February 2012

Let A be the following real 4×4 matrix:

$$A = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}.$$

Answer the following questions.

- (1) Find the eigenvalues of A.
- (2) Diagonalize A by an orthogonal matrix. Find also an orthogonal matrix which diagonalizes A.

2

1

For real numbers a and b, consider the vectors:

$$v_1 = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ a \\ b \end{pmatrix}, \quad v_3 = \begin{pmatrix} b \\ 0 \\ a \end{pmatrix}.$$

- (1) Find a necessary and sufficient condition for the set of the vectors $\{v_1, v_2, v_3\}$ to form a basis of \mathbb{R}^3 .
- (2) Show that the mapping $f : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$f\begin{pmatrix} x\\ y\\ z \end{pmatrix}) = \begin{pmatrix} z\\ y\\ x \end{pmatrix}$$

is linear.

(3) Under the condition of (1), find the matrix representation of the mapping f in (2) with respect to the basis $\{v_1, v_2, v_3\}$.

(1) Show that
$$\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$$

(2) Show that

3

$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + \frac{(-1)^{n+1} x^{2n+2}}{1+x^2}.$$

(3) For every $a \in (-1, 1)$, show that

$$\arctan a = \sum_{n=0}^{\infty} \frac{(-1)^n a^{2n+1}}{2n+1}$$

4 Set $D = \{(x, y) \mid x \ge 0, y \ge 0\}$. For a real constant m, determine whether the integral $\iint_{D} \frac{dxdy}{(1 + x^2 + y^2)^m}$ is convergent or divergent. If the integral is convergent, calculate its value.

5 The cardinality of a finite set Z is denoted by |Z|. For a fixed finite set X and a subset A of X, the complement of A in X is denoted by A^c . The power set of X, that is, the set of all subsets of X is denoted by 2^X . Let d be the function on $2^X \times 2^X$ defined by

$$d(A, B) = \min\{|A \cup B| - |A \cap B|, |A \cup B^c| - |A \cap B^c|\}.$$

The maximum and minimum of the function d is denoted by d_{max} and d_{min} , respectively.

- (1) Find d_{\min} .
- (2) Find a necessary and sufficient condition for $A, B \in 2^X$ to satisfy $d(A, B) = d_{\min}$.
- (3) Find d_{max} .

6 Let U_1, U_2 be independent random variables obeying the uniform distribution on [0, 1] and set

$$X = \max\{U_1, U_2\}, \quad Y = \min\{U_1, U_2\}.$$

Answer the following questions.

(1) Find a function f_X (the probability density function of X) satisfying

$$P(X \le x) = \int_{-\infty}^{x} f_X(t) dt$$

for any real number x.

- (2) Calculate the mean value $\mathbf{E}[X]$ and the variance $\mathbf{V}[X]$.
- (3) For $0 \le x \le 1$ and $0 \le y \le 1$, find the probability $P(X \le x, Y \le y)$.
- (4) Calculate the correlation coefficient of X, Y defined by

$$r = \frac{\mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]}{\sqrt{\mathbf{V}[X]\mathbf{V}[Y]}}.$$

 $\boxed{7}$ Consider the following ordinary differential equation of second order:

(*)
$$x''(t) = t x(t) \quad (t \in \mathbb{R}).$$

- (1) Assuming that $x(t) = \sum_{n=0}^{\infty} a_n t^n$ satisfies (*), find a recurrence relation for the coefficients a_n .
- (2) If a solution of (*) in the form of an infinite series satisfies x(0) = 1and x'(0) = 0, show that

$$x(t) = \sum_{n=0}^{\infty} \frac{\Gamma(\frac{2}{3})t^{3n}}{9^n n! \Gamma(n + \frac{2}{3})},$$

where $\Gamma(s)$ stands for the Gamma function.

- (1) Show that the origin is a removable singularity of the function f(z), and find the first five coefficients a_0, a_1, a_2, a_3, a_4 of the power series expansion $f(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + \cdots$ about the origin.
- (2) Find all the poles of f(z) in the complex plane and compute their residues.
- (3) Let C be the circle |z| = 10 oriented anticlockwise. Find the value of the complex line integral

$$I = \int_C f(z) dz$$

Let S^2 be the 2-dimensional sphere, which is defined by

$$S^{2} = \{ x = (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \}.$$

Let $h: \mathbb{R}^2 \to \mathbb{R}$ be the smooth function defined by

9

$$h(y) = y_1^2 + 2y_2^2$$
 for $y = (y_1, y_2) \in \mathbb{R}^2$.

(1) For the pair $\left(\frac{\partial h}{\partial y_1}(y), \frac{\partial h}{\partial y_2}(y)\right)$ of partial derivatives of h at $y = (y_1, y_2) \in \mathbb{R}^2$, find all vectors $(u_1, u_2) \in \mathbb{R}^2$ which have inner product zero, that is,

$$\left(\frac{\partial h}{\partial y_1}(y), \frac{\partial h}{\partial y_2}(y)\right) \cdot (u_1, u_2) = 0.$$

(2) Let $f: S^2 \to \mathbb{R}$ be a smooth function. Assume that f achieves its maximum at $p \in S^2$. Then, prove that

$$df_p(X) = 0$$

for any tangent vector $X \in T_p S^2$. Here, $df_p : T_p S^2 \to T_{f(p)} \mathbb{R}$ denotes the differential of f at $p \in S^2$.

(3) Let $\varphi : S^2 \to \mathbb{R}^2$ be a smooth map. Assume that the function $h \circ \varphi : S^2 \to \mathbb{R}$ achieves its maximum at $q \in S^2$. Prove

$$\dim\{X \in T_q S^2 \mid d\varphi_q(X) = 0\} \ge 1.$$

Here, $d\varphi_q: T_q S^2 \to T_{\varphi(q)} \mathbb{R}^2$ denotes the differential of φ at $q \in S^2$.

- (1) If H and K are finite index subgroups of G, show that $H \cap K$ is also a finite index subgroup of G.
- (2) If G has a proper subgroup of finite index, show that G has a proper normal subgroup of finite index.
- (3) Consider the ring of rational integers Z as a group under addition. Find all the finite index subgroups of Z.
- (4) Consider the field of rational numbers Q as a group under addition. Find all the finite index subgroups of Q.