20248 H (August 2024)

Let D = {(z,y) € R? | 2® + 4> <4, 2° +4(y — 1)* > 1},

(1) Depict the region D in the zy-plane.
(2) Find the Jacobian determinant for the change of variables © = 2r cosf, y = rsin6.

(3) Depict the set of points in the domain {(r,f) € R?* | r > 0, 0 < § < 27} in the
rf-plane that are mapped to the interior of D by the change of variables in (2).

(4) Evaluate the following double integral:

// (2% + 4y2)% dxdy.
D
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(1) Find the eigenvalues and their eigenvectors of A.

(2) Let A denote the largest eigenvalue of A. Find the following limit:
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Let f(z) be a convex function on an open interval I. That is, for any z,y € I and

any 0 <t <1, f(x) satisfies the following inequality:

F(A=t)z+ty) <A —t)f(x) +f(y).

(1) For any three points 1 < x5 < x3 in I, express ¢ satisfying (1 — t)z; + tog = 25 in
terms of x1, x9, and x3.

(2) For any three points z1 < x93 < x3 in I, prove the following inequality:
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(3) Prove that f(z) is continuous on .

(4) Prove that f(x) is left and right differentiable at any point x € I, and that the right
derivative f’ (x) and the left derivative f’ (z) satisfy f’ (x) < fi(z).
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Let n be an integer at least two, and consider the matrix A = v ‘v constructed from
a column vector v in R"™, where ‘v is the transpose of v.

(1) Find the rank of A.

(2) Show that fxAx > 0 for any column vector z in R™, and prove that all eigenvalues

of A are non-negative.

(3) For linearly independent column vectors y and z in R"™, show that the rank of the
matrix y'y + z %2 is equal to 2.



