Yuanyuan Bao's homepage
Email address:   yybao@      add tohoku.ac.jp after the at mark |
Affiliation:   Division of Mathematics &
Research Center for Pure and Applied Mathematics,
Graduate School of Information Sciences,
Tohoku University |
Postal address:   6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan |
|
|
Work History
2023/10~ present, associate professor, Graduate School of Information Sciences, Tohoku University
2015/10~ 2023/9, assistant professor, Graduate School of Mathematical Sciences, the University of Tokyo
2015/1~ 2015/9, project assistant professor, Tohoku Forum for Creativity, Tohoku University
2013/4~ 2014/12, project researcher (postdoc), Graduate School of Mathematical Sciences, the University of Tokyo
2013/3, PhD degree, Department of Mathematics, Tokyo Institute of Technology
Reserach Interest
Low-dimenstion topology, knots and links, spatial graphs, quantum invariant, Heegaard Floer homology
Publications
-
(joint with Noboru Ito), gl(1|1)-Alexander polynomial for 3-manifolds,
International Journal of Mathematics , Vol. 34, No. 04, 2350016 (2023)
-
(joint with Zhongtao Wu), Alexander polynomial and spanning trees,
International Journal of Mathematics , 32 (2021), no. 08, 2150073.
-
(joint with Zhongtao Wu), An Alexander polynomial for MOY graphs,
Selecta Mathematica (N.S.) , 26 (2020), no. 2 Article No. 32.
-
A topological interpretation of Viro’s gl(1|1)-Alexander polynomial of a graph,
Topology
and Its Application, Vol. 267, (2019), pp. 106870, 25.
-
Polynomial splittings of Ozsváth and Szabó's d-invariant,
Topology Proceddings, Vol. 46, pp. 309-322, 2015.
-
On knots having zero negative unknotting number,
Indiana University Mathematics Journal, 63 No. 2, pp. 597-613, 2014.
-
A note on knots with H(2)-unknotting number one,
Osaka Journal of Mathematics, Vol. 51, No. 3, pp. 585-596, 2014.
-
H(2)-unknotting operation related to 2-bridge links,
Topology
and Its Application, Vol. 159, pp. 2158-2167, 2012.
-
On the knot Floer homology of a class of satellite knots,
Journal of Knot Theory
and Its Ramifications, Vol. 21, No. 4, pp. 1-29, 2012.
Preprints etc.
The Heegaard Floer complexes of a trivalent graph defined on
two Heegaard diagrams, 京都大学数理研講究録, No. 2129, (2019), pp. 69–82.
Heegaard Floer homology for embedded bipartite graphs, 京都
大学数理研講究録, No. 2004, (2016), pp.1–12.
Floer homology and embedded bipartite graphs, arXiv:1401.6608.
書評:P. Ozsváth, A. Stipsicz and Z. Szabó, Grid Homology for Knots and Links,
Math. Surveys Monogr., 208, Amer. Math. Soc., 2015 年, 410 ページ. (『数学』
第 71 巻第 1 号 2019 年 1 月冬季号に掲載)