August, 2022

- $\boxed{1} \quad \text{Let } f(x,y) = \frac{e^{-e^{xy}}}{y}.$
 - (1) Find $\frac{\partial f}{\partial x}(x,y)$.
 - (2) Find the following integral:

$$\int_{1}^{2} \left(\int_{0}^{\infty} \frac{\partial f}{\partial x}(x, y) \, dx \right) dy.$$

(3) Find the following integral, by changing the order of integration of the integral in (2):

$$\int_0^\infty \frac{e^{-e^x} - e^{-e^{2x}}}{x} \, dx.$$

$$\begin{array}{c} \hline 2 \\ \hline \end{array} \quad \text{Let } \alpha \in \mathbb{C}, \text{ and set } A = \begin{pmatrix} 2 & \alpha & 2 \\ 2 & 2 & \alpha \\ \alpha & 2 & 2 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 1 \\ \alpha \\ 3 \end{pmatrix}, \ W = \{ \boldsymbol{x} \in \mathbb{C}^3 \mid A\boldsymbol{x} = \boldsymbol{0} \}.$$

- (1) Find the condition on α under which the matrix A is nonsingular.
- (2) Find all vectors $\boldsymbol{y} \in \mathbb{C}^3$ satisfying $A\boldsymbol{y} = \boldsymbol{b}$ when the matrix A is singular.
- (3) Find the condition on α under which the dimension of the subspace W is at least 1.
- (4) Under the condition of (3), find a basis of W.

3

(1) Suppose that a C^2 function f(x, y) defined on a closed domain D in \mathbb{R}^2 satisfies

$$\frac{\partial^2}{\partial x^2}f(x,y) + \frac{\partial^2}{\partial y^2}f(x,y) > 0$$

on the interior of D. Show that f(x, y) does not have maximum on the interior of D.

(2) Find the maximum of the function $x^2 + y^2 - 2y$ on $\{(x, y) \in \mathbb{R}^2 \mid x^2 + 4y^2 \le 1\}$.

4 Let a, b be real numbers, and assume $b \neq 0$. Let I denote the 3×3 identity matrix, and let J denote the 3×3 matrix all of whose entries are 1. Let e_1, \ldots, e_6 be the standard basis of \mathbb{R}^6 . For the 6×6 matrix

$$A = \begin{pmatrix} aI & bJ \\ bJ & aI \end{pmatrix},$$

answer the following.

- (1) Let W be the subspace of \mathbb{R}^6 generated by $v_1 = e_1 + e_2 + e_3$ and $v_2 = e_4 + e_5 + e_6$. Show that A leaves W invariant.
- (2) Find the matrix representation of the linear mapping from W to W induced by A with respect to the basis v_1, v_2 .
- (3) Prove that A has exactly three distinct eigenvalues.
- (4) Find a condition under which the matrix A is invertible, and find the inverse of A under that condition.

5 Consider the following mathematical model to describe a daily change of the frequency of individuals infected by a transmissible disease in a population:

$$S_{k+1} = S_k e^{-\beta I_k} + q I_k;$$

$$I_{k+1} = S_k (1 - e^{-\beta I_k}) + (1 - q) I_k,$$

where S_k and I_k are the frequencies of non-infected and infected individuals respectively at the k th day (k = 0, 1, 2, ...). Parameters β and q satisfy that $\beta > 0$ and 0 < q < 1. We assume that $I_0 > 0$.

Answer the following questions.

- (1) Describe the meaning of parameter q.
- (2) Derive the expected days for an infected individual at the k th day to recover from the disease.
- (3) Derive the necessary and sufficient condition that there exists a positive value I^* such that $I_k = I^*$ for any $k \ge 0$.

6 Let *n* be an integer with $n \ge 2$. Let $\{\pm 1\}^n$ denote the set of *n*-dimensional vectors whose entries consist only of 1, -1. For $\mathbf{x}, \mathbf{y} \in \{\pm 1\}^n$, let $\mathbf{x} \cdot \mathbf{y}$ denote their standard inner product by regarding them as vectors in \mathbb{R}^n . Consider the existence of *n* vectors $\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_n$ satisfying the following condition:

$$\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n \in \{\pm 1\}^n$$

$$\mathbf{r}_i \cdot \mathbf{r}_j = 0 \quad (1 \le i < j \le n)$$
(*)

- (1) For n = 2, find all pairs of two vectors $\mathbf{r}_1, \mathbf{r}_2$ satisfying the condition (*).
- (2) For n = 3, show that there do not exist three vectors $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ satisfying the condition (*).
- (3) For $n = 2^k$ (k = 1, 2, 3, ...), show that there exist 2^k vectors $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_{2^k}$ satisfying the condition (*).

Let Y be a random variable with the probability density function

$$f_Y(y) = \begin{cases} 8y & 0 \le y \le \frac{1}{2}, \\ 0 & \text{elsewhere.} \end{cases}$$

Define the random variable U by U = -2Y + 1.

- (1) Find the probability density function of U.
- (2) Find the mean value $\mathbf{E}(U)$ and variance $\mathbf{V}(U)$ of the random variable U.

8

9

7

(1) Let D_R denote the domain defined by $0 < \arg z < \frac{2\pi}{5}$, 0 < |z| < R for a real number R > 1. Find all the poles and their residues of the meromorphic function

$$f(z) = \frac{1}{z^5 + 1}$$

in the domain D_R .

(2) Let Γ_R be the curve parametrized by $z = Re^{i\theta}$ $(0 \le \theta \le \frac{2\pi}{5})$. Show that

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{dz}{z^5 + 1} = 0.$$

(3) By using the residue theorem, evaluate the definite integral

$$I = \int_0^{+\infty} \frac{dx}{x^5 + 1}.$$

Here, if necessary, the formula $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$ may be used without proof.

Answer the following questions on the differential equation

$$\frac{dy}{dx} = -y^2 + y.$$

- (1) Find all solutions.
- (2) Find a solution under the condition y(0) = a with 0 < a < 1.
- (3) Draw the graph of the solution of (2).

10 Let $M(2; \mathbb{R})$ be the set of all 2×2 real matrices. We regard $M(2; \mathbb{R})$ as a topological space by identifying it with the four-dimensional Euclidean space \mathbb{R}^4 . We consider the following subspaces of $M(2; \mathbb{R})$ with relative topologies:

$$GL(2; \mathbb{R}) = \{X \in M(2; \mathbb{R}) \mid \det X \neq 0\},\$$

$$SL(2; \mathbb{R}) = \{X \in M(2; \mathbb{R}) \mid \det X = 1\},\$$

$$SO(2; \mathbb{R}) = \{X \in M(2; \mathbb{R}) \mid {}^{t}X X = I\} \cap SL(2; \mathbb{R}).\$$

Here det X is the determinant of X, ${}^{t}X$ is the transpose of X, and I is the 2 × 2 identity matrix.

- (1) Answer whether each of $GL(2; \mathbb{R})$, $SL(2; \mathbb{R})$, and $SO(2; \mathbb{R})$ is open or closed, or neither open nor closed, with reason.
- (2) Answer whether each of $GL(2; \mathbb{R})$, $SL(2; \mathbb{R})$, and $SO(2; \mathbb{R})$ is compact or not, with reason.
- (3) Show that $SO(2; \mathbb{R})$ is homeomorphic to the unit circle

$$S^{1} = \{ (x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1 \}.$$

11 Let G be a finite group whose order is not divisible by 3. Assume that the map $\varphi: G \to G, a \mapsto a^3$ is a group homomorphism.

- (1) Prove that φ is an isomorphism.
- (2) For $x, y \in G$, prove that the following equations hold:

(a)
$$(xy)^2 = y^2 x^2$$
.

(b)
$$[x, y]^3 = [x^3, y].$$

(c)
$$[x, y]^2 = [y, x^{-2}].$$

(d) $[x, y]^6 = 1.$

Here 1 is the identity element of G and $[x, y] = x^{-1}y^{-1}xy$.