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Aims and Motivation

Aims and Motivation

We consider the quasilinear stochastic PDE on T = [0, 1) with
periodic boundary condition:

∂tu = a(∇u)∆u+ g(∇u)ξ, (1.1)

where ∇ = ∂x,∆ = ∂2x, a, g ∈ C3(R), 0 < c− ≤ a(v) ≤ c+.
ξ is the spatial Gaussian white noise, i.e., mean 0 and covariance

E[ξ(x)ξ(y)] = δ(x− y).

In other words, ξ(x) is independent if x is different.

It is known ξ ∈ C− d
2
− := ∩α<− d

2
Cα on Td, where

Cα ≡ Cα(Td) = Bα∞,∞(Td) denotes (Hölder-)Besov space with
exponent α ∈ R.
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Aims and Motivation

Aims and Motivation

In particular, ξ is a genuine generalized function.

Roughly by Schauder estimate, we expect u ∈ C2− d
2
− so that a(∇u)

is well-defined only when 2− d
2 > 1.

This forces us to restrict to d = 1.

Two aims:
1 Give the meaning of solution u(t) of (1.1) and study the local-in-time

solvability (FHXS(2020)[2]).
2 Study the global-in-time solvability and the long time behavior of u(t)

of (1.1) with a = g′ (FX(2021)[4]).
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Aims and Motivation

Equation for slope ∇u

Let φ be the primitive function of a, that is, a = φ′ and let v := ∇u.
Then, v solves the SPDE

∂tv = ∆
(
φ(v)

)
+∇

(
g(v)ξ

)
, (1.2)

since ∇
(
a(∇u)∆u

)
= ∇

(
a(v)∇v

)
= ∆

(
φ(v)

)
. It has a mass

conservation law.

In particular, this SPDE (1.2) with g = φ and smeared noise ξ
naturally arises in a hydrodynamic scaling limit of a certain
interacting particle system in a random environment.

In case g = φ with spatial white noise ξ, we can show the
global-in-time solvability and the convergence of v(t) as t→∞ to
the stationary solution which is unique for each conserved quantity∫
T vdx specified by v(0).
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Aims and Motivation

Motivation: Microscopic system

The SPDE (1.2) (but with smeared noise ẇϵ) appears in the study of the
hydrodynamical behavior of a system of random walks ηϵt with zero-range
interactions moving in a common random environment (Landim, Pacheco,
Sethuraman and Xue (2020) [7]). Let {qN,ϵ

k } be a sequence of random
variables obtained in ϵ-average.
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Aims and Motivation

Motivation: From micro to macro

For fixed ϵ > 0, as N →∞, they proved that the scaled mass empirical
measure

1
N

∑N
k=1 η

ϵ
N2t(k)δ k

N
(dx) −→ vϵ(t, x)dx in probability,

where the macroscopic density vϵ(t, x) of particles is the solution of the
following PDE with mild noise:

∂tv
ϵ = ∆{φ(vϵ)} − ∇{φ(vϵ)ẇϵ(x)}, (1.3)

where φ(v) is determined by the jump rate J(k) and satisfies φ′ ≥ c− > 0,
and

ẇϵ(x) =
1

(a+ b)ϵ

(
w(x+ aϵ)− w(x− bϵ)

)
, ϵ > 0 (1.4)

with a two-sided Brownian motion {w(x)}x∈T.
The simplest example is φ(v) = v taking J(k) = k.
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Aims and Motivation

To realize the independent random environment, {qk} should be
independent. However, by technical reason, LPSX [7] took smeared
noise.

It is desirable to remove this smearing procedure.

The first aim is to consider the asymptotic behavior of (1.3) as ϵ ↓ 0.
Instead of (1.3), we consider more general equation:

∂tv = ∆{φ(v)}+∇{g(v)ẇϵ(x)}. (1.5)

For ẇϵ(x) given by (1.4), we will show that v = vϵ converges as ϵ ↓ 0
to the solution of

∂tv = ∆{φ(v)}+∇{g(v)ẇ(x)}. (1.6)

Noting the conservation of particle number of the underlying
microscopic system, we know that (1.6) has a mass conservation law:∫

T v(t, x)dx = m (∈ R), ∀t ≥ 0.
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Aims and Motivation

Instead of (1.5) and (1.6), we actually study the equations

∂tu
ϵ =a(∇uϵ)∆uϵ + g(∇uϵ) · ξϵ,

∂tu =a(∇u)∆u+ g(∇u) · ξ, x ∈ T, (1.7)

where a(v) = φ′(v) and ξ is the spatial white noise on T.
If we set v := ∇u, then we can recover the equation (1.6):

∂tv = ∇
(
a(v)∇v

)
+∇

(
g(v) · ξ

)
= ∆{φ(v)}+∇{g(v) · ξ}.

This means that (1.7) is an integrated form of (1.6).
Since v = ∇u ≥ 0, u should be ↗ in x and u(t, 1) = u(t, 0) +m. It
is more natural to consider (1.7) under the modified periodic
condition: u(t, x+ n) = u(t, x) + nm, n ∈ Z, x ∈ R.
However, setting ū(t, x) := u(t, x)−mx, we have
ū(t, x+ 1) = ū(t, x) and

∂tū = a(∇ū+m)∆ū+ g(∇ū+m) · ξ.
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Aims and Motivation

Integrated quasilinear SPDE

Difficulties:
As we mentioned, (1.7) is a singular quasilinear SPDE.

The product uv ∈ Cα∧β is well-defined only α+ β > 0.
But, since ξ ∈ C− 1

2−, we know that both a(∇u)∆u and g(∇u) · ξ in

(1.7) are ill-posed. (∇u ∈ C 1
2−)

Multiplicative noise: The classical method via a change of variable (for
additive noise) can not be applied.

The relation between (1.6) and (1.7) is similar to that of stochastic
(conservative) Burgers equation and KPZ equation.

∂tu = ∆u+∇u2 +∇ξ(t, x), x ∈ T,
∂th = ∆h+ (∇h)2 + ξ(t, x), x ∈ T.

It is known that u = ∇h.
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Aims and Motivation

Prior researches: Local solvability

M. Hairer made a breakthrough in solving the singular equation in
2013 and he was awarded the Fields Medal for the creation of the
theory of regular structure in 2014.

Another important method is the paracontrolled calculus originally
introduced by M. Gubinelli, P. Imkeller and N. Perkowski in 2015.

Renormalization Group, A. Kupiainen, 2015.

Semilinear singular SPDEs are mainly studied.

Quasilinear case: Local-in-time solvability of generalized Anderson
model.

∂tu = a(u)∆u+ g(u) · ξ.
F. Otto, H. Weber (2019): Rough path based approach.
M. Furlan and M. Gubinelli (2019): Non-linear paracontrolled calculus.
I. Bailleul, A. Debussche and M. Hofmanová (2019): paracontrolled calculus.
M. Gerencsér, M. Hairer (2019): Regularity structure, 2019.
I. Bailleul, A. Mouzard (2019): High order paracontrolled calculus.
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Aims and Motivation

Prior researches: Global solvability and exponential conver.

G. Cannizzaro and K. Chouk (2018): Linear equation (3.7) with
a = 1, g = v on Rd.

M. Gubinelli, P. Imkeller and N. Perkowski (2015), I. Bailleul and F.
Bernicot (2016): Generalized parabolic Anderson model.

J.-C. Mourrat and H. Weber (2017): Dynamic ϕ43-model on T3 by
establishing a priori estimate.

M. Hoshino (2018): complex Ginzburg-Landau equation on T3.

T. Funaki and M. Hoshino (2017): Multi-component coupled
Kardar-Parisi-Zhang equation by studying its stationary measure.

P. Tsatsoulis, H. Weber (2018): Exponential decay for the dynamic
P (ϕ)2-model on T2 to its unique invariant measure.

M. Gubinelli and N. Perkowski (2020): Exponential L2-ergodicity of
conservative stochastic Burgers equation on T based on the approach
of the martingale problem.

No result for quasilinear singular SPDEs.
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Local solvability and continuity

Local-in-time solvability

The first main result is about the convergence and local-in-time solvability.

Theorem 2.1 ( Funaki, Hoshino, Sethuraman and X. [2])

Assume a, g ∈ C3
b (R) and 0 < c− ≤ a(v) ≤ c+.

Let u0 ∈ Cα with α ∈ (43 ,
3
2) be given.

Let uϵ denote the solutions of the SPDE

∂tu
ϵ = a(∇uϵ)∆uϵ + g(∇uϵ) · ξϵ, uϵ(0) = u0,

with the smeared noise ξϵ := ψϵ ∗ ξ of ξ ∈ Cα−2, where
ψϵ(x) = 1

ϵψ(
x
ϵ ) with ψ: measurable, compact support,∫

R ψ(x)dx = 1.

Then, there exists a random time T > 0 such that as ϵ ↓ 0,

uϵ → u in LαT := CTC
α ∩ Cα/2

T L∞ in Prob.
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Local solvability and continuity

Theorem (Continued)

and u ∈ LαT is a unique solution up to T of the SPDE (1.7) on T defined
in paracontrolled sense. Recall that (1.7) is
∂tu = a(∇u)∆u+ g(∇u) · ξ, x ∈ T.
The limit u is independent of the choice of the mollifier ψ.

Corollary 2.2 (Comparison theorem)

Assume a, g ∈ C3([0,∞)), g(0) = 0, 0 < c− ≤ a(v) ≤ c+ and
|g′(v)| ≤ Ca(v). Then, for the solution u(t) of the paracontrolled SPDE
(1.7), if ∇u(0, x) ≥ 0, ∀x ∈ T, we have

∇u(t, x) ≥ 0, 0 ≤ ∀t ≤ T, x ∈ T.

Proof.

If ξ is smooth, this is standard.
Then we take the limit in the noise ξ̂ := (ξ,Π(∇X, ξ)).
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Local solvability and continuity

Due to Funaki-Hoshino-Sethuraman-X. [2] and Funaki-X. [4], we have the
continuity in initial value and enhanced noise.

Theorem 2.3 (Continuity)

Let α ∈ (139 ,
3
2) and u(t, ξ̂, u0) ∈ C

α be the unique local paracontrolled
solution of (1.7) with initial value u0 ∈ Cα at least up to time
T = T (‖u0‖Cα , ‖ξ̂‖Cα−2×C2α−2).

Then, u(t, ξ̂, u0) is continuous in (t, ξ̂, u0) in the region
{(t, ξ̂, u0) ∈ [0,∞)× (Cα−2 × C2α−3)× Cα ; t ≤ T}.

Remark 2.1

Let us consider

∂tu = a(∇u+m)∆u+ g(∇u+m) · ξ, (2.1)

where m ∈ R. Then, we can show the solutions in continuous in (m, ξ̂, u0).
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Local solvability and continuity

Main idea for Theorem 2.1: Paracontrolled calculus

ξϵ
E←→ Ξϵ Φ7−→ U ϵ Γ7−→ uϵ (Analytic part)y y y y (Probabilistic part(ϵ ↓ 0))

ξ
E←− Ξ

Φ7−→ U
Γ7−→ u

Enhancement E : ξ 7→ Ξ = (ξ,Π(∇X, ξ)) ∈ Cα−2 × C2α−3

Solution map Φ : (η1, η2) 7→ U = (η1, u
′, u♯) (continuous map)

Projection Γ : (η1, u
′, u♯) 7→ u = Π̄u′X + u♯ (continuous map),

where (u′, u♯) satisfies some equations. We obtain the solution of (1.7) by

Γ ◦ Φ ◦ E : ξ → u

Therefore, it reduces the study of (1.7) to that of the solution map Φ.
In general, when we take ϵ ↓ 0, the renormalization are usually required. In
our case, the renormalization is not required.
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Local solvability and continuity

Proof of Theorem 2.1: Paraproducts

For two distributions u, v, due to Littlewood-Paley blocks’
decomposition (based on Fourier analysis), we can define

Πuv(= u ≺ v): paraproduct,
Π(u, v)(= u ◦ v): resonant term,
Π̄uv(= u ≺≺ v): modified paraproduct (defined involving time integral).

Littlewood-Paley decomposition of product u · v:
u · v = Πuv +Π(u, v) + Πuv.

Bony’s estimates: Let u ∈ Cα, v ∈ Cβ.

For α > 0 and β ∈ R, ‖Πuv‖Cβ ≲ ‖u‖L∞‖v‖Cβ .
For α 6= 0 and β ∈ R, ‖Πuv‖C(α∧0)+β ≲ ‖u‖Cα‖v‖Cβ .
For α 6= 0, β ∈ R and u ∈ CTC

α, v ∈ CTC
β ,

‖Π̄uv‖CTC(α∧0)+β ≲ ‖u‖CTCα‖v‖CTCβ .
For α+ β > 0, ‖Π(u, v)‖Cα+β ≲ ‖u‖Cα‖v‖Cβ .
Only for α+ β > 0 (αβ 6= 0), we have u · v ∈ Cα∧β .
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Local solvability and continuity

Proof of Theorem 2.1: Class of solutions

Let α ∈ (43 ,
3
2), β ∈ (13 , α− 1) < 1

2 , γ ∈ (2β + 1, α+ β) be fixed.

Cα,β,γ(X) :=
{
(u, u′); ‖(u, u′)‖α,β,γ := ‖u′‖Lβ

T
+ ‖u♯‖Lα

T

+ sup
0<t≤T

t
γ−α
2 ‖u♯(t)‖Cγ <∞.

}
BT (λ) :=

{
(u, u′) ∈ Cα,β,γ(X); u(0) = u0, u

′(0) =
g(∇u0)
a(∇u0)

,

‖(u, u′)‖α,β,γ ≤ λ
}
.

Definition 2.1 (Paracontrolled Ansatz)

We call (u, u′) ∈ Cα,β,γ(X) is paracontrolled by X if

u = Π̄u′X + u♯, u♯ ∈ LαT . (2.2)

We have that u♯ is a good term, while Π̄u′X is a stochastic term (like
stochastic integral).
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Local solvability and continuity

Proof of Theorem 2.1: Derivation of fixed point problem

The key point is to rewrite the SPDE (1.7) as in the form

L0u :=
(
∂t − a(∇uT0 )∆

)
u =

(
a(∇u)− a(∇uT0 )

)
∆u+ g(∇u) · ξ,

where uT0 := eT∆u0, the solution of ∂tu = ∆u with u(0) = u0.
By the paracontrolled calculus, we reformulate the equation (1.7) into a
fixed point problem for the map Φ on BT (λ) defined as follows:

Φ(u, u′) := (v, v′), (2.3)

v′ =
g(∇u)−

(
a(∇u)− a(∇uT0 )

)
u′

a(∇uT0 )
, (2.4)

L0v = Πa(∇uT
0 )v′ξ + g′(∇u)Π(∇u♯, ξ)− a′(∇u)Π(∇u♯, Π̄u′ξ)

+
(
a(∇u)− a(∇uT0 )

)
∆u♯ + ζ.

If (u, u′) is the fixed point of Φ, then by (2.4), we have u′ = g(∇u)
a(∇u) .
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Local solvability and continuity

The remainder term ζ = ζ(u, u′) ∈ CTC
α+β−2 contains a quadratic

function of noise Π(∇X, ξ).
Once Π(∇X, ξ) ∈ C2α−3 is properly defined, ζ is considered as a
“good” term and also other terms are controlled by Bony’s estimate
and a certain commutator lemma.

Reason to have quadratic function of noise:
By Littlewood-Paley decomposition, we have

g(∇u) · ξ = Πg(∇u)ξ +Πξg(∇u) + Π(g(∇u), ξ).
The paralinearization lemma (Taylor expansion) gives that

Π(g(∇u), ξ) = g′(∇u)Π(∇u, ξ) + “good”.

So, by Paracontrolled Ansatz (2.2), we have

Π(g(∇u),ξ)=g′(∇u)u′Π(∇X,ξ)+g′(∇u)Π(∇u♯,ξ)+“good”
We reveal the ill-defined product Π(∇X, ξ).
Once it is defined (in stochastic sense), we can apply purely Fourier
analytic method.
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Local solvability and continuity

Proof of Theorem 2.1: Result for (2.3)

Theorem 2.4 (Local existence and continuity, FHSX [2], FX [4])

There exist a large enough λ > 0 and a small enough T > 0 such that
the map Φ defined by (2.3) is contractive from BT (λ) into itself. In
particular, Φ has a unique fixed point on [0, T ] for T > 0, which
solves the paracontrolled SPDE (1.7), that is,

∂tu = a(∇u)∆u+ g(∇u) · ξ, x ∈ T

locally in time.

The map Φ depends continuously on the enhanced noise
(ξ̂, u0) ∈ Cα−2 × C2α−3 × Cα, where ξ̂ := (ξ,Π(∇X, ξ)).
In particular, the unique fixed point of Φ in BT (λ) inherits the
continuity in (ξ̂, u0).
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Local solvability and continuity

Lemma 2.5 (No renormalization, FHSX[2])

Set

∇X � ξ =
∫ ∞

0
Π(∇Ptξ, ξ)dt.

Then, we have

E[‖∇X � ξ‖p
C2α−3 ] <∞, α <

3

2
.

Moreover, set

∇Xϵ =

∫ ∞

0
∇Ptξ

ϵdt
(
= ∇(−∆)−1ξϵ

)
.

lim
ϵ↓0

E[‖∇X � ξ −Π(∇Xϵ, ξϵ)‖p
C2α−3 ] = 0,

E[∇Xϵ(x)ξϵ(x)] = E[Π(∇Xϵ, ξϵ)(x)] = 0.

So, in particular, we know that no renormalization is required.
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Global solvability and convergence

Global solvability and convergence to stationary solution

Let φ ∈ C4(R) satisfying

c− ≤ φ′(v) ≤ c+ (3.1)

Consider

∂tv = ∆{φ(v)}+∇{φ(v)ξ} = ∇{∇φ(v) + φ(v)ξ} on T. (3.2)

For a given ξ, we define its integral
η(x) := 〈ξ, 1[0,x]〉 ≡

∫ x
0 ξ(y)dy, x ∈ T and σ ≡ σξ = η(1).

θ(x) ≡ θξ(x) := e−η(x)
{
µ

∫ x

0
eη(y)dy + 1

}
, x ∈ T,

µ ≡ µξ :=
eη(1) − 1∫ 1
0 e

η(y)dy
.

(3.3)
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Global solvability and convergence

θ is continuous, periodic, and uniformly positive on T and satisfies

∇θ + ξθ = µ.

For each conserved mass m =
∫
T v0(x)dx ∈ R, determine

z = zm ∈ R uniquely by the relation

m =

∫
T
φ−1(zθ(x))dx. (3.4)

Then,

v̄(x) ≡ v̄m(x) := φ−1(zmθ(x)) (3.5)

is a stationary solution of (3.2) satisfying
∫
T vdx = m in

distributional sense, or at least if ξ ∈ C(T).
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Global solvability and convergence

Then, (3.2) has a global solution and at least if |µξ| is small enough, v̄m is
the unique stationary solution of the SPDE (3.2) for each fixed m.

Theorem 3.1 (Funaki-X. (2021) [4])

Let φ ∈ C4(R) satisfy (3.1) and α ∈ (139 ,
3
2). Then, for every initial value

v0 ∈ Cα−1, the SPDE (3.2) has a global-in-time solution v(t) ∈ Cα−1 for
all t ≥ 0.
Moreover, if |µξ| is sufficiently small, v(t) converges exponentially fast to
v̄m in Cα−1 as t→∞:

‖v(t)− v̄m‖Cα−1 ≤ Ce−ct, (3.6)

for some c, C > 0, where m is determined from v0 as m =
∫
T v0(x)dx and

v̄m is defined by (3.5).
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Global solvability and convergence

Consider the integrated SPDE

∂tu = a(∇u)∆u+ g(∇u) · ξ, x ∈ T. (3.7)

Theorem 3.2 (Funaki-X. (2021) [4])

Assume a = g′ ∈ C3(R), 0 < c− ≤≤ a ≤ c+ and α ∈ (139 ,
3
2). Then, the

SPDE (3.7) has a global-in-time solution u(t) ∈ Cα for all t ≥ 0.
Moreover, if |µξ| is sufficiently small as in Theorem 3.1, u(t) has the
following uniform bound in t:

sup
t≥0
‖u(t)− z0µξt‖Cα <∞, (3.8)

where z0 is defined by (3.4) with m = 0. In particular, we have

lim
t→∞

1

t
u(t, x) = z0µξ

uniformly in x ∈ T.
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Global solvability and convergence

Proof of Theorem 3.1 (Outline)

Proof of Theorem 3.1 (Outline).

Energy estimate: If the noise w is smooth and if the initial value v(0)
is nice, under a proper change of variable (nonlinear), we can find an
energy functional Φ of the solution v(t).

We have Poincaré inequality for Φ, which shows the exponential
convergence of v(t).

We use the continuity in enhanced noise ξ̂, initial value and the
coefficients to remove the smoothness of w, due to the Poincaré
constant can be taken uniformly in an approximating sequence of the
noise.

To remove the smoothness of the initial value, we show the initial
layer property, i.e., in an arbitrary short time, the solution has the
desired regularity.
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Global solvability and convergence

Proof of Theorem 3.1 (Details)

We assume ξ ∈ C∞(T) and v(t, x) is a smooth global-in-time solution of
(3.2). We define f(t, x) as

f(t, x) :=
φ(v(t, x))

θ(x)
. (3.9)

Then, (3.2) can be rewritten as

∂tv = ∇(θ∇f + µf). (3.10)

We define the functional Φ(f) ≡ Φθ(f) of f ∈ H1
θ as

Φ(f) ≡ Φθ(f) :=
1

2

∫
T
(∇f)2θdx.

Set K(x, f) = φ′(φ−1(fθ)) (= φ′(v)). Then 0 < c− ≤ K(x, f) ≤ c+ and
(3.10) can be further rewritten as

∂tf = K(x, f)(−DΦ(x, f) + µθ−1∇f),

which is sometimes called Onsager equation at least when µ = 0.
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Let D be the class of all functions v ∈ Cα−1 satisfying φ(v)θ−1 ∈ H1.

Proposition 3.3 (For smooth noise and good initial value)

Assume ξ ∈ C∞(T) and v(t, x) is a smooth global-in-time solution of
(3.2). Then, if f(0) ∈ H1

θ (equivalently v(0) ∈ D), we have

Φ(f(t)) ≤ Φ(f(0))eC(θ)t, (3.11)

where θ = θξ, C(θ) = − c−
2c2(θ)

+ 1
2c−

µ2c1(θ)
2, c1(θ) = c1(min θ) and

c2(θ) :=
1

2

∫
T
θ−1(x)dx

∫
T
θ(y)dy, (3.12)

the constant appearing in Poincaré inequality. In particular, if |µ| = |µξ| is
small enough, C(θ) < 0 and for some c∗ > 0,

Φ(f(t)) ≤ Φ(f(0))e−c∗t. (3.13)
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We extend the result of Proposition 3.3 to general noise ξ ∈ Cα−2.

Proposition 3.4 (For ξ ∈ Cα−2 and good initial value)

Assume v(0) ∈ D. Then, the solution v(t) of (3.2) exists globally in time
for all t ≥ 0 and f(t) defined from v(t) by (3.9) satisfies

Φ(f(t)) ≤ eCtΦ(f(0)), C ∈ R. (3.14)

In particular, if |µξ| is small enough, one can take C < 0.

Approximation together with Proposition 3.3.

The constant C(θ) in (3.11) can be taken uniformly in an
approximating sequence of the noise.

We also use Theorem 2.3, that is, the continuity of the solutions in
the enhanced noise, initial values and coefficients of the equation.
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Corollary 3.5 (Exponential convergence)

Assume v(0) ∈ D. If |µξ| is small enough, then

‖f(t)− zm‖H1 ≤ Ce−c∗t/2‖f(0)− zm‖H1 ,

‖v(t)− v̄m‖Cα−1 ≤ Ce−c∗t/2‖f(0)− zm‖H1 .

Lemma 3.6 (Initial layer property)

For every initial value v(0) ∈ Cα−1 and all t ∈ (0, T∗), the solution
v(t) ∈ Cα−1 of the SPDE (3.2) in paracontrolled sense satisfies

f(t) := φ(v(t))θ−1 ∈ H1, that is, v(t) ∈ D.

In other words, even if f(0) /∈ H1, immediately after, we have
f(t) ∈ H1, t > 0 and this proves T∗ =∞ by Proposition 3.4.
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Proof of Theorem 3.2

Lemma 3.7

Assume ξ ∈ C∞(T) and let the initial value u0 ∈ Cα, α ∈ (43 ,
3
2) of (3.7)

be given. Determine v(t) by solving (1.6) starting from v0 := ∇u0, and set

u(t, x) :=

∫ x

0
v(t, y)dy +

∫
T
u0(y)dy −

∫
T
(1− y)v(t, y)dy (3.15)

+

∫ t

0
ds

∫
T
g(v(s, y))ξ(y)dy =: A1(t, x) +A2 −A3(t) +A4(t)

Then, u(t) solves the SPDE (3.7) with a = φ′.

Proof of Theorem 3.2 .

The product g(v(s))ξ is ill-posed in a classical sense, since
χ(v(s)) ∈ Cα−1 and ξ ∈ Cα−2 and (α− 1) + (α− 2) < 0.
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Proof.

However, when a = g′ = φ′, g(v(s))ξ is well-defined. Indeed, we have
φ(v(t)) = f(t)θ with f(t) ∈ H1 for t > 0 by Lemma 3.6 and we can
show θξ ∈ Cα−2; note that in general, the product θξ is ill-posed. So,
we have

∫
T χ(v(t, y))ξ(y)dy = H1〈f(t), θξ〉H−1 , t > 0 and then

u(t, x) = A1(t, x) +A2 −A3(t) +

∫ t

0
H1〈f(s), θξ〉H−1ds.

Then

sup
t≥0

∣∣∣∣∫ t

0
H1〈f(s), θξ〉H−1ds− z0µt

∣∣∣∣ <∞.
and by Theorem 3.1, we obtain supt≥0 |u(t)− z0µt| <∞
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Thank you for your kind attention!
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