August, 2015

Let f be a twice differentiable function on an open interval I.

(1) Prove that

1

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

for all $x \in I$.

(2) Prove that $f''(x) \ge 0$ for all $x \in I$ if and only if

$$f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}$$

for all $a, b \in I$.

(3) Prove that

$$\left(\frac{\sin c}{c}\right)^2 \ge \frac{\sin a}{a} \cdot \frac{\sin b}{b}$$

for all $a, b \in (0, \pi)$, with $c = \frac{a+b}{2}$.

0
Ζ

Consider the following improper integral for a real number α :

$$F(\alpha) = \iint_D \sin^\alpha (x^2 + y^2) \, dx \, dy,$$

where $D = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < \pi\}.$

- (1) Characterize convergence of the improper integral $F(\alpha)$ in terms of α .
- (2) Prove

$$\int_0^1 x^{a-1}(1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \quad (a,b>0),$$
 where $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt.$

(3) When the improper integral $F(\alpha)$ is convergent, express $F(\alpha)$ in terms of values of the function $\Gamma(s)$.

Let k be a constant and put $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & k & 3 \\ 0 & 3 & 2 \end{pmatrix}$. Assume that there exists a 2 × 3 3

matrix X such that ${}^{t}X X = A$. Here ${}^{t}X$ denotes the transposed matrix of X.

- (1) Find k and the rank of A.
- (2) Find a matrix X all of whose entries are integers.
- (3) Find A^n for a positive integer n.

4 Consider the following ordinary differential equation as a mathematical model for the temporal variation of a bioresource stock which is consumed in a constant rate:

$$\frac{dN(t)}{dt} = \{1 - N(t)\} N(t) - hN(t),\$$

where N(t) is the stock size of the bioresource at time t, and h is the consumption rate. Assume that h is a positive constant and $N(0) = N_0 > 0$.

- (1) Determine N(t).
- (2) Find the condition for h that the bioresource does not go extinct.
- (3) Find the value of h so as to maximize the consumed amount of the bioresource per unit time at the stationary state.

5 Let v, k, t be positive integers with $v \ge k \ge t$, and let Ω be a v-element set. Let \mathcal{B} be a family of k-element subsets of Ω . Assume that for any t-element subset T of Ω , there exists a unique element $B \in \mathcal{B}$ such that $T \subset B$. The cardinality of a finite set X is denoted by |X|.

- (1) Express $|\mathcal{B}|$ in terms of v, k and t.
- (2) Let *i* be a positive integer at most *t*. For an *i*-element subset *S* of Ω , express $|\{B \in \mathcal{B} \mid S \subset B\}|$ in terms of v, k, t and *i*.
- (3) For v = 7, k = 3, and t = 2, provide an example of a pair of Ω and \mathcal{B} .

6 Consider a game of "Head or Tail," respectively associated to 1 and 0. Let X_n be the result of the *n*-th trial, and assume that $\mathbb{P}(X_n = 1) = p$, where *p* is a constant independent of *n* with 0 . Define a random variable*T*by

$$T = \inf\{ n \mid X_{n-1} \neq X_n, n \ge 2 \},\$$

where we put $T = \infty$ in the case that $\{n \mid X_{n-1} \neq X_n, n \ge 2\} = \emptyset$.

(1) Find $\mathbb{P}(A_n \cap A_{n+1})$ for $n \ge 2$, where $A_n = \{X_{n-1} \ne X_n\}$.

- (2) Calculate $\mathbb{P}(T=n)$, and show that $\mathbb{P}(T<\infty)=1$.
- (3) Find $\mathbb{P}(X_T = 1, X_{T+1} = 0)$.

 $\begin{bmatrix} 7 \\ 0 \end{bmatrix}$ Let $\log z$ be the natural logarithm of z which is a single-valued holomorphic branch on Ω determined by $\log 1 = 0$, where Ω is the slit domain defined as the complex plane \mathbb{C} minus the negative imaginary axis $\{iy \mid y \leq 0\}$. For a constant a with -1 < a < 1, let f(z) be a meromorphic function on Ω given by

$$f(z) = \frac{e^{a\log z}}{1+z^2}.$$

- (1) Find the image domain of the upper half-plane $H = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$ under the mapping log z.
- (2) Find all the residues of f(z) on the upper half-plane H.
- (3) For a positive number R, consider the complex integral

$$I_R = \int_{\gamma_R} f(z) dz$$

on the curve $\gamma_R(t) = Re^{it} \ (0 \le t \le \pi)$. Show that

$$\lim_{R \to 0+} I_R = \lim_{R \to +\infty} I_R = 0.$$

(4) Evaluate the following definite integral:

$$\int_0^{+\infty} \frac{x^a}{1+x^2} dx.$$

8 Let u = u(x) be a real-valued function of class C^2 on the interval I = [0, 1], satisfying

$$u''(x) - (4x^2 + 2)u(x) = e^{-x^2}, \quad u(0) = u(1) = 0.$$

Define a space V of real-valued functions on I by

$$V = \{v \mid v \text{ is of class } C^1 \text{ on } I \text{ and satisfies } v(0) = v(1) = 0\}.$$

Let $J: V \to \mathbb{R}$ be a functional on V given by

$$J(v) = \frac{1}{2} \int_0^1 (v'(x))^2 \, dx + \int_0^1 (2x^2 + 1)v(x)^2 \, dx + \int_0^1 e^{-x^2} v(x) \, dx.$$

(1) By setting $w(x) = u(x)e^{-x^2}$, find a differential equation satisfied by w = w(x).

- (2) Find u(x).
- (3) Show the inequality $J(u) \leq J(v)$ ($v \in V$). Moreover, find a necessary and sufficient condition that equality holds in this inequality.

9 Let \mathbb{R}^2 be the two-dimensional Euclidean space. For $X \subset \mathbb{R}^2$, put $\widehat{X} = X \cup \{\infty\}$, where ∞ is a point that is not in \mathbb{R}^2 . Let \mathcal{O} be a family of sets in \widehat{X} defined as follows.

- If U is an open set in X, then U is in \mathcal{O} . Here the topology in X is induced from that of \mathbb{R}^2 .
- If K is a compact set in X, then $(X \setminus K) \cup \{\infty\}$ is in \mathcal{O} . Here we regard the empty set as a compact set.
- (1) Show that $(\widehat{X}, \mathcal{O})$ is a topological space with \mathcal{O} a family of open sets.
- (2) Show that $(\widehat{X}, \mathcal{O})$ is compact.
- (3) For $X = \mathbb{R}^2$, describe $(\widehat{X}, \mathcal{O})$.
- (4) For $X = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0\}$, describe $(\widehat{X}, \mathcal{O})$.

10 Let F be a field, and consider the polynomial ring F[x] over F. Let θ_1 and θ_2 be distinct elements of F. The principal ideal of F[x] generated by an element f(x) of F[x] is denoted by (f(x)).

- (1) Show that the quotient rings $F[x]/(x-\theta_1)$ and $F[x]/(x-\theta_2)$ are isomorphic as rings to F.
- (2) Show that the quotient ring $F[x]/((x \theta_1)(x \theta_2))$ is isomorphic as a ring to the direct sum $F[x]/(x \theta_1) \oplus F[x]/(x \theta_2)$.
- (3) Find all the maximal ideals of $F[x]/((x \theta_1)(x \theta_2))$.
- (4) Find all the nonzero ring homomorphisms from $F[x]/((x-\theta_1)(x-\theta_2))$ to F.