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Abstract. In this paper, we revisit the metapopulation dynamics model of typical Levins type,
and reconsider its mathematical modeling. For the metapopulation dynamics with three states
for the patch of a habitat composed of a number patches available for the reproduction, ‘va-
cant’, ‘small’ (i.e., threatened to the extinction) and ‘large’ (i.e., far from the extinction risk)
in terms of population size in the patch, we reconstruct the mathematical model in a general
form, making use of the difference in time scale between the state transition and the dispersal
of individuals within the patchy habitat. The typical Levins type of metapopulation dynam-
ics model appears only for a specific case with some additional assumptions for mathematical
simplification. Especially we discuss the rationality of mass-action terms for the patch state
transition in the Levins model, and find that such mass-action term could be rational for the
modeling of metapopulation dynamics only in some ideal condition.
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1. Introduction

Hanski [9] presented the following 3-state metapopulation dynamics model (see also [10] and [11, p. 61]):

dE

dt
= eSS − cLE

dS

dt
= cLE + eLL− eSS − rS −mLS

dL

dt
= rS +mLS − eLL,

(1.1)

where in a patchy habitat E, S and L are the frequency of patches which have the state ‘vacant’, ‘small’,
and ‘large’. They satisfy the condition that E + S + L = 1 independently of time. They may be
mathematically regarded as the probability of the existence of patches with the state ‘vacant’, ‘small’ and
‘large’, respectively. In this model, the patch state is categorized into three types, ‘vacant’, ‘small’, and
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‘large’: The ‘vacant’ patch has no resident of the population inhabiting in the habitat after the extinction
of previous resident subpopulation or before the settlement of some immigrants. The ‘small’ patch has a
small size of its subpopulation as the resident which is likely to be endangered to its extinction, while the
‘large’ patch has an established size of its subpopulation so as not to be endangered from any stochastic
ecological disturbance.

The mathematical model (1.1) gives the temporal variation of patch frequencies of these three states,
E, S and L. It includes the temporal transition of patch state due to the migration of individuals
between patches, which is introduced by the terms of production of E and L, and that of L and S, what
is frequently called the ‘mass-action’ term.

Parameter c means the coefficient for the appearance of small population in a patch which was pre-
viously vacant and accepted the successful settlement of some immigrants from the ‘large’ patches. The
effect of immigrants from the ‘small’ patches is ignored. Parameter eS means the coefficient for the
occurrence of transition from the state ‘small’ to ‘vacant’ which is due to the extinction of small popu-
lation in the ‘small’ patch. Parameter r means the coefficient for the occurrence of transition from the
state ‘small’ to ‘large’ which is owing to the population growth by reproduction in the ‘small’ patch. In
contrast, the parameter eL means the coefficient for the occurrence of transition from the state ‘large’ to
‘small’ due to a certain cause, for example, a predation effect. Parameter m the coefficient reflecting the
contribution of immigration to the ‘small’ patch for the transition from the state ‘small’ to ‘large’. In
[11], it is mentioned that the term with the parameter m is important for the dynamics of 3-state model
(1.1), which is sometimes called “rescue effect” for extinction-endangered small population [2, 5].

In a patchy habitat, there is no direct interaction between patches. In other words, the state of a
patch cannot be affected by the state of any other patch itself. However, as seen in the model (1.1), the
transition of patch state depends on an indirect interaction of them when different states coexist in the
patchy habitat. Such indirect interaction is caused by migration of individuals inhabiting in it [12].

Mathematical model (1.1) introduces the contribution of patch state distribution with different states
to the state transition of each patch by the mass-action terms with the production of frequencies L and
E, and with that of L and S. Originally in the application of such a mass-action terms for the population
dynamics by Lotka and Volterra [20, 21, 27], it was an analogy from the reaction velocity theory for
a simple chemical reaction under the complete mixing. So from the viewpoint of the reasonability of
mathematical modeling, we should reconsider and understand its application for the metapopulation
dynamics model such as (1.1) about the patch state transition without any direct interaction.

The 3-state model (1.1) is originated from the following 2-state model by Levins [17,18]:

dE

dt
= ePP − cPE

dP

dt
= cPE − ePP.

(1.2)

In a patchy habitat, E and P mean the frequency (or the probability of existence) of patches with ‘vacant’
state and that with ‘occupied’ state, respectively. Since E and P satisfy the condition that E + P = 1
independently of time, this model can be described in a mathematically equivalent form by the following
single ordinary differential equation as known well:

dP

dt
= cP (1− P )− ePP. (1.3)

The parameter eP means the coefficient for the occurrence of transition from the state ‘occupied’ to
‘vacant’ which is due to the extinction of population in the ‘occupied’ patch, and cmeans the coefficient for
the transition of vacant patch to the ‘occupied’ state due to the successful settlement of some immigrants
from the ‘occupied’ patches.

Interesting and valued point of mathematical modeling by Levins [17,18] is its treatment of dynamics
in terms of ‘state’ transition of each patch without considering the temporal variation of population size
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itself in each patch [12]. However, the frequency of migration, that is, the strength of migration effect on
the state transition is significant in the modeling since it takes the effect of immigrants into account for
the cause of state transition, The strength of migration effect necessarily depends on the size of migrating
population. Therefore it requires a rational combination of patch states and population size for the
modeling by the idea of Levins [17, 18] to aggregate the population dynamics in a patchy habitat into a
dynamics of patch state transition.

Etienne [5] particularly considered this problem about the mathematical modeling, and tried to un-
derstand the meaning of 2-state metapopulation model (1.2) by Levins [17,18], making use of modelings
with the mean value dynamics from a stochastic process, and with a singular perturbation owing to the
difference in time scales of involved biological processes as we will use in this paper. However, he put the
mass-action terms as the precondition for modeling, and gave no discussion about its rationality from
the viewpoint of modeling. As for the 3-state model (1.1), we are not aware of any discussion about the
rationality of mathematical structure from the viewpoint of modeling.

In this paper, we will discuss a mathematical modeling, focusing on how the strength of migration
could be involved in it to construct a metapopulation dynamics model, with the same idea with Levins’.
The similar problem has been discussed in previous papers other than [5], for instance, by [6–8, 13]. We
will independently consider the mathematical modeling of Levins’ idea, focusing at first on the 3-state
model (1.1), and try to discuss the problem about the rationality of its modeling typical with the mass-
action terms. To consider the modeling of 3-state model (1.1) before the original 2-state model (1.1) is
useful to make clear the issues important to discuss the rationality of modeling.

2. Reconsideration of mathematical modeling for metapopulation dynamics

2.1. State transition of patch

In model (1.1), the intermediate state ‘small’ (S) between ‘vacant’ (E) and ‘large’ (L) indicates the patch
endangered to the extinction of its population. In a sense, we may regard it as corresponding to the
introduction of Allee effect into the model. Indeed, as for the patch of state ‘large’, such possibility of the
extinction is not assumed, so that the patch of state ‘large’ can be regarded as a patch with sufficiently
established population.

Next let us consider the cause for the transition from ‘large’ to ‘small’ state, involved by the term with
eLL in the model (1.1). It is easy to consider the stochastic environmental disturbance for it. Stochastic
variation in climate and/or uncertain effect by some human activity for the ecosystem are examples to
cause it. So we could regard the parameter eL in (1.1) as to be increasing in terms of the magnitude or
the frequency (strength) of such stochastic factor.

In the similar way, we could consider that the transition from ‘small’ to ‘vacant’ state in (1.1) depends
on the stochastic environmental variation by some natural/human factors. Besides, as for the transition
from ‘small’ to ‘vacant’ state, the demographic stochasticity in the reproduction rate is an important
factor. Parameter eS could be regarded as to be incresing in terms of the magnitude or the frequency
(strength) of such stochastic factor.

In contrast, as for the transition from ‘small’ to ‘large’ state, it is essentially due to the growth of
population size, that is, by the reproduction. Immigrants from ‘large’ patches to ‘small’ patch cannot be
the cause of state transition by themselves, but may contribute to the reproduction in the population of
‘small’ patch, which is introduced by the term mLS in the model (1.1). It is hard to regard the migration
itself as the variation of population size enough to cause the state transition. Thus, as for the term mLS
of (1.1) to introduce the effect of immigrants, we should reconsider the meaning with a certain rationality
in the mathematical modeling.

In the same reason, the term cLE for the state transition from ‘vacant’ to ‘small’ state needs the
reconsideration about its mathematical modeling. As for the transition from ‘vacant’ to ‘small’ state,
it is only due to the immigrants’ settlement and growth. So we should reconsider the mathematical
modeling about how the effect of such factors contributes to the state transition.
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2.2. Assumptions for dispersal in the patchy habitat

First we consider the mathematical modeling for the emigration from ‘large’ and ‘small’ patches. Assume
that the emigrating population size per unit time (i.e., emigration velocity) is increasing in terms of the
size of population from which the emigrant comes out. Hence, the emigration velocity is assumed greater
from the ‘large’ patch than from the ‘small’ one. This assumption does not necessarily that of Fick’s law
frequently referred in the theory of diffusion process, because we do not assume the flux proportional to
the difference between the densities of different patches. The diffusion with Fick’s law is included as a
specific case.

Next as for the success of immigration and settlement, we assume that it is less likely for the ‘large’
patch than for the ‘small’ or the ‘vacant’ patch. This is because the larger population would have a
stronger pressure of emigration to individuals within it so that the immigration is less acceptable by such
larger population. The model (1.1) does not include the effect of immigration to the ‘large’ patch on the
state transition, as it could be reasonable to be negligible. However, when the state transition from ‘small’
to ‘large’ is assumed to depend on the immigration and the settlement of disperser population, it would
be natural to have also the assumption that the immigration and the settlement of disperser population
to the ‘large’ patch makes the transition probability from the ‘large’ to the ‘small’ state smaller.

2.3. Dynamics of dispersal depending on patch states

Let D be the mean density of disperser population over the patchy habitat. Here we shall give the
dynamics of temporal variation of D with the following one of the simplest mathematical models:

dD

dt
= mLLN +mSSN − κLLND − κSSND − κEEND − qND, (2.1)

where mL, mS, κL, κS, κE, N , and q are positive constants. Now some parameters are introduced. N
means a representative number of patches with respect to the dispersal, as [5] did, for example. κL, κS,
and κE are the state-dependent coefficients of successful immigration and settlement in ‘large’, ‘small’,
and ‘vacant’ patches, respectively. We give the detail of their meanings later in this section.

Terms LN , SN and EN correspond to the representative number of ‘large’ patches, that of ‘small’
ones, and that of ‘vacant’ ones, respectively. Parameters mL and mS are the emigration velocity per
patch from ‘large’ patch, and that from ‘small’ patch. Parameters κL, κS, and κE are the per capita rate
of successful immigration and settlement of the dispersing individual into the ‘large’ patch, the ‘small’
one, and the ‘vacant’ one, respectively. Parameter qN means the per capita death rate for the dispersing
individual, which depends on the representative number of patches N (its meaning is given later).

Dispersal and the parameter N

It has been frequently mentioned for the metapopulation dynamics model of Levins type including (1.1)
and (1.2) that the number of patches in the whole habitat is mathematically assumed to be infinite
[4,5,7,14,15]. This is a translation for the mathematical treatment of the model: The infinite number of
patches could be regarded as an approximation in order to make the model mathematically simpler and
more tractable. Our introduction of the parameter N may be controversial from such a mathematical
point of modeling. We could give the meaning about the introduction of the parameter N as follows from
a rationality of mathematical modeling: Parameter N corresponds to the expected number of patches
in the representative range of dispersal (to be defined as the home range in a certain case), which could
be regarded as the metapopulation scale in space, being mentioned in [12]. It is now assumed to be
sufficiently large. So applying the mean field approximation for the spatial distribution of patch states
within the whole habitat (the geographical scale in [12]), we could regard the distribution of patch states
within the representative range as approximately equivalent to that in the whole habitat.

From this meaning of mathematical modeling, the parameter N has a significant relation to the dis-
persibility/mobility of individual in the considered population. As the dispersibility/mobility of individual
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is stronger, the representative range of dispersal tends to get wider, so that the number of involved patches
N subsequently gets larger.

Next, along this modeling, we consider the probability that the dispersing individual encounters a patch
in sufficiently short period ∆t. We assume that the probability can be approximated to be proportional
to N∆t: As the dispersibility/mobility of dispersing individual is stronger, that is, as the representative
number of patches is larger, the dispersing individual is more likely to encounter a patch. When the
dispersing individual encounters a patch, the probability that the encountered patch is vacant is assumed
to be given by E, making use of the mean field approximation. Similarly, the probability that it is a
‘small’ patch is S, and that it is a ‘large’ patch is L. The success of the immigration and the settlement
of migrants in the encountered patch would significantly depend on its state. So we let in general κL, κS,
and κE be the state-dependent coefficients of successful immigration and settlement in ‘large’, ‘small’,
and ‘vacant’ patches, respectively.

Per capita death rate qN for dispersing individual

Following the meaning of parameter N described in the previous section, the variable D could be regarded
as the population size per representative range of dispersal. The wider range of dispersal is regarded as
to correspond to the longer mean period of dispersal or the wider area of dispersal per unit time. Hence
it could be supposed that the per capita death rate for the dispersing individual could simultaneously get
larger for the wider range of dispersal. From this correlation between the death rate and the dispersal
range, we put the per capita death probability qN∆t for the dispersing individual in a sufficiently short
period ∆t for the disperser in the patchy habitat with the representative number of patches N . This
modeling follows out the supposition that the per capita death probability per unit time is supposed to
be increasing in terms of the dispersibility which is assumed to be increasing in terms of the number of
patches N in the range of dispersal.

Parameters mL and mS

We set the mean number of emigrants per ‘small’ patch mS∆t in a sufficiently short period ∆t. Thus
the total number of emigrants from ‘small’ patches within the representative range of dispersal in ∆t is
given by NS · mS∆t. In the same way, the total number of emigrants from ‘large’ patches within the
representative range of dispersal in ∆t is given by NS ·mL∆t. As mentioned before, the emigration is
assumed to be likely to occur from the ‘large’ patch than from the ‘small’ one. In this reason, we may
assume that mS ≤ mL in general. It would be hard to consider the case that mS > mL as the rationality
of modeling described above.

We remark that the migration is now assumed not to affect the state of patch from which it occurs.
No state transition from ‘small’ to ‘vacant’ occurs due to the emigration from the ‘small’ patch. No state
transition from ‘small’ to ‘large’ occurs due to the immigration to the ‘large’ patch. As described in the
next section, the time scale of the state transition is assumed to be sufficiently larger than that of the
dispersal.

2.4. Time scales for dispersal and state transition

In our modeling, we make use of the difference in the representative time scale of the individual’s dispersal
and the transition of patch state. In models (1.1) and (1.2), the representative time scale is such that
the transition of patch state could be identifiable in it. Further it should be such a time scale that the
transition from one state to the other (e.g., ‘small’ state to ‘vacant’ state) could be approximated to be
observed as a continuous temporal variation. So it must be large enough to make the temporal variation
of population size within a patch recognizable as the state transition of the patch.

In contrast, the time scale for the population dispersal is in general much shorter than that for the
significant variation of population size. This means that the dynamics of disperser population (2.1)
follows a sufficiently small time scale in comparison to the time scale for the state transition of patch.
Therefore, the dynamics of disperser population (2.1) can be regarded as the “fast process” by contrast
to the dynamics of state transition as the “slow process”. We shall now take account of the difference
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in time scale into our modeling. Some similar assumption about the difference in time scale has been
applied for the modeling on the metapopulation dynamics in previous works [5–8,13].

2.5. Dependence of patch state transition on the dispersal of individuals

From ‘vacant’ to ‘small’ state

The individuals’ dispersal plays essential role for the patch state transition from ‘vacant’ to ‘small’. Such
a state transition requires the immigration of some individuals and their successful settlement with the
population growth. We assume that the probability of successful immigration and settlement is increasing
in terms of the net immigration rate of dispersing individual: More frequent immigration could make the
transition rate from ‘vacant’ to ‘small’ larger.

According to the modeling for the dynamics of disperser population (2.1), the mean immigration rate
of dispersing individual per ‘vacant’ patch is given by κEEND/(EN) = κED. Thus the probability that
the patch state transition from ‘vacant’ to ‘small’ is now assumed to be increasing in terms of κED.

From ‘small’ to ‘vacant’ state

Immigration of dispersing individuals to a ‘small’ patch contributes to a small increase of its inhabiting
population size, so that it could make the possibility of transition to the ‘vacant’ state smaller. This can
be related to the concept of “rescue effect” mentioned in [2, 5]. We take the rescue effect into accout for
our modeling about the patch state transition from ‘small’ to ‘vacant’. Probability of the state transition
from ‘small’ to ‘vacant’ is now assumed to be decreased by the immigration of dispersing individuals into
the ‘small’ patch. That is, the probability is assumed to be decreasing in terms of the mean immigration
rate to the ‘small’ patch κSSND/(SN) = κSD.

From ‘small’ to ‘large’ state

As for the patch state transition from ‘small’ to ‘large’, the contribution of immigration of dispersing
individuals could be regarded to be less significant with comparison to the above mentioned transition
from ‘vacant’ to ‘small’. The growth of inhabiting population size with the reproduction is essential for
the transition from ‘small’ to ‘large’.

Since the immigrating population size is assumed to be subtle, we may ignore the contribution of
immigrating population size itself to the transition from ‘small’ to ‘large’. However, the immigration
and the settlement of dispersing individuals could certainly promote the reproduction even if it would be
subtle. Hence in general we assume here that the immigration and the settlement of dispersing individuals
would increase the transition rate from ‘small’ to ‘large’: The growth rate of population inhabiting in
the ‘small’ patch is assumed to be increasing in terms of the mean immigration rate per ‘small’ patch
κSSND/(SN) = κSD.

From ‘large’ to ‘small’ state

As mentioned in the previous section, we assume that the immigrating population size in the ‘large’ patch
is subtle, and that the settlement of immigrants is hard because of the large population size of residents.
From this argument, it may be assumed that the parameter κL has a sufficiently small value. On the
other hand, it may be reasonable that the immigration and the settlement of dispersing individuals in the
‘large’ patch is assume to have an effect to reduce the state transition probability from ‘large’ to ‘small’.
Even though the effect would be weak, let us assume here that the patch state transition rate from ‘large’
to ‘small’ is decreasing in terms of the mean immigration rate per ‘large’ patch κLLND/(LN) = κLD.
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2.6. Patch state transition under the effect of dispersal as fast process

According to the discussion in the previous sections, we consider the following model for the metapopu-
lation dynamics about the patch state transition:

dE

dt
= fS(κSD)S − ρ(κED)E

dS

dt
= ρ(κED)E + fL(κLD)L− fS(κSD)S − g(κSD)S

dL

dt
= g(κSD)S − fL(κLD)L

ǫ
dD

dt
= mLNL+mSNS − κLLND − κSSND − κEEND − qND,

(2.2)

where a positive parameter ǫ has such meaning that the representative time scale for the dispersal is ǫ
when that for the patch state transition is unity. Since the dispersal is now assumed to be the “fast”
process, we put ǫ ≪ 1.

In the above model (2.2), we give the probability of patch state transition from ‘vacant’ to ‘small’ with
the immigration and the settlement of dispersing individuals by ρ(κED)∆t for sufficiently short time
interval [t, t + ∆t] in the time scale of patch state transition. Similarly, the probability of patch state
transition from ‘small’ to ‘vacant’ due to a certain stochastic disturbance in the ‘small’ patch is given
by fS(κSD)∆t, the probability from ‘small’ to ‘large’ with the growth of inhabiting population size in
the ‘small’ patch by g(κSD)∆t, and the probability from ‘large’ to ‘small’ with the decline of inhabiting
population size in the ‘large’ patch by fL(κLD)∆t, respectively for sufficiently short time interval [t, t+∆t]
in the time scale of patch state transition.

For those coefficients given by fS( · ), ρ( · ), fL( · ), and g( · ) in (2.2), according to their positiveness/non-
negativeness and the modeling assumptions given in the previous section, the following conditions are
assumed to be satisfied as functions of D with constant parameters κE, κS, and κL:

– fS is non-increasing in terms of D, satisfying that fS(0) > 0 and fS(x) ≥ 0 for any x > 0;
– ρ is monotonically increasing in terms of D with ρ(0) = 0;
– fL is non-increasing in terms of D, satisfying that fL(0) > 0 and fL(x) ≥ 0 for any x > 0;
– g is non-decreasing in terms of D with g(x) > 0 for any x ≥ 0.

2.7. Application of quasi-stationary state approximation

For the “fast” process, the dynamics of disperser population size, we apply here the quasi-stationary state
approximation (QSSA), so as to use ǫ dD/dt ≈ 0, and get from (2.2)

D ≈
mLL+mSS

κLL+ κSS + κEE + q
. (2.3)

It is clear that this QSSA cannot bring any simple mass-action terms for the patch state transition in
(2.2) with substituting (2.3) for it, whatever the concrete formulas of fS, ρ, fL, and g are.

About the application of QSSA for the mathematical modeling on biological population dynamics, for
example, see [1, 3, 16] (as for further application, we can refer also [22–26]).

3. Models simplified with additional assumptions

3.1. Case with the migration only from the ‘large’ to the ‘vacant’ patch

Let us consider the case that the emigration is only from the ‘large’ patch while the immigration is only
to the ‘vacant’ patch. This corresponds to the case when mS = 0 and κL = κS = 0 in (2.2). Then the
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QSSA (2.3) becomes

D ≈
mLL

κEE + q
, (3.1)

and the model (2.2) appears as

dE

dt
= fS(0)S − ρ(κED)E

dS

dt
= ρ(κED)E + fL(0)L− fS(0)S − g(0)S

dL

dt
= g(0)S − fL(0)L.

(3.2)

This model has only one nonlinear term given by the function ρ while the other terms are linear with
non-negative constant coefficients.

Now let us assume a linear function of κED for ρ, which satisfies the condition mention before, that is
ρ(x) = aESx with a positive constant aES. Then the model (3.2) with the QSSA (3.1) becomes

dE

dt
= fS(0)S −

aESmLLE

E + q/κE

dS

dt
=

aESmLLE

E + q/κE

+ fL(0)L− fS(0)S − g(0)S

dL

dt
= g(0)S − fL(0)L

(3.3)

with a Michaelis–Menten type of reaction term for the effect of dispersal. If we ignore the death rate of
dispersing individual as a more simplified case, the model (3.3) is of a system of linear ordinary differential
equations. For this model (3.3), only when q/κE ≫ 1, we can find that it approximately corresponds to
(1.1) with m = 0.

3.2. Case with the immigration-settlement rate independent of patch state

Let us consider the case that no difference in the immigration-settlement rate in terms of the state of
destination patch, which is now introduced by putting κL = κS = κE = κ for our model (2.2) with the
QSSA (2.3). Making use of E + S + L = 1, the QSSA (2.3) now appears as a linear combination of L
and S:

D ≈
mLL+mSS

κ+ q
. (3.4)

Moreover, we apply here an additional assumption that the immigration and the settlement of dispers-
ing individuals in the ‘large’ and the ‘small’ patches have negligible effect on their state transition. That
is, we assume that fS(κSD) ≈ fS(0) and fL(κLD) ≈ fL(0). Further, let us assume also that the effect of
emigration from the ‘small’ patch is negligible: mS ≈ 0. Then, the QSSA (3.4) becomes a proportional
relation between L and D: D ≈ µLL with the parameter µL := mL/(κ+ q). Thus (2.2) with the QSSA
becomes

dE

dt
= fS(0)S − ρ(κµLL)E

dS

dt
= ρ(κµLL)E + fL(0)L− fS(0)S − g(κµLL)S

dL

dt
= g(κµLL)S − fL(0)L.

(3.5)
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Again let us assume a linear function for ρ as the previous case: ρ(x) = aESx with a positive constant
aES. If we assume a linear function also for g, that is, g(x) = rS + aSLx with positive constants rS and
aSL, the model (3.5) becomes

dE

dt
= fS(0)S − aESκµLLE

dS

dt
= aESκµLLE + fL(0)L− fS(0)S − (rS + aSLκµLL)S

dL

dt
= (rS + aSLκµLL)S − fL(0)L.

(3.6)

As a result, this model (3.6) is mathematically equivalent to (1.1).

4. 2-state model

4.1. Reconsideration of the mathematical modeling

In this section, for the 2-state model (1.2), we apply the modeling of the 3-state model (1.1) reconsidered
in the previous section. At first we give the model for the temporal variation of disperser population size
as before.

Similarly to (2.1) for the 3-state model, we consider the following simple model for the dynamics of
temporal variation of disperser population density D:

dD

dt
= mNP − κPPND − κEEND − qND, (4.1)

where m, κP, κE, N and q are positive constants with their meanings corresponding to those for the 3-
state model. Parameter m is the emigration velocity per patch from the ‘occupied’ patch. Parameter N
corresponds to the expected number of patches in the representative range of dispersal, same as before.
Parameters κPN and κEN are the coefficients of successful immigration and settlement of dispersing
individual in the ‘occupied’ patch and the ‘vacant’ one, respectively. The per capita death rate for the
dispersing individual is given by qN as before.

Next we consider the following model of metapopulation dynamics about the patch state transition
with the dynamics of disperser population density (4.1):

dE

dt
= fP(κPD)P − ρ(κED)E

dP

dt
= ρ(κED)E − fP(κPD)P

ǫ
dD

dt
= mNP − κPPND − κEEND − qND,

(4.2)

where a positive parameter ǫ is the representative time scale for the dispersal when that for the patch
state transition is unity. We put ǫ ≪ 1 since the dispersal is now assumed to be the “fast” process.
For those coefficients given by fP( · ) and ρ( · ), the following conditions are assumed to be satisfied as
functions of D with constant parameters κE and κP:

– fP is non-increasing in terms of D, satisfying that fP(0) > 0 and fP(x) ≥ 0 for any x > 0;
– ρ is monotonically increasing in terms of D with ρ(0) = 0.

For the dynamics of disperser population as the “fast” process, we apply the QSSA ǫ dD/dt ≈ 0, and
get from (4.2)

D ≈
mP

κPP + κEE + q
=

mP

κPP + κE(1− P ) + q
, (4.3)
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where we make use of E+P = 1. Substituting (4.3) for (4.2), we can get the following aggregated model
of single differential equation:

dP

dt
= ρ(

κEmP

κPP + κE(1− P ) + q
)(1− P )− fP(

κPmP

κPP + κE(1− P ) + q
)P. (4.4)

4.2. Case with the immigration only to the ‘vacant’ patch

We consider here the model (4.4) in the case of κP = 0, using a linear function ρ(x) = aEPx with a
positive constant aEP:

dP

dt
= aEPm

P (1− P )

(1− P ) + q/κE

− ePP. (4.5)

It is easily found that the model (4.5) has the similar nature as a dynamical system to that of Levins
model (1.3): For Levins model (1.3), if c ≤ eP, the population goes extinct since P → 0 as t → ∞ for any
positive initial value P (0). If c > eP, it asymptotically approaches the equilibrium with P = 1 − eP/c
from any positive initial value P (0). On comparison, for the model (4.5), if aEPm/(1 + q/κE) ≤ eP, the
population goes extinct from any positive initial value P (0). If aEPm/(1+ q/κE) > eP, it asymptotically
approaches the equilibrium with

P = 1−
ePq/κE

aEPm− eP

from any positive initial value P (0). We find the threshold mc for the emigration velocity per patch m
with respect to the population persistence:

mc =
eP
aEP

(

1 +
q

κE

)

. (4.6)

Population can persist if and only if m > mc. The value of threshold mc is larger as the per capita death
rate of dispersing individual gets larger with the greater value of q, or as the immigration-settlement
coefficient κE gets smaller. It is indicated that the satisfactory nature of dispersal is essential for the
population persistence in the patchy habitat.

4.3. Case with the immigration-settlement rate independent of patch state

When κP = κE = κ, the QSSA (4.3) becomes

D ≈
mP

κ+ q
, (4.7)

where we used E + P = 1. Thus D is approximately proportional to P . Then from (4.4), we get the
following model:

dP

dt
= ρ(µP )(1− P )− fP(µP )P, (4.8)

where µ := m/(κ+ q).
If we assume that ρ is a linear function ρ(x) = aEPx with a positive constant aEP, and that fP is

a positive constant, this model (4.8) becomes mathematically equivalent to Levins model (1.3). The
assumption of a positive constant fP means that the immigration and the settlement of dispersing in-
dividual in the ‘occupied’ patch has negligible effect on the patch state transition from ‘occupied’ to
‘vacant’. When the effect is not negligible and is introduced in the model, it is clear that this model (4.8)
cannot be mathematically equivalent to Levins model (1.3), since fP must be fundamentally a nonlinear
function of D according to the mathematical condition required about it.
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As an other example for (4.8), let us make here a simple choice of functions ρ and fP satisfying the
mathematical condition required about them: ρ(x) = aEPx with a positive constant aEP, and fP(x) =
f0 exp[−aPEx] with positive constants f0 and aPE. Then we have

dP

dt
= aEPµP (1− P )− f0e

−aPEµPP. (4.9)

In model (4.9), we find that it can have a nature different from Levins model (1.3): Bistable case
can appear for a certain region of parameters. We can find the following two threshold values for the
emigration velocity per patch m:

mc =
(κ+ q)f0

aEP

; mc =
(κ+ q)f0

aEP

·
aEP

aPEf0

(

1− ln
aEP

aPEf0

)

.

It is always satisfied that mc ≥ mc. The lower threshold value mc becomes negative when aEP/(aPEf0) >
e. If m < mc or if mc ≤ m ≤ mc with aEP/(aPEf0) ≥ 1, the population goes extinct from any positive
initial value P (0). If m > mc, from any positive initial value P (0), the population asymptotically
approaches the equilibrium with a uniquely determined value of P such that 0 < P < 1. If mc < m < mc

with aEP/(aPEf0) < 1, the bistable situation occurs, which can be regarded as the case that what is
called Allee effect is embedded. The population goes extinct if the initial value P (0) is less than a certain
positive threshold determined uniquely for each set of parameter values, while from the initial value P (0)
beyond the threshold value the population asymptotically approaches the equilibrium with a uniquely
determined value of P such that 0 < P < 1. In this example for (4.8), the occurrence of bistable situation
requires a strong nonlinearity of the function fP: It is impossible for sufficiently small aPE which is the
case to approximate (4.9) to Levins model (1.3).

5. Concluding Remark

In this paper, we reconsidered the mathematical modeling for the metapopulation dynamics, focusing
on the rationality of mathematical structure embedded in the constructed model. In Levins model (1.2)
[17,18], the mathematically essential structure appears as the mass-action terms which are the same as in
Lotka–Volterra type of interacting population dynamics models. Especially we discussed the modeling of
3-state metapopulation dynamics on which Hanski [9] presented a model (1.1) after Levins model (1.2).

In the metapopulation dynamics model, it is important to consider only the patch state transition in
a patchy habitat, and try to discuss the persistence and the extinction of population with it. Temporal
variation of population size itself is out of focus. Such a sort of mathematical viewpoint in the metapopu-
lation dynamics model is worth while and is an interesting theoretical approach for population dynamics
[12]. On the other hand, the modeling of patch state transition in Levins model is in a black box.
Especially the mass-action terms between patch frequencies of different states in Levins model require
a reconsideration from the viewpoint of rationality for the mathematical modeling about the indirect
interaction through the dispersal of individuals between patches of different states. We should not easily
accept the mass-action terms for the indirect interaction because there never exists any direct interaction
between patches.

In our modeling, Levins type of models (1.1) and (1.2) with the mass-action terms as the essential
mathematical structure can appear only under some specific condition. To make the Levins type of model
appear, it is required that the success of the immigration and settlement of dispersing individual must
be independent of the state of its destination patch. It is clear that this situation is far from the reality,
in other words, is much ideal. Besides, it is required that the decline rate of population size in the patch
is not affected by the settlement of immigrants. Especially in the 2-state model (1.2), every ‘occupied’
patch is exposed to the possibility to become the ‘vacant’ state, that is, the inhabiting population is likely
to go extinct in any patch. In this reason, it would be reasonable to consider that, in the 2-state model
(1.2), the population in each patch of ‘occupied’ state has a size small enough to be endangered to its
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extinction. For such a small population, the emigration from it must have a much small size, and so do
must the immigration to any other patch. This may be regarded as the reason to assume no relation
of the settlement of immigrants to the extinction rate for the population inhabiting in the patch (i.e.,
its state transition from ‘occupied’ to ‘vacant’). On the other hand, even if much small population, the
acceptance of immigrants could cause the “rescue effect” on the extinction-endangered population. It is
hard to find any general reasonability to ignore the effect of the settlement of immigrants on the decline
rate of inhabiting population size. Hence, Levins type of models (1.1) and (1.2) with the mass-action
terms would not be regarded as a general basic model for the metapopulation dynamics.

Our mathematical modeling discussed in this paper is not unique or best for the metapopulation
dynamics (for the other example, see [5]). However, our modeling is not so specific, and the result
indicates that Levins model with the mass-action type of interaction terms could appear only with
some ideal/specific assumptions. This means that Levins type of model could not be standard as the
metapopulation dynamics model. It could play an instructive role for introducing the mathematical
model about the metapopulation dynamics, but could not be regarded even as a rational simplest model
about it. If we extend the metapopulation dynamics model to the interacting population dynamics, for
example, the competitive system or the prey-predator one over a patchy habitat, we should pay attention
to apply the Levins type of model structure straightforward for it. It is easily seen in our discussion
of the modeling for the metapopulation dynamics that such interspecific reaction can be very likely to
be embedded in the metapopulation dynamics model not with the mass-action terms but with another
nonlinear ones. According to the metapopulation dynamics model, we should remark that it could have
in general a variety of mathematical structure resulted from a rational modeling, apart from the typical
mass-action terms as in Levins model.
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