that after the harvesting is
to f1þ bð1� rÞhtg

�1, where b is the coefficient for the
intraspecific density effect on the net growth rate. We note
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Fig. 1. Scheme of the host–parasite dynamics under a harvesting effect in

our model (3). ht is the host population density and pt is the parasite

population density at the beginning of the tth parasitism season.

T. Matsuoka, H. Seno / Journal of Theoretical Biology 252 (2008) 87–9788



Author's personal copy

that, although the harvesting decreases the host popula-
tion, it simultaneously weakens the intraspecific density
effect for the host population. Our modelling may be
regarded as assuming that the parasitized host does not die
during the season. In this case, the parasitized host
individual contributes to the density effect on the
unparasitized host. Certainly we could assume that the
density effect on the parasitized host causes the reduction
of the parasite reproduction from the parasitized host.
However, in our modelling, this is not assumed to occur. In
some cases, the alive parasitized host behaves gluttonous
with an effect of hormonal substances secreted from the
parasite’s egg or juvenile. Such a case may be applicable for
our model.

The cumulative density effect on the non-parasitized
host at the end of parasitism season is assumed to be
determined by the proportion y of the period before the
harvesting in the parasitism season, so that we introduce

l0 ¼ l
y

1þ bht

þ
1� y

1þ bð1� rÞht

� �
,

where l is the intrinsic per capita growth rate of the host.
Then, from (2), we lastly derive the following host–parasite
system with harvesting effect:

htþ1 ¼ l
y

1þ bht

þ
1� y

1þ bð1� rÞht

� �

�ð1� rÞhte
�af1�ð1�yÞf ðrÞgTpt ,

ptþ1 ¼ mð1� rÞht½1� e�af1�ð1�yÞf ðrÞgTpt �. (3)

In our model, as the Nicholson–Bailey model, we assume
that every parasitized host produces a fixed (mean) number
of parasites in the next generation. In this sense, we may
consider that contest competition is assumed among the
parasite juveniles multi-parasitized in the same host
individual, or alternatively assume mono-parasitism (no
superparasitism). On the other hand, the parasite repro-
duction is assumed to occur after the specific parasitism
season (see Fig. 1).

Now making use of the transformation of variables and
parameters

Pt ¼ aTpt; Ht ¼ aTmht; b ¼
b

aTm
,

we get the corresponding non-dimensionalized system:

Htþ1 ¼ l
y

1þ bHt

þ
1� y

1þ bð1� rÞHt

� �

�ð1� rÞHte
�f1�ð1�yÞf ðrÞgPt ,

Ptþ1 ¼ ð1� rÞHt½1� e�f1�ð1�yÞf ðrÞgPt �. (4)

For mathematical simplicity without loss of generality, we
hereafter analyze this non-dimensionalized system (4).
When the parasite is absent, that is, for (4) with Pt � 0, it

becomes the Beverton–Holt model (Beverton and Holt,
1957) and gives a variation in generations similar to logistic
growth. We have the following unique equilibrium H�:

H� ¼
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B

p
2ð1� rÞb

, (5)

where A ¼ ð1� yrÞð1� rÞl� 2þ r and B ¼ 4ð1� rÞ
fð1� rÞl� 1g. It exists if and only if ð1� rÞl41. If it
exists, it is globally stable. If ð1� rÞlo1, the host
population goes extinct. Neither periodic nor chaotic
variation occurs. We can easily prove that the harvesting
necessarily reduces the equilibrium host population density
(Fig. 2).

3. Analysis

3.1. Without harvesting

First, let us consider system (4) without harvesting
ðr ¼ 0Þ. In this case, there are at most three equilibria: ð0; 0Þ
and

ðH ; 0Þ ¼
l� 1

b
; 0

� �
,

ðH�;P�Þ ¼
le�P� � 1

b
;H�ð1� e�P� Þ

� �
. (6)
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Fig. 2. Parameter dependence of the equilibrium H� for (4) with Pt � 0. (a) y ¼ 0:5; (b) r ¼ 0:5. Commonly, l ¼ 5:0; b ¼ 0:75.
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The equilibrium ðH ; 0Þ exists if and only if l41, and
ðH�;P�Þ does if and only if l41þ b.

The equilibrium ðH ; 0Þ is locally stable when 1olo1þ b
and unstable when l41þ b. We numerically analyzed the
eigenvalues to investigate the local stability of ðH�;P�Þ. As
shown in Fig. 3, the equilibrium ðH�;P�Þ is locally stable
when 1þ bolol�ðbÞ, where l�ðbÞ is a function of b.
Numerical calculations indicate that the eigenvalue is
complex when the equilibrium ðH�;P�Þ changes its
stability. Hence, from the characteristic equation for the
eigenvalue about ðH�;P�Þ, we have the following equation
of parameters at the stability boundary for ðH�;P�Þ:

ð1� 2bÞl�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� 4bÞ

p
� 2lb ln

lþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl� 4bÞ

p
2l

¼ 0.

(7)

In fact, Eq. (7) appears to coincide with the numerically
obtained stability boundary for ðH�;P�Þ (Fig. 3; the
boundary curve may seem linear, though it is really
nonlinear).
Fig. 4 shows numerically obtained bifurcation structures

of the limiting state (mathematically attained as t!1) in
terms of l. For l4l�ðbÞ, the limiting state appears chaotic
(see also Figs. 5(b) and (c)). However, the numerically
obtained Lyapunov exponent is not greater than zero but
almost zero for the corresponding value of l (Fig. 6(a)).
This bifurcation to chaos is what is called a Neimark–Sack-

er bifurcation or a secondary Hopf bifurcation (for instance,
see Seydel, 1994) as indicated by the complex eigenvalue
at the stability boundary for the equilibrium ðH�;P�Þ
(see Fig. 6(c)). Indeed, the numerical calculations as those
in Fig. 5(c) indicate that any point ðHt;PtÞ for sufficiently
large t is asymptotically on a closed curve in the ðH ;PÞ
phase plane. In this sense, this chaotic variation is
sometimes called a quasi-periodic state, too. In addition,
we can see a periodic behavior for some values (i.e., in
some windows) of l4l�ðbÞ (Figs. 4 and 5(d)).

3.2. With harvesting

We focus on how the intensity of harvesting ðrÞ and its
timing ðyÞ affect the nature of the limiting state. System (4)
has at most three equilibria as in the case without harvesting.
As for the equilibrium ðH; 0Þ, we can find that it exists if and
only if ð1� rÞl41. From the local stability analysis, ðH; 0Þ is
locally stable if 1oð1� rÞloð1� rÞ~l, where

ð1� rÞ~l

¼
fbþ 1� ð1� yÞf ðrÞg½bþ ð1� rÞf1� ð1� yÞf ðrÞg�
f1� ð1� yÞf ðrÞg½ð1� yrÞbþ ð1� rÞf1� ð1� yÞf ðrÞg�

.

(8)
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We numerically investigate the bifurcation structure, the
Lyapunov exponent, and the eigenvalues of the equilibria for
(4) as shown in Figs. 4 and 6. We find that the bifurcation
structure is qualitatively similar to the case without harvesting
(see Fig. 4). The temporal variations in the case with
harvesting are qualitatively similar to those in Fig. 5, too.
However, the location of bifurcation points are significantly
affected by the nature of harvesting. Numerical calculations
indicate that, as for the equilibria ðH; 0Þ and ðH�;P�Þ,
harvesting makes the bifurcation point in terms of l occur at
a larger value of l than in the case without harvesting (Figs. 4
and 6–8).

3.3. Impact of harvesting

As r gets larger, ðH; 0Þ and ðH�;P�Þ, respectively, require
a larger value of l in order to be locally stable (Fig. 7).
Moreover, as indicated by Figs. 7 and 8,we can see that the
host population density H� at the coexistence equilibrium
increases as r gets larger, while the parasite population
density P� decreases even if the parasite is not directly
affected at all by the harvesting, that is, even if f ðrÞ ¼ 0
(also see Fig. 9(a)). In contrast, in the case of chaotic
variation, the time-averaged host population density hHi�

decreases as r gets larger (Fig. 10). Harvesting could
suppress the chaotic variation toward the equilibrium state
as Figs. 7–10 indicate. The harvesting makes the equili-
brium host population density H� larger (‘‘paradox’’) while
it makes the parasite population density P� smaller. These
results are independent of the curvature of the function
f ðrÞ (e.g., concave or convex) as easily seen from Fig. 8.

These features appear in our model commonly for any y.
As indicated by Fig. 7(b), the harvesting timing given by y
certainly affects the emergence of paradox although its y-
dependence is relatively weak, compared to the r-depen-
dence. The equilibrium host population density H� is

slowly increasing in terms of y when the host coexists with
the parasite, that is, at ðH�;P�Þ (Fig. 7(b)).
With respect to the emergence of the paradoxical

increase of the host population density H� by the harvest-
ing, we can prove the following theorem (Appendix A).

Theorem. For the coexistence equilibrium ðH�;P�Þ, we

always have

lim
r!0þ

qH�

qr
40 and lim

r!0þ

qP�

qr
o0.

This theorem means that the harvesting necessarily
makes the equilibrium host population density H� larger
and the coexisting parasite population density P� smaller,
compared to those at the coexistence equilibrium state
without harvesting.

4. Comparison to some other models

In comparison to the case of the Beverton–Holt type of
density effect in our model (4), Fig. 11 is a numerically
obtained bifurcation diagram for the following system with
the Ricker (or Moran–Ricker) type of density effect
(Moran, 1950; Ricker, 1954):

Htþ1 ¼ lð1� rÞfye�bHt þ ð1� yÞe�bð1�rÞHtg

�Hte
�f1�ð1�yÞf ðrÞgPt ,

Ptþ1 ¼ ð1� rÞHt½1� e�f1�ð1�yÞf ðrÞgPt �. (9)

This model without harvesting (i.e., r ¼ 0) has been
analyzed by many researchers (for example, Beddington
et al., 1975). For review, see Hassell (2000b) and Hochberg
and Anthony (2000). As seen from Fig. 11, our numerical
calculation for (9) with harvesting ðr40Þ shows that the
host population density H� at the coexistence equilibrium
increases as r gets larger, similar to our model (4).
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As another type of the host–parasite model, let us
consider the following model:

Htþ1 ¼ l
y

1þ bHt

þ
1� y

1þ bð1� rÞHt

� �
ð1� rÞHtPðPtÞ,

Ptþ1 ¼ ð1� rÞHtf1�PðPtÞg, (10)

where PðPtÞ ¼ ½1þ f1� ð1� yÞf ðrÞgPt=k��k with a posi-
tive parameter k. This model is derived by substituting the
negative binomial distribution for the Poisson distribution
in (4). In this case, May et al. (1981) show that, as long as
ko1, for any host density effect, parasitism can stabilize
the interaction. In this paper, aside from the stabilization
role of the negative binomial distribution, let us focus the
effect of harvesting on the host population density H� at

the coexistence equilibrium. We numerically found that, in
some cases for this model (10), the equilibrium host
population density H� decreases as r gets larger (Figs. 12(a)
and (c)). In the case of a sufficiently large parasitism
probability with large k, the equilibrium host population
density H� increases as r gets larger (Fig. 12(b)). The
equilibrium host population density H� decreases as r
gets larger with a relatively weak intraspecific density
effect on the host (small b) (Fig. 12(c)), whereas it increases
in terms of r with a sufficiently strong intraspecific
density effect (large b) (Fig. 12(b)) or with a sufficiently
large probability of parasitism (Fig. 12(d)). Indeed,
the probability of parasitism in model (4) is always
larger than that in model (10) for any positive value
of k.
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As shown in Figs. 7, 8, 10 and 11, as the equilibrium
parasite population density P� gets smaller with the
stronger harvesting (the greater r), the equilibrium host
population density H� becomes larger toward the carrying
capacity determined by a specific value of r, only below
which the parasite can coexist with the host. For r greater
than the specific value, the parasite goes extinct due to the

harvesting while the host survives until another critical
value of r beyond which the host goes extinct. In contrast,
as shown by Fig. 12, this is not always true for the model
with a negative binomial distribution for the successful
parasitism probability, given by (10). The depression of the
equilibrium parasite population size P� does not necessa-
rily lead to the (paradoxical) increase of the equilibrium
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(b) l ¼ 5:0. The harvesting starts at t ¼ 100 with r ¼ 0:3. Chaotic (quasi-periodic) variation changes to the convergence toward an equilibrium state after

the initiation of harvesting.
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host population size H�. These results suggest that the
strong parasitism and the strong host density dependence
would be likely to enhance the emergence of the paradox.

5. Conclusion

In our model, in the absence of the parasite, the
equilibrium host population density necessarily decreases
as the harvesting intensity r gets larger. In contrast, at the
coexistence equilibrium with the parasite, the harvesting
necessarily makes the equilibrium host population density
larger, while it makes the equilibrium parasite population
density smaller. We analytically proved that such a
paradoxical increase of the equilibrium host density occurs
even when the harvesting does not directly affect the
parasite population at all. This result suggests that such a
paradox would not be necessarily caused by the reduction
of the parasite (natural enemy) population due to the
harvesting itself, for example, by a pesticide. The host
population is reduced at the moment of harvesting, and
simultaneously the intraspecific density effect is weakened.
At the same time, the decrease of the host density causes
the reduction of the net reproduction rate of the parasite
(Fig. 13). In our model, the parasite population eventually
decreases under the repetitive harvesting operation targeted
to the host. If the reduction of the parasite’s reproduction
rate would be so serious that the parasite population
cannot compensate it with parasitizing the surviving host
population, the paradox could emerge.

As seen for model (10) with the negative binomial
distribution of the successful parasitism probability, the
host population density decreases by the harvesting when
the intraspecific density effect of the host is sufficiently
weak. Therefore, one of the essential factors to cause the
paradox would be the relaxation of the host’s tense
intraspecific density effect by the harvesting. Moreover,
since the paradox could occur for the sufficiently large
parasitism probability for (10), the emergence of the
paradox would depend on the intensity of parasitism.
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In the case of strong parasitism, the decrease of the host
population by the harvesting would significantly reduce the
parasite’s reproductive success and eventually make the
equilibrium parasite population density smaller, which
could subsequently enhance the increase of the host
population density.

We conclude that a combined effect of the reduction of
the host’s intraspecific density effect and that of the
parasite’s reproduction rate could enhance the emergence
of the paradox. Therefore, the emergence of the paradox in
the pest control would not necessarily require the direct
effect on the enemy population, the appearance of some
pesticide-resistance or the pest hormesis. The purely
ecological balance in the native population dynamics may
do cause it, as Huffaker et al. (1976) emphasized the
importance of ‘‘balance of nature’’ and ‘‘density-depen-
dence’’ which regulates the populations in the system
involving the pest. For the pest control, the native
ecological interactions are important as the key factors to
determine the success/failure of additional control opera-
tion on the system. Therefore, in this reason, some
integrated pest management (IPM) designed case by case
would be necessary for the practical pest control (Murdoch
and Briggs, 1996; Perkins, 1982; Plant and Mangel, 1987;
Stern et al., 1959; Takagi, 1999; Tang et al., 2005).

As numerically demonstrated in this paper, the model
with a negative binomial distribution for the successful
parasitism probability, given by (10), presents an open
problem about the consequence of the effect combined the
parasitism and the host density dependence: the emergence
of paradoxical increase of host equilibrium density by
harvesting. As Beddington et al. (1975) and May et al.
(1981) discussed, some combined effect leads to stabilize
the coexistence equilibrium, which is relied less on the host
density dependence in case of the negative binomial model
(also see Hassell, 2000b): The negative binomial model can
depress the host well below its carrying capacity without
making the coexistence equilibrium unstable. Therefore,
according to results of our model with the effect of
harvesting, the reduction of the parasite’s reproduction
rate due to the harvesting would play a principal role to
cause the paradox, although this is still a conjecture to be
investigated. The negative binomial model would be
interesting to be analyzed more detail. However, the main
purpose of this paper is to show clearly the theoretical
possibility of the emergence of paradox only by the native
ecological interaction, and we have not entered deeper into
the analysis of the negative binomial model. In fact, we
have already gotten some mathematical results about the
condition for the occurrence of paradox in a more general
framework of host–parasite model, including the negative
binomial model, and are preparing to present it elsewhere.

Acknowledgments

The authors thank two anonymous referees for their
valuable comments to improve and complete the first

version of manuscript, and are also indebted to Masakazu
Shimada for his valuable comments to get the important
perspectives of this work.

Appendix A. Proof of Theorem

As for the equilibrium ðH�;P�Þ of (4), we have the
following equations to determine H� and P�:

lnCðH�Þ ¼ ð1� rÞf1� ð1� yÞf ðrÞgH� 1�
1

CðH�Þ

� �
,

P� ¼
1

1� ð1� yÞf ðrÞ
lnCðH�Þ, (A.1)

where

CðH�Þ ¼ lð1� rÞ
y

1þ bH�
þ

1� y
1þ bð1� rÞH�

� �
.

From (A.1), we can obtain

lim
r!0þ

qH�

qr
¼

1

b
QðzÞ

SðzÞ

df

dr
þ

RðzÞ

SðzÞ

� �
(A.2)

and

lim
r!0þ

qP�

qr
¼

V ðzÞ

UðzÞ
þ

W ðzÞ

UðzÞ

df

dr
, (A.3)

where z ¼ ½e�P� �r¼0 and

QðzÞ ¼ lð1� yÞzðlz� 1Þðz� 1Þ,

SðzÞ ¼ 2lz2 � ðlþ 1Þz� b,

RðzÞ ¼ ð1� yÞðlz� 1ÞUðzÞ � lzV ðzÞ,

UðzÞ ¼ zðlz� 1Þ � b,

V ðzÞ ¼ lz� b� 1; W ðzÞ ¼ ð1� yÞz
ðlz� 1Þ2

b
.

From (A.1), we can easily find that z satisfies the following
equation:

cðzÞ ¼ ðlz� 1Þð1� zÞ þ b ln z ¼ 0. (A.4)

The equation UðxÞ ¼ 0 has a unique positive root xo1
when ðH�;P�Þr¼0 of (6) exists, that is, when l4bþ 1.
Making use of UðxÞ ¼ 0, we can find that cðxÞ is
monotonically increasing in terms of l. Further, we can
easily prove that cðxÞjl¼1þb ¼ 0 since xjl¼bþ1 ¼ 1. There-
fore, cðxÞ40 for l41þ b. Hence, we find that zoxo1.
This means that UðzÞo0. In addition, from (A.4), we can
easily find that V ðzÞ40. Since W ðzÞ is always positive,
these results prove that (A.3) and RðzÞ are negative.
On the other hand, QðzÞ is negative because 1=lozo1 as

easily seen from (A.4). The equation SðxÞ ¼ 0 has a unique
positive root xyo1 whenever ðH�;P�Þr¼0 exists. We can
easily find that SðzÞo0 if and only if zoxy. At the same
time, from (A.4), we note that cðxÞ40 for any x such that
zoxo1, and that cðxÞo0 for any xoz. Thus, if cðxyÞ40,
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then zoxyo1, so that SðzÞo0. Making use of SðxyÞ ¼ 0,
we have

qcðxyÞ
ql
¼
ðl� 1Þxy2 � 2bxy þ b

4lxy � l� 1
. (A.5)

The numerator of (A.5) is positive for any xy since
l4bþ 1. The denominator of (A.5) is also positive,
because Sððlþ 1Þ=4lÞo0 so that ðlþ 1Þ=ð4lÞoxy. There-
fore we have qcðxyÞ=ql40 for l4bþ 1. We can easily
prove that cðxyÞjl¼bþ1 ¼ b ln xyjl¼bþ1 ¼ 0. Thus, we now
have cðxyÞ40 for l4bþ 1. Lastly, we find zoxyo1. This
means SðzÞo0. At last, (A.2) is positive for l4bþ 1. These
arguments prove the theorem.
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