August, 2021

For a real number $\alpha > 1$, we consider the following function on \mathbb{R} :

$$f(x) = \begin{cases} x^{\alpha} \sin\left(\frac{1}{x^2}\right) & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- (1) Prove that f(x) is differentiable at x = 0.
- (2) Find the condition on α under which f(x) is of class C^1 on \mathbb{R} .
- (3) Find the condition on α under which f(x) is of class C^1 but not twice differentiable on \mathbb{R} .

2 Answer the following questions concerning the matrix

$$A = \begin{pmatrix} -1 & 0 & -3 \\ 4 & 1 & 6 \\ 2 & 0 & 4 \end{pmatrix}.$$

(1) Diagonalize A.

1

- (2) Find the polynomial f(x) of smallest degree such that $A^{-1} = f(A)$.
- (3) Find a real number b and a polynomial g(x) such that the matrix

$$B = \begin{pmatrix} 6 & 0 & 6\\ 4b & -b & 6b\\ -4 & 0 & -4 \end{pmatrix}$$

satisfies B = g(A).

3

Find the following limits. Here, log means the natural logarithm.

(1)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \cos\left(\frac{\pi}{2} \cdot \frac{k}{n}\right)$$

(2)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \log\left(1 + \frac{k^3 - 1}{k^2 n}\right)$$

(3)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sum_{\ell=1}^{n} \frac{1}{n^2} \left(\frac{k}{n}\right) \left(\frac{\ell}{n}\right) \sin\left(\left(\frac{k}{n}\right) \left(\frac{\ell}{n}\right)^2\right)$$

 $\underbrace{4} \quad \text{Let } W \text{ be the subspace of } \mathbb{R}^3 \text{ spanned by the vectors } \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix},$

 $\begin{pmatrix} 1\\5\\-8 \end{pmatrix}$. Let $A = \begin{pmatrix} -4 & 3 & -5\\-4 & 3 & -4\\1 & -1 & 2 \end{pmatrix}$ and let V be the sum of all eigenspaces of A.

- (1) Find a basis of W.
- (2) Find a basis of V.
- (3) Find a basis and the dimension of the intersection $W \cap V$ of W and V.
- (4) Prove that $W + V = \mathbb{R}^3$.

5 Consider the following mathematical model to govern the annual variation of the number of mature individuals at the beginning of breeding season at the *n*th year in an organism's population:

$$\begin{split} F_{n+1} &= \sigma_{\rm F} F_n + \sigma_{\rm J} \omega m \min \left[F_n, M_n \right] \\ M_{n+1} &= \sigma_{\rm M} M_n + \sigma_{\rm J} (1-\omega) m \min \left[F_n, M_n \right] \end{split}$$

where the population makes the sexual reproduction by forming couples of mature female and male in the breeding season. F_n and M_n denote the number of mature female and male individuals respectively. Here, $\sigma_{\rm F}$, $\sigma_{\rm M}$ are the survival rate of mature female and male individual until the next breeding season respectively, m the mean number of newborns per reproductive couple of a mature female and a mature male, ω the female ratio in the whole newborns, $\sigma_{\rm J}$ the survival rate of immature individual to become mature by the next year, where $0 < \sigma_{\rm F}$, $\sigma_{\rm M}$, ω , $\sigma_{\rm J} < 1$, m > 0. The notation $\min[a, b]$ means that $\min[a, b] = \min[b, a] = a$ when $a \leq b$.

- (1) Describe your idea about the assumption on the formation of couples in the above model.
- (2) When $F_1 = M_1$, show that the condition $F_2 = M_2$ is equivalent to

$$(*) \quad \sigma_{\rm F} + \sigma_{\rm J} \omega m = \sigma_{\rm M} + \sigma_{\rm J} (1 - \omega) m$$

- (3) When $F_1 = M_1$ and $F_2 = M_2$ hold, express F_n and M_n for n > 1 using F_1 .
- (4) When the condition (*) is satisfied but $F_1 \neq M_1$, prove that the sex ratio of mature individuals defined by F_n and M_n asymptotically approaches 1 : 1 year by year.

<u>6</u> Let v, k, λ, b, r be positive integers satisfying $v > k > \lambda$. Let M be a $b \times v$ real matrix satisfying the following conditions:

- (i) The entries of M are 0 or 1,
- (ii) $MJ_{v\times v} = kJ_{b\times v}$,
- (iii) $J_{b \times b} M = r J_{b \times v}$,
- (iv) ${}^{t}MM = (r \lambda)E_v + \lambda J_{v \times v}$,

where E_v is the identity matrix of order v, $J_{m \times n}$ is the $m \times n$ matrix with entries 1, ${}^{t}M$ is the transpose of M.

- (1) Express $det({}^{t}MM)$ in terms of r, v, λ .
- (2) Prove that bk = vr.
- (3) Prove that $r(k-1) = \lambda(v-1)$.
- (4) Prove that $b \ge v$.

 $\begin{bmatrix} 7 \\ 0 \end{bmatrix}$ Let X and Y be independent random variables obeying the uniform distribution on the interval [-1, 1] and consider their sum Z = X + Y.

- (1) Find the mean value $\mathbf{E}[Z]$ and the variance $\mathbf{V}[Z]$ of Z.
- (2) Find the probability $P(Z \le u)$ for a real number u.
- (3) Find the probability density function of Z and depict an outline of its graph.

8 For the meromorphic function

$$f(z) = \frac{e^{iz}}{2+z^2}$$

on the complex plane, answer the following questions. Here, i denotes the imaginary unit.

- (1) Find the power series expansion of f(z) about z = 0 up to the term z^3 .
- (2) Find all the poles and their residues of f(z) on the upper half-plane Im z > 0.
- (3) For a positive number R, let Γ_R be the upper half (that is, the intersection with the upper half-plane) of the circle |z| = R. Then show the following:

$$\int_{\Gamma_R} f(z) dz \to 0 \quad (R \to +\infty).$$

(4) Evaluate the following integral by the residue theorem:

$$I = \int_{-\infty}^{+\infty} \frac{\cos x}{2 + x^2} dx.$$

9 Let f = f(t) be a real-valued continuous function on \mathbb{R} and assume that $\lim_{t \to \infty} f(t) = \alpha$ for a constant $\alpha > 0$. Now, let x = x(t), y = y(t) be two real-valued functions of class C^1 on \mathbb{R} satisfying

$$\begin{cases} x' = f(t)x - e^{-t}y - (x^2 + y^2)x, \\ y' = e^{-t}x + f(t)y - (x^2 + y^2)y, \end{cases} \begin{cases} x(0) = 1, \\ y(0) = 0. \end{cases}$$

Define the function z = z(t) on \mathbb{R} by

$$z(t) = \{x(t)\}^2 + \{y(t)\}^2.$$

- (1) Find a differential equation satisfied by z(t).
- (2) By considering the function $z(t)^{-1}$, express z(t) in terms of the function $F(t) = \int_0^t f(s) ds$.
- (3) Find the limit $\lim_{t\to\infty} z(t)$.

10 For the 3-dimensional Euclidean space \mathbb{R}^3 , we denote the standard inner product by $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ $(\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3)$ and define the length of the vector \boldsymbol{x} by $|\boldsymbol{x}| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$. We consider the 2-dimensional unit sphere $\mathbb{S}^2 = \{\boldsymbol{x} \in \mathbb{R}^3 \mid |\boldsymbol{x}| = 1\}$ as a topological space by the relative topology of \mathbb{R}^3 . We also consider the subset

$$V = \left\{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^3 \times \mathbb{R}^3 \, \middle| \, |\boldsymbol{x}| = |\boldsymbol{y}| = 1, \, \langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0 \right\}$$

of \mathbb{R}^6 as a topological space by the relative topology, and define the mapping $\pi : V \longrightarrow \mathbb{S}^2$ as $\pi(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}$ for $(\boldsymbol{x}, \boldsymbol{y}) \in V$.

- (1) Prove that V is compact.
- (2) Prove that the inverse image $\pi^{-1}(\boldsymbol{x})$ for any $\boldsymbol{x} \in \mathbb{S}^2$ is homeomorphic to the circle.
- (3) Prove that V is homeomorphic to

$$SO(3) = \{A : a \text{ real square matrix of degree } 3 \mid {}^{t}AA = E_3, \det A = 1 \}.$$

Here, ${}^{t}A$ denotes the transpose of A and E_3 denotes the identity matrix of degree 3, SO(3) is considered as a topological space by the relative topology of \mathbb{R}^9 .

Let S_5 be the symmetric group of degree 5. Let H be the subgroup of S_5 generated by (1 2), (1 3 2 4) $\in S_5$ and let Z be the center of H. Set $X = \{g^{-1}Zg \mid g \in S_5\},$ $C = \{g \in S_5 \mid gx = xg \; (\forall x \in Z)\}$ and $Y = \{g^{-1}Hg \mid g \in S_5\}.$

- (1) Find the order of H.
- (2) Find the order of Z.
- (3) Find the number of the elements in X.
- (4) Find the order of C.
- (5) Find the number of the elements in Y.