Yuanyuan Bao's homepage

Email address:   yybao@      add tohoku.ac.jp after the at mark
Affiliation:    Division of Mathematics & Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University
Postal address:   6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan

Work History

  • 2023/10~ present, associate professor, Graduate School of Information Sciences, Tohoku University
  • 2015/10~ 2023/9, assistant professor, Graduate School of Mathematical Sciences, the University of Tokyo
  • 2015/1~ 2015/9, project assistant professor, Tohoku Forum for Creativity, Tohoku University
  • 2013/4~ 2014/12, project researcher (postdoc), Graduate School of Mathematical Sciences, the University of Tokyo
  • 2013/3, PhD degree, Department of Mathematics, Tokyo Institute of Technology

  • Reserach Interest

    Low-dimenstion topology, knots and links, spatial graphs, quantum invariant, Heegaard Floer homology
     

    Publications

    1. (joint with Noboru Ito), gl(1|1)-Alexander polynomial for 3-manifolds, International Journal of Mathematics , Vol. 34, No. 04, 2350016 (2023)
    2. (joint with Zhongtao Wu), Alexander polynomial and spanning trees, International Journal of Mathematics , 32 (2021), no. 08, 2150073.
    3. (joint with Zhongtao Wu), An Alexander polynomial for MOY graphs, Selecta Mathematica (N.S.) , 26 (2020), no. 2 Article No. 32.
    4. A topological interpretation of Viro’s gl(1|1)-Alexander polynomial of a graph, Topology and Its Application, Vol. 267, (2019), pp. 106870, 25.
    5. Polynomial splittings of Ozsváth and Szabó's d-invariant, Topology Proceddings, Vol. 46, pp. 309-322, 2015.
    6. On knots having zero negative unknotting number, Indiana University Mathematics Journal, 63 No. 2, pp. 597-613, 2014.
    7. A note on knots with H(2)-unknotting number one, Osaka Journal of Mathematics, Vol. 51, No. 3, pp. 585-596, 2014.
    8. H(2)-unknotting operation related to 2-bridge links, Topology and Its Application, Vol. 159, pp. 2158-2167, 2012.
    9. On the knot Floer homology of a class of satellite knots, Journal of Knot Theory and Its Ramifications, Vol. 21, No. 4, pp. 1-29, 2012.
     

    Preprints etc.

  • The Heegaard Floer complexes of a trivalent graph defined on two Heegaard diagrams, 京都大学数理研講究録, No. 2129, (2019), pp. 69–82.
  • Heegaard Floer homology for embedded bipartite graphs, 京都 大学数理研講究録, No. 2004, (2016), pp.1–12.
  • Floer homology and embedded bipartite graphs, arXiv:1401.6608.
  • 書評:P. Ozsváth, A. Stipsicz and Z. Szabó, Grid Homology for Knots and Links, Math. Surveys Monogr., 208, Amer. Math. Soc., 2015 年, 410 ページ. (『数学』 第 71 巻第 1 号 2019 年 1 月冬季号に掲載)

  • Some materials

  • Two files that I made for a course in the University of Tokyo 合同講義(鮑 5月31日)   合同講義(鮑 6月7日)