August, 2012

 $\begin{array}{c|c} 1 \\ \hline \\ \text{Let } M_2(\mathbb{R}) \text{ be the vector space consisting of all } 2 \times 2 \text{ real matrices.} \\ \hline \\ \text{For } A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \text{ we define a map } L : M_2(\mathbb{R}) \to \mathbb{R} \text{ by} \\ \\ L(X) = \text{Tr}(AX) \quad \text{ (the trace of } AX) \\ \end{array}$

and a subset W of $M_2(\mathbb{R})$ by

$$W = \{ X \in M_2(\mathbb{R}) \mid L(X) = 0 \}.$$

We also define a map $T : M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by

$$T(X) = {}^{t}X$$
 (the transpose of X).

Then, answer the following questions.

(1) Prove that L is linear and that W is a linear subspace of $M_2(\mathbb{R})$.

(2) Prove that the restriction $T|_W$ of T to W is a linear map between W.

(3) For $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & b \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & c \end{pmatrix} \right\}$, find real numbers a, b, c so that \mathcal{B} is a basis of W.

(4) For a, b, c determined in (3), find the representation matrix of $T|_W$ with respect to the basis \mathcal{B} .

2 For real numbers
$$a$$
 and b , set $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

- (1) Diagonalize A by an orthogonal matrix.
- (2) Find a necessary and sufficient condition on a and b which assures that ${}^{t}\boldsymbol{x}A\boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{3}$.

Let a and b be real constants. Define a domain D in the plane by

$$D = \{ (x, y) \mid x > 0, \ y > x^a \}.$$

Answer the following questions.

3

- (1) Show that $\lim_{x \to +\infty} x \left(\frac{\pi}{2} \arctan x\right) = 1$. Here $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$.
- (2) Find a necessary and sufficient condition in terms of a and b for the improper integral

$$I = \iint_D \frac{x^2 e^{-bx}}{x^2 + y^2} dx dy$$

to be convergent.

(3) Find the value (possibly $+\infty$) of the above I when a = b = 1.

4 Let f(x) be a real-valued continuous function on the interval $[0, \infty)$. Assume that f is monotonically non-increasing on $[0, \infty)$ and satisfies

$$\lim_{T \to \infty} \int_0^T f(x) \, dx = +\infty.$$

Let $\{a_n\}_{n=1}^{\infty}$ be the sequence defined by

$$a_n = \sum_{k=1}^n f(k) \quad (n = 1, 2, \dots).$$

- (1) Prove that f(x) > 0 for every $x \ge 0$.
- (2) Prove the inequalities

$$\int_{1}^{n+1} f(x) \, dx \le a_n \le \int_{0}^{n} f(x) \, dx \quad (n = 1, 2, \dots).$$

(3) Compute the limit $\lim_{n \to \infty} \frac{a_n}{\int_1^n f(x) \, dx}$.

$$d(x, y) = |\{i \mid 1 \le i \le n, x_i \ne y_i\}|,$$

where $\boldsymbol{x} = (x_1, x_2, \dots, x_n) \in F^n$, $\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in F^n$, and |S| denotes the cardinality of a finite set S.

(1) Show that the inequality $d(\boldsymbol{x}, \boldsymbol{y}) + d(\boldsymbol{y}, \boldsymbol{z}) \geq d(\boldsymbol{x}, \boldsymbol{z})$ holds for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in F^n$.

(2) Let $1 \le k \le n$, and let

$$\boldsymbol{x} = (0, 0, \dots, 0) \in F^n,$$

 $\boldsymbol{y} = (\underbrace{0, 0, \dots, 0}_{n-k}, \underbrace{1, 1, \dots, 1}_{k}) \in F^n.$

Find $|\{\boldsymbol{z} \in F^n \mid d(\boldsymbol{y}, \boldsymbol{z}) = 1\}|$ and $|\{\boldsymbol{z} \in F^n \mid d(\boldsymbol{x}, \boldsymbol{z}) = k, d(\boldsymbol{y}, \boldsymbol{z}) = 1\}|.$

(3) Let $k, \boldsymbol{x}, \boldsymbol{y}$ be the same as in (2). Find the number of pairs $(\boldsymbol{z}, \boldsymbol{w}) \in F^n \times F^n$ satisfying

$$d(x, z) = d(x, w) = k, \ d(y, z) = d(y, w) = 1, \ d(z, w) = 2.$$

 $\begin{array}{|c|c|c|c|c|} \hline 6 & \text{Choose a random point } A \text{ from the unit disc } \Omega = \{(u,v) | u^2 + v^2 \le 1\} \\ \text{equipped with the uniform distribution. Express the coordinates of } A \text{ by} \\ (R \cos \Theta, R \sin \Theta), \text{ where } 0 \le R \le 1 \text{ and } 0 \le \Theta < 2\pi. \end{array}$

(1) Find a function f_R specified by

$$P(R \le x) = \int_{-\infty}^{x} f_R(t) dt$$

for all $x \in (-\infty, +\infty)$. (f_R is called the probability density function of R.)

- (2) Calculate the mean value $\mathbf{E}[R]$ and the variance $\mathbf{V}[R]$.
- (3) For $0 \le x \le 1$ and $0 \le y < 2\pi$, find the conditional probability $P(R \le x | \Theta \le y)$.

(4) Answer whether the random variables R and Θ are independent or not, together with a reason.

 $\begin{bmatrix} 7 \end{bmatrix}$ Let α be a positive real number, and let y = f(x) be the solution of the initial value problem

$$y' = -\frac{y}{(1-x)^{\alpha}}$$
 (0 < x < 1), $y(0) = 1$

- (1) Find the solution f(x).
- (2) Compute the limit $\lim_{x \to 1-0} f'(x)$.
- (3) Find a necessary and sufficient condition on α which assures that $\lim_{x \to 1-0} f^{(n)}(x) = 0$ for all nonnegative integers n. Here, $f^{(n)}(x)$ stands for the derivative of f(x) of order n, and $f^{(0)}(x) = f(x)$.

8 Let *n* be a natural number and let *a* be a real number with 0 < a < 1. Answer the following questions.

(1) Find all the poles and their residues for the meromorphic function

$$f(z) = \frac{z^n}{1 - a(z + z^{-1}) + a^2}$$

on the complex plane.

(2) Compute the integral

$$I = \int_C f(z) dz$$

for the function f(z) given in the previous question. Here, C denotes the unit circle |z| = 1 oriented anticlockwise.

(3) Find a value of the definite integral

$$\int_0^{2\pi} \frac{\cos 5\theta}{1 - 2a\cos\theta + a^2} d\theta.$$

Let \mathbb{C}^2 be the complex 2-space equipped with the metric

$$d(z,w) = \sqrt{|z_1 - w_1|^2 + |z_2 - w_2|^2}$$
, $z = (z_1, z_2)$, $w = (w_1, w_2) \in \mathbb{C}^2$.

For $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{C}^2$, define an equivalence relation $z \sim w$ by

 $(z_1, z_2) = (w_1, w_2)$ or $(z_1, z_2) = (w_2, w_1),$

and consider its quotient space \mathbb{C}^2/\sim . Then, answer the following questions.

(1) For the map $\varphi : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $(z_1, z_2) \mapsto (z_1 + z_2, z_1 z_2)$, prove existence and uniqueness of a map $\tilde{\varphi} : \mathbb{C}^2/\sim \longrightarrow \mathbb{C}^2$ satisfying $\tilde{\varphi} \circ P = \varphi$. Here, P stands for the natural projection $P : \mathbb{C}^2 \longrightarrow \mathbb{C}^2/\sim$

(2) Prove that $\tilde{\varphi}$ is a continuous map.

9

(3) Prove that \mathbb{C}^2 is homeomorphic to \mathbb{C}^2/\sim .

10 Let F_5 denote the finite field consisting of five elements. Let X be an indeterminate, and for $a, b \in F_5$, set

$$f_{a,b}(X) = X^2 + aX + b.$$

- (1) Prove that for each $a \in F_5$, there exist exactly two elements $b \in F_5$ such that $f_{a,b}(X)$ is irreducible over F_5 .
- (2) Find all irreducible polynomials $f_{a,b}(X)$ over F_5 .
- (3) Express the product of all $f_{a,b}(X)$ in (2) as a sum of monomials.