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1 Consider the following symmetric matrix A and vector e:

A =


0 a a a
a 0 a a
a a 0 a
a a a 0

 , e =


1
0
0
0

 ,

where a is a non-zero real number.

(1) Find the eigenvalues of A and their multiplicities.

(2) Express e as a sum of eigenvectors of A.

(3) For a positive integer n, find Ane.

2 For n = 1, 2, . . . , we define a function fn on R by

fn(x) =

{
n − n2|x| if − 1

n
≤ x ≤ 1

n
,

0 otherwise.

(1) For m = 1, 2, . . . , prove that

lim
n→∞

∫ 1

−1

xmfn(x)dx = 0.

(2) For any polynomial p(x), prove that

lim
n→∞

∫ 1

−1

p(x)fn(x)dx = p(0).

(3) Let ϕ be a continuous function on [−1, 1]. Employing the fact that ϕ
is uniformly approximated by a polynomial, prove that

lim
n→∞

∫ 1

−1

ϕ(x)fn(x)dx = ϕ(0).
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3 Define a surface S in R3 by

S = {(x, y, z) ∈ R3 | 0 ≤ y ≤ 2x, z = 4 − x2, z ≥ 0}.
(1) Draw the surface S.

(2) Find the surface area of S.

(3) Find the length of the curve formed by the intersection of S and another
surface

y =
4

3
x3/2.

4 Let n and q be integers at least two, and let N and Q be finite sets
with n and q elements, respectively. Let X be the set of pairs consisting of
a subset of N and a map from that subset to Q, i.e.,

X = {(A, f) |A ⊆ N, f : A → Q}.

For (A, f), (B, g) ∈ X, we shall write (A, f) � (B, g) whenever A ⊆ B and
f(x) = g(x) for every x ∈ A. The cardinality of a finite set S is denoted by
|S|.

(1) Let 0 ≤ r ≤ s ≤ n, and let (A, f) and (B, g) be elements of X such
that (A, f) � (B, g), |A| = r, and |B| = n. Express∣∣{(C, h) ∈ X | (A, f) � (C, h) � (B, g), |C| = s}

∣∣
in terms of n, r, and s.

(2) Let 0 ≤ r ≤ n, and let (A, f) be an element of X such that |A| = r.
Express ∣∣{(C, h) ∈ X | (A, f) � (C, h), |C| = n}

∣∣
in terms of n, q, and r.

(3) Let 0 ≤ j ≤ r ≤ n and 0 ≤ s ≤ n, and let (A, f) and (B, g) be elements
of X such that |A| = r, |B| = n, and

∣∣{x ∈ A | f(x) = g(x)}
∣∣ = j.

Express∣∣∣∣{(
(C, h), (D, k)

)
∈ X × X

∣∣∣∣ (C, h) � (B, g), (C, h) � (D, k),
(A, f) � (D, k), |C| = s, |D| = n

}∣∣∣∣
in terms of n, q, r, s, and j.
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5 Let X be a random variable obeying the exponential distribution with
parameter λ > 0; that is,

P (α ≤ X ≤ β) =

∫ β

α

λe−λxdx

for 0 ≤ α < β .

(1) Find the mean value E[X] and the variance V[X] of X.

(2) Prove that P (X > a + b|X > a) = P (X > b) for a > 0 and b > 0,
where P (A|B) stands for the conditional probability of A relative to
B.

(3) Define a random variable Y by

Y =

{
[X] if X ≥ 0,

0 if X < 0,

where [x] denotes the greatest integer not exceeding the real number
x. Find the mean value E[Y ].

6 For real-valued functions x = x(t) and y = y(t) (t ∈ R), consider the
following initial value problem:{

x′ = cos y,

y′ = − sin x,{
x(0) = a,

y(0) = π
2
− a,

where a is a constant with 0 < a < π
2
. For every pair of solutions x(t), y(t),

we define a function f = f(t) (t ∈ R) by

f(t) = x(t) + y(t).

(1) Find a differential equation of second order satisfied by f .

(2) Find the values f(0) and f ′(0).
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(3) Find f(t).

(4) Find the pair of solutions x(t), y(t).

7 Define a meromorphic function f(z) on the complex plane by

f(z) =
1

(1 + z2)(1 + z4)
.

(1) Find all the poles of f(z) on the upper half-plane Im z > 0 and their
residues.

(2) Find the power series expansion of the function f(z) about z = 0.

(3) Evaluate the following definite integral:

I =

∫ ∞

−∞

dx

(1 + x2)(1 + x4)
.

8 Let f be a continuous map from a metric space (X, d) to the n-
dimensional Euclidean space Rn. The map f is called a proper map if the
inverse image f−1(K) is compact for any compact subset K of Rn.

(1) Give an example of a proper map from R2 to R3.

(2) Give an example of a continuous map from R2 to R3 which is not a
proper map.

(3) Let (X, d) be a metric space. Assume that the closed metric ball

Br(p) = {q ∈ X | d(p, q) ≤ r}

is always compact for any point p in X and any r > 0. Prove that
(X, d) is complete.

(4) Let (X, d) be a metric space. Assume that there exists a proper map
f : (X, d) → Rn satisfying:

|f(p) − f(q)| ≤ d(p, q) for p, q ∈ X,

where | · | denotes the Euclidean norm. Prove that (X, d) is complete.
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9 As a simple mathematical model for repeated biological branching
structure, for example, for respiratory trachea or plant vessel bifurcation,
consider the following dichotomous branching in a plane:

This model satisfies the following assumptions:

• The zero-th branch is single, and its length equals l0 (l0 > 0).

• Two (k + 1)-st branches grow from the end of a k-th branch symmet-
rically at angle θ (0 < θ ≤ 90◦) with respect to the k-th branch.

• The length of every (k+1)-st branch is equal to that of any k-th branch
multiplied by γ (0 < γ ≤ 1).

In the calculation below, ignore the effect of the diameter of any branch.
Two branches are said to overlap if they share a common point other than
their endpoints.

(1) When θ = 90◦, find a condition that a fifth and another k-th branch
(k ≤ 5) overlap.

(2) When θ = 90◦, derive a condition that no two branches overlap.

(3) Answer just one of the following questions (A) and (B):

(A) Describe your strategy to find a condition that no two branches
overlap in the case of θ 6= 90◦. (You do not need to derive the
condition itself.)
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(B) Provided that a branching structure of organism has the nature
not to cause any overlap of branches, describe your opinion for the
possible reason to explain such nature. (You may choose a specific
structure of organism and describe your opinion according to it.)

10 Let S3 be the symmetric group of degree 3 and let T be the set of
elements in S3 of order 2. For a ∈ S3, let ϕa : S3 → S3 denote the map
defined by ϕa(g) = aga−1. Let G be the automorphism group of S3.

(1) Prove that S3 is generated by T .

(2) For f ∈ G, prove that f(T ) = T .

(3) Prove that ϕa ∈ G.

(4) Prove that the map S3 → G, a 7→ ϕa is an injective homomorphism.

(5) Prove that G and S3 are isomorphic.
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