August, 2023

1 For $x, y \in \mathbb{R}$, set

$$
f(x, y)= \begin{cases}\frac{e^{x}-e^{y}}{x-y} & \text { if } x \neq y \\ e^{x} & \text { if } x=y\end{cases}
$$

For $a \in \mathbb{R}$, answer the following questions.
(1) Show that the function $f(x, y)$ is continuous at (a, a).
(2) Find the partial derivatives $f_{x}(a, a)$ and $f_{y}(a, a)$.
(3) Show that the function $f(x, y)$ is totally differentiable at (a, a).

2 For the matrix $A=\left(\begin{array}{rrrr}3 & -2 & 7 & -7 \\ 2 & -2 & 5 & -6 \\ 2 & 2 & 3 & 2 \\ 3 & 2 & 5 & 1\end{array}\right)$, consider the linear mapping $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ defined by $f(\boldsymbol{u})=A \boldsymbol{u}\left(\boldsymbol{u} \in \mathbb{R}^{4}\right)$.
(1) Find a basis of the kernel $W=\operatorname{Ker}(f)$ of the linear mapping f.
(2) Find an orthonormal basis of the orthogonal complement W^{\perp} of W in \mathbb{R}^{4} with respect to the standard inner product on \mathbb{R}^{4}.
(3) For the vector $\boldsymbol{v}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)$ in \mathbb{R}^{4}, find the vectors $\boldsymbol{w} \in W$ and $\boldsymbol{w}^{\prime} \in W^{\perp}$ such that $\boldsymbol{v}=\boldsymbol{w}+\boldsymbol{w}^{\prime}$.

3 Let n be a positive integer, and let

$$
\varphi_{n}(s, t)= \begin{cases}\frac{s^{3} t \sin (n \pi s t)}{s^{2}+t^{2}} & (s, t) \neq(0,0) \\ 0 & (s, t)=(0,0)\end{cases}
$$

for $(s, t) \in \mathbb{R}^{2}$.
Define the function $f_{n}(x, y)$ on the domain $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$ by

$$
f_{n}(x, y)=\iint_{[0, x] \times[0, y]} \varphi_{n}(s, t) d s d t
$$

where $[0, x] \times[0, y]=\left\{(s, t) \in \mathbb{R}^{2} \mid 0 \leq s \leq x, 0 \leq t \leq y\right\}$.
(1) Show that $\varphi_{n}(s, t)$ is continuous at $(s, t)=(0,0)$.
(2) Express the partial derivatives $\frac{\partial f_{n}}{\partial x}(x, y)$ and $\frac{\partial f_{n}}{\partial y}(x, y)$ as single-variable integrals.
(3) Let $g_{n}(x)=f_{n}(x, x)$ for $x>0$. Find $\frac{d g_{n}}{d x}(x)$.
(4) For the function $g_{n}(x)$ defined in (3) above, express the number of points of local extrema in the open interval $(0,1)$ in terms of n.

4
(1) Let a and b be real numbers with $b \neq 0$. Find a real number x such that the product of three matrices

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)
$$

is a diagonal matrix.
(2) Let a and b be real numbers with $b>0$. Find a necessary and sufficient condition under which the matrix

$$
\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right)
$$

is positive definite.
(3) Let A and B be $n \times n$ real symmetric matrices, where n is a positive integer. Show that the $2 n \times 2 n$ real symmetric matrix

$$
\left(\begin{array}{ll}
A & O \\
O & B
\end{array}\right)
$$

is positive definite if and only if both A and B are positive definite, where O denotes the zero matrix.
(4) Let A and B be $n \times n$ real symmetric matrices, where n is a positive integer. Assume that B is positive definite. Show that the $2 n \times 2 n$ real symmetric matrix

$$
\left(\begin{array}{ll}
A & I \\
I & B
\end{array}\right)
$$

is positive definite if and only if $A-B^{-1}$ is positive definite, where I denotes the identity matrix.

5 For the stock size of a bioresource $N(t)$ at time t, consider the repeated consumptions of its stock size by 50% with period T :

$$
\lim _{t \rightarrow k T+0} N(t)=0.5\left\{\lim _{t \rightarrow k T-0} N(t)\right\} \quad(k=0,1,2, \ldots)
$$

Assume that the growth of the bioresource for $t \in(k T,(k+1) T)(k=0,1,2, \ldots)$ is governed by the following ordinary differential equation, and $\lim _{t \rightarrow-0} N(t)=1$:

$$
\frac{d N(t)}{d t}=\{1-N(t)\} N(t)
$$

(1) Show $N(t)$ for $t \in(0, T)$ as a function of t.
(2) Let $N_{+}(k)=\lim _{t \rightarrow k T+0} N(t)(k=0,1,2, \ldots)$. Find the relation between $N_{+}(k+1)$ and $N_{+}(k)$.
(3) Find the condition for the consumption period T in order not to exhaust the bioresource.

6 Let $\mathbb{F}_{2}=\{0,1\}$ be the field consisting of two elements, where the operations are defined by

$$
0+0=1+1=0, \quad 0+1=1+0=1, \quad 0 \cdot 0=1 \cdot 0=0 \cdot 1=0, \quad 1 \cdot 1=1 .
$$

Let n be an integer with $n \geq 2$, and consider the n-dimensional vector space \mathbb{F}_{2}^{n} over \mathbb{F}_{2}.
(1) Express the number of vectors in \mathbb{F}_{2}^{n} in terms of n.
(2) For two non-zero vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{2}^{n}$, show that \boldsymbol{x} and \boldsymbol{y} are linearly dependent over \mathbb{F}_{2} if and only if $\boldsymbol{x}=\boldsymbol{y}$.
(3) Express the number of elements of the following set in terms of n :

$$
\left\{(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{2}^{n}, \boldsymbol{x} \text { and } \boldsymbol{y} \text { are linearly independent over } \mathbb{F}_{2}\right\}
$$

(4) Express the number of two-dimensional subspaces of \mathbb{F}_{2}^{n} in terms of n.

7 Consider a linear regression model,

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \quad(i=1,2, \ldots, n),
$$

where ϵ_{i} follows a normal distribution with $\mathbf{E}\left(\epsilon_{i}\right)=0$ and $\mathbf{V}\left(\epsilon_{i}\right)=\sigma^{2}$.
(1) Find the maximum likelihood estimator of the regression coefficient β_{1}.
(2) Verify if the maximum likelihood estimator obtained in (1) is an unbiased estimator of β_{1}.

8 Consider the polynomial

$$
P_{n}(z)=1+z+z^{2}+\cdots+z^{n}
$$

of degree n for a positive integer n.
(1) Find all the zeros of $P_{n}(z)$ in the complex plane.
(2) Show that the inequality

$$
\left|P_{n}(z)\right| \leq 2^{n+1}-1
$$

holds on the circle $|z|=2$.
(3) Let a be a complex number with $|a|<1$. Find the number of the solutions (counted with multiplicity) to the equation

$$
P_{5}(z)=a
$$

in the disk $|z|<2$.

9 Consider the ordinary differential equation

$$
\frac{d y}{d x}=1-y^{2}
$$

(1) Find all solutions.
(2) Find the limit $\lim _{x \rightarrow \infty} y(x)$ for $y(0) \geq-1$.
(3) Draw a sketch of the graph of the solution for $y(0)<-1$.

10 For $x, y \in \mathbb{R}$, let

$$
M_{x, y}=\left(\begin{array}{cc}
y(1-x) & y^{2} \\
y & x
\end{array}\right) .
$$

For $k=0,1,2$, consider

$$
T_{k}=\left\{(x, y) \in \mathbb{R}^{2} \mid \operatorname{rank} M_{x, y}=k\right\} \subset \mathbb{R}^{2}
$$

where rank M denotes the rank of a matrix M. Equip the two-dimensional Euclidean space \mathbb{R}^{2} with the standard topology, and regard $T_{k}(k=0,1,2)$ as a subspace of \mathbb{R}^{2} with relative topology.
(1) Draw pictures of T_{k} for $k=0,1,2$.
(2) Verify whether each of $T_{k}(k=0,1,2)$ is open or closed, or neither open nor closed in \mathbb{R}^{2}.
(3) Verify whether each of $T_{k}(k=0,1,2)$ is connected or not.
(4) Verify whether each of $T_{k}(k=0,1,2)$ is compact or not.

11 Let n be a positive integer, and let S_{n} denote the symmetric group of degree n, that is, the group of all permutations on the set $\{1,2, \ldots, n\}$. Let k be a positive integer with $1 \leq k<n$, and define subsets N and C of S_{n} as follows:

$$
\begin{aligned}
& N=\left\{\sigma \in S_{n} \mid\{\sigma(1), \ldots, \sigma(k)\}=\{1, \ldots, k\}\right\}, \\
& C=\left\{\sigma \in S_{n} \mid \sigma(1)=1, \ldots, \sigma(k)=k\right\} .
\end{aligned}
$$

(1) Show that N is a subgroup of S_{n}.
(2) Show that C is a normal subgroup of N.
(3) Show that the factor group N / C is isomorphic to the symmetric group of degree k.
(4) Suppose $n=2 m$ is even, and let X_{m} be the set of all m-element subsets of $\{1,2, \ldots, n\}$. For $A \in X_{m}$, denote by A^{c} the complement of A in $\{1,2, \ldots, n\}$. When $m \geq 2$, show that there does not exist a permutation $\sigma \in S_{n}$ with the following property:

$$
\text { For all } A \in X_{m},\{\sigma(a) \mid a \in A\}=A^{c}
$$

