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Examples
[ ]

Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P ) o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); 7N (z) = number of particles at site z; Q
Time: Markov processes; (continuous time)

microscopic td(N);

macroscopic £ Density >, 0 (z) is conserved.

Exclusion: After one ring of a clock a particle jumps from x to y at rate p(y — x).
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P i o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); nN (z) = number of particles at site z; 0
Time:

Markov Processes; (continuous time)
microscopic t6(N);

macroscopic f; Density > ni¥ (z) is conserved.

Exclusion: the forbidden jumps.

not allowed
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P ) . Transition probability p(-);
microscopic (discrete);

macroscopic (continuous); 7N (z) = number of particles at site z; Q

Time: Markov processes; (continuous time)
microscopic t0(N);

macroscopic Density >, 0 (z) is conserved.

This cannot happen.
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P i o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); nN (z) = number of particles at site z; o
Time: Markov Processes; (continuous time)

microscopic t0(N);

macroscopic Density >, 0 (z) is conserved.

Zero-Range: after one ring of a clock one particle jumps from z to y at rate g(n(z))p(y — ).
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Particle system:

N scaling parameter; Independent Poissonian clocks;

Space:
P ) o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); nN (z) = number of particles at site z; Q
Time: Markov processes; (continuous time)

microscopic t0(N);

; Densit N (1) is conserved.
macroscopic t; nsity >, 7, (x) is conserv

Zero-Range: one ring of a clock.

9(8)p(—3)
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P ) ) ) Transition probability p(-);
microscopic (discrete);

macroscopic (continuous); nN (z) = number of particles at site z; Q
Time: Markov processes; (continuous time)
microscopic t0(N);

- Densit N(x) is conserved.
macroscopic t; nsity >, 7' (x) is conserve

Zero-Range: after the ring of the clock.
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P i o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); nN (z) = number of particles at site z; o
Time:

Markov Processes; (continuous time)
microscopic t0(N);

macroscopic Density > ni (z) is conserved.

Zero-Range: another ring of a clock.

9(1)p(2)
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Particle system:

N: scaling parameter; Independent Poissonian clocks;

Space:
P ) o Transition probability p(-);
microscopic (discrete);
macroscopic (continuous); nN (z) = number of particles at site z; Q
Time:

Markov processes; (continuous time)
microscopic t0(N);

- Densit N(x) is conserved.
macroscopic t; nsity >, 7; () is conserv

Zero-Range: after the ring of the clock.
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Examples

Simulations of Zero-Range: symmetric/asymmetric

Initial configurations:
no = (1,2,3,...,20,19,18,...,1,0,...,0,1,2,3,...,20,19, 18, ..., 1) and £ = (0, - - , 0, 100, ..., 100, 0, ..., 0)
Upper displays: symmetric rates p(1) = 0.5 = p(—1).
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Lower displays: asymmetric rates p(1) = 0.9, p(—1) = 0.1.



Examples

Hydrodynamic Limit: empirical measure

Goal: i gt
N (0, du) =N too pr(u)du, . ,Jf.mﬂl\H\mH"\WHm‘m.n,\immnﬂ\'HH\HH”\HH\\HHM
where ° ® . -

¥ (n,du) = 5 Sg 0 ()92 (du)
and pq(+) is solution of the

hydrodynamic equation. : Wmm

d Possible hydrodynamic equations

Heat: 8;p; = Ap; (p symmetric, tN?)

Porous media: 8;p: = Ap™,2 < m € N (p symmetric, tN?)
Inviscid Burgers: 0;p; = V(pt(l - pt)) (p asymmetric, tIV)
Fractional heat: 9;p=(—A)"%; (p —| ‘lﬂ, tN7,~v€(1,2))

L J




The focus of this presentation:

| will present the hydrodynamic limit for an exclusion process
in contact with stochastic reservoirs when jumps are long
range given by a symmetric probability transition rate:

with finite variance;
with infinite variance.

Let us start with the simplest case: jumps to
nearest-neighbors.

Now A =[0,1] and Ay ={1,...,N — 1}.
The state space of the Markov process 1} is Qn = {0, 1}A~.



SSEP in contact with reservoirs:
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Invariant measures:

If a = 8 = p the Bernoulli product measures are
invariant (equilibrium measures):

vp(n = n(z) =1) = p.

If a # 8 the Bernoulli product measure is no
longer invariant, but since we have a finite state
irreducible Markov process there exists a UNIQUE
invariant measure: the stationary measure
(non-equilibrium) denoted by 5.

By the matrix ansatz method one can get
information about this measure.
(Not in the long jumps case.)



Hydrodynamic Limit:

& Forn € Qy, let 7 (n,dg) = % Y0, w2 (2)d,/n(dg), be the
empirical measure. (Diffusive time scaling!)

& Assumption: fix g : [0,1] — [0, 1] measurable and probability measures
{1~ }n>1 such that for every H € C([0,1]),

%MW/H g(a)da,

ZI&

wrt g, (e is associated to g(-))
& Then: for any t > 0,

Wiv(n, dQ) 7 N—s+o0 p(t’ q)dq7

wrt v (t), where p(t, q) evolves according to a PDE, the hydrodynamic
equation.



Hydrodynamic Limit:

ﬁ Theorem [Baldasso et al]:

Let g : [0,1] — [0,1] be a measurable function and let
{n}N>1 be a sequence of probability measures in Qy as-
sociated to g(:). Then, forany 0 <t < T,

N—

o 1 aj —
lim Py (]NE; 2 Vw2 (@ /H (t q)dq) >48) =0
and py(-) is the UNIQUE weak solution of the heat equation
with different boundary conditions depending on the range
of the parameter 6 and with initial condition g(+).




Hydrodynamics
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Hydrodynamic equations:

Heat equation:

_ 1492
Heat eq. & Neumann b.c. Oipi(a) = 595p1(q).

=1 0 > 1 Neumann b.c.:
Heat eq. & Robin b.c. Dpe(0) = Bypy(1) = 0.
f# = 1 Robin b.c.:
0=0 9qpt(0) = r:(pt(0) — ),
Heat eq. & Dirichlet b.c. 9qpe(1) = (B — pe(1)).

# <1 Dirichlet b.c.:
pt(0) = a, py(1) = .




Hydrostatic Limit:

-

.4

Theorem: Let uss be the stationary measure for the process
{nin2 0. Then, g is associated to p : [0, 1] — [0, 1] given
on g€ (0,1) by

(B—a)g+a; 9<1
pla) = h(2ﬁ+ha)Q+o‘+ e 0=1,
5+0t.0>1

p(+) is a stationary solution of the hydrodynamic equation.

J




ynamics

The proof:

How do we prove the results?

Two things to do:
Tightness of Qx, where Qy is induced by P, and the map

N . D([0,T],Qx) — D([0,T], M)

Characterization of limit points: limit points are concentrated
on trajectories of measures that are absolutely continuous wrt
the Lebesgue measure and the density is a weak solution of
the corresponding PDE:

Q(7. : m(dq) = p(t, q)dq and p(q) is solution to the PDE) = 1.

Let us focus on last item.



Hydrodynamics

The notion of weak solution:

Let g : [0,1] — [0, 1] be measurable. We say
p:[0,7] x [0,1] — [0,1] is a weak solution to the heat equation
with Dirichlet b.c. if:

pe L2(07T; Hl);

p satisfies the weak formulation:

[ o) = statota)do— [ [ ou(a) (523 + 02) o) dsdy
43 [ BouHL (1) - a3, HL(0)ds =0,

for all t € [0,7] and any function H € C;*([0,T] x (0,1)).

Definition

The Sobolev space H' on (0, 1) is the Hilbert space defined as the completion of C* ([0, 1]) for
1
the norm || - n? L =12+ 11+ 12, where |H||? = f (84 H(q))? dg, The space L2(0,T; H') is

the set of measurable functions f : [0, T] — H! such that f Hf5||2 ds < co.




Hydrodynamics
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Other notion of solution:

Let g : [0,1] — [0, 1] be measurable. We say
p:[0,7] x [0,1] — [0,1] is a weak solution to the heat equation
with Dirichlet b.c. if:

pe L2(07 T IHI);
p satisfies the weak formulation:

[ o Buta) ~ gta)Hota) da

//ps 102+ 0.) Hu(q) dsdg = 0,

for all t € [0, T] and any function H € C}2([0,T] x (0,1));
pt(0) = o and p(1) = 3, for t € (0,T7.
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How do we formulate the solution:

A simple computation shows that
N23N<7Tév7H> < s’QANH>
+ 5V H(O0)nn2 (1) = 5V H(D)nen2 (N — 1)
+ 5 NPH () (@ = noye(1)
+ 5 NOH (M) (B = noye (N - 1))

If H(0) = H(1) = 0, then from Dynkin's formula, we get

MY () = (' HY — (1)~ [ A E)ds
0

~3 /ot VRH(0)n5n2(1) = VyH(L)ngne (N = 1)ds + O(N

,9)‘



Hydrodynamics

{ Jele}

How do we formulate the solution ¢ € (0, 1):

Replacing nyn2(1) by a and non2(N — 1) by 8 (¢ < 1!) then
t
MtN(H) - <7ri]V7H> - <7T(])V,H> _/0 < s 72ANH>d
t
-1 /O VEH(0)a — Vi H(1)8ds + O(N ),

Take the expectation and assuming that
Pt (€) = By [nenz ()] ~ pi(x/N), for N big, we get

/Olpt(Q)H() dq—// 307 H (q)ps(q)dgds

t
_ %/0 0,H (0)or — 9, H(1)Bds = 0.



Hydrodynamics

(o] o}

How do we formulate the solution 6 < 0:

Replacing nyn2(1) by a and ngy2(N — 1) by 8 (0 < 1!) then
t
MN(H) = (=N, H) — (=, 1) —/0 (wN LANH)ds
t
! /O VEH(O)a — VyH(1)8ds + O(N ).

Take the expectation and assuming that
pi¥ () = By [mn2 ()] ~ pi(x/N), for N big, we get

/Olpt(q)H() dq—// Y02 H q)dqds

t
%/0 0,H (0)ar — 9, H(1)Bds = 0.



The discrete profile:

Fix an initial measure py in Qn. For z € Ay and t > 0, let

@) = Eplnne(@)).

We extend this definition to the boundary by setting

pN(0) = aand pN(N) = 8, forallt>0.
A simple computation shows that p}¥(-) is a solution of

dipy (w) = N*(Bypi)(z), we€ Ay, t>0
where the operator By acts on functions f: Ay U {0, N} — R as

N*(Bnf)(z) = 3Anf(z), forze{2,---,N -2},
N2(f(

N*(Byf)(1) = 2) - f( ))+#(f(0)2— f),
N?(By f)(N-1)=N?(f(N-2)~f (N-1)) + 55 (f (N)~f (N-1)).



Hydrodynamics

Stationary empirical profile:

The stationary solution of the previous equation is given by

Pé\; (r) = E,.. [men2(2)] = anz + by

where ay = % and by = aN(Nh—f) —1) + a, so that

A, 2% les@) — AR} = O

where

B—-—a)g+a;0<1,

ﬁ(q): H(Qﬁ+,€a)q+a+ 2—}—/{’9_1

5+04.0>1’

is a stationary solution of the hydrodynamic equation.






What if jumps are arbitrarily big?

Let p(-) be a translation invariant transition probability given at
z € 7Z by

pre %0
0, z=0,

p(z) =

where ¢, is a normalizing constant. Since p(-) is symmetric it is
mean zero, that is:

Z zp(z) =0

2€EZ

and take (by now) v > 2 so that we define its variance by

a,zy = Z 22p(2) < 00

2€EZ



Heat eq. & Neumann b.c.

Heat eq. & Robin b.c.

Heat eq.
"@Q & Dirichlet b.c.

Reaction eq.
& Dirichlet b.c.

Non-simple exclusion
@0

Japan

Heat equation:
2
Api(q) = % 07 pi(q)
¢ = 1 Robin b.c.:
9qpt(0) = zm“ =5 (pe(0) — @),
9qp(1) = Z55-(B — pe(1)),

Reactlon-dlﬁ'usmn eq.:

orpi(q )=
Vi(g)pe(q))

Reaction equation:

Above

oepe(q) = #(Vola) — Vi(q)pe(q))
i@ = %{(q_“f a —IQ)"’)
Cry B
v =2 o)



Non-simple exclusion
oe

Japan

Stationary solutions:

(a+B)a®+28mn
2(mr+o?)
atp
2

(a+B)a*+2amk
2(mk+0o?)




Non-simple exclusion
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What about v € (1,2)?

We will get a collection of fractional reaction-diffusion equations

Oepi(q) = L. pi(q) + #Vo(q).

where the operator L, = IL — xVq, L is the regional fractional
laplacian and

1 1
=S T a)

a B
(& o)

@)

v
C
Volg) = 77



The operator L:

Let (—A)Y/2 be the fractional Laplacian of exponent ~/2 which is
defined on the set of functions H : R — R such that

> [H(g)]
———d

[t
by (provided the limit exists)

[e's) H(Q) - H(u)
2 |
(CAPH @ =iy | bumze T g

Let L be the regional fractional Laplacian on [0, 1], whose action
on functions H € C2°(0,1) is given by

(LH)(q) = —(—A)"?H (q) + Vi(q)H(q)

e tim [ H(u) — H(q)
-

=50y 1|u—q|2€ Wdu, qc (0, ].)
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The fractional Sobolev space:

Definition

The Sobolev space H/? consists of all square integrable
functions g : (0,1) — R such that [|g|, /2 < oo, with

(g9(u) — 9(q))?

C
Hg“’y/Q = <g7g>’y/2 = % If dudgq.

The space L?(0, T} HY/ 2) is the set of measurable functions
f:[0,T] = H/? such that fOT | fell%,- 2dt < oo where

1£ell3,2 == Ll + 1LFel12 o

2
HY/2
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Weak solution of 0,p:(q) = L,.p:(q) + xVi(q) with Dir.:

Let g : [0,1] — [0, 1] be measurable. We say
p:10,T] % [0,1] — [0,1] is a weak solution of the PDE above if:

p € L*(0,T;H"/?) and
8 (5 )<

q'Y

For all t € [0,7] and any functlon H € Ch*([0,T] x (0,1)):

/Pt VHi(q)—9(q)Ho(q) dg
- / [ o) aS+L,;)Hs(q) dgds
_h/ / Vo(q) Hs(q)dg ds = 0.



Non-simple excl

Japan

Open problems:

Heat eq. & Neumann b.c.

9?7 ae=mTT Heat eq. & Robin b.c.

-
_—

-

-

_Fract’& Reaction
1 & Dirichlet b.c. 2 \'sg

» Heat eq.
¢ & Dirichlet b.c.




Conjecture:

For & > 0 small and « € (1, 2) the solution should correspond to
the solution when ~ = 0. Supported by the result:

4

Let g : [0,1] — [0,1] be measurable and p" be the weak
solution of

Oipi(q) = L. pe(q) + #Vo(q),

with Dirichlet boundary conditions and initial condition g(-).
Then p" converges strongly to p® in L2(0, T; H/?) as  goes
to 0, where pV is the weak solution of the equation with x = 0
and initial condition g(-).




Solved problem:

g ‘ﬁgumann b.c.

Frac. Diﬂé.

Heat & Rob. b.c.

R(%action & Dir. b.c.
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Stationary solutions:

(@+p)r2

1¢ye2, 0>y -1
0¢yct, 050
1432, 0=y —1
163¢2, 0<Ocy~1
1¢y<2, 0=0
0¢y<t, 0=0

0<y<2, 6<0




For the future:

What about hydrostatics?
Fluctuations?

Other boundary conditions?

Thank you very much!!!



	Examples
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan

	Exclusion with reservoirs
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan

	Hydrodynamics
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan

	Non-simple exclusion
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan
	to Japan


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	1.51: 
	1.52: 
	1.53: 
	1.54: 
	1.55: 
	1.56: 
	1.57: 
	1.58: 
	1.59: 
	1.60: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	2.49: 
	2.50: 
	2.51: 
	2.52: 
	2.53: 
	2.54: 
	2.55: 
	2.56: 
	2.57: 
	2.58: 
	2.59: 
	2.60: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	3.10: 
	3.11: 
	3.12: 
	3.13: 
	3.14: 
	3.15: 
	3.16: 
	3.17: 
	3.18: 
	3.19: 
	3.20: 
	3.21: 
	3.22: 
	3.23: 
	3.24: 
	3.25: 
	3.26: 
	3.27: 
	3.28: 
	3.29: 
	3.30: 
	3.31: 
	3.32: 
	3.33: 
	3.34: 
	3.35: 
	3.36: 
	3.37: 
	3.38: 
	3.39: 
	3.40: 
	3.41: 
	3.42: 
	3.43: 
	3.44: 
	3.45: 
	3.46: 
	3.47: 
	3.48: 
	3.49: 
	3.50: 
	3.51: 
	3.52: 
	3.53: 
	3.54: 
	3.55: 
	3.56: 
	3.57: 
	3.58: 
	3.59: 
	3.60: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	4.10: 
	4.11: 
	4.12: 
	4.13: 
	4.14: 
	4.15: 
	4.16: 
	4.17: 
	4.18: 
	4.19: 
	4.20: 
	4.21: 
	4.22: 
	4.23: 
	4.24: 
	4.25: 
	4.26: 
	4.27: 
	4.28: 
	4.29: 
	4.30: 
	4.31: 
	4.32: 
	4.33: 
	4.34: 
	4.35: 
	4.36: 
	4.37: 
	4.38: 
	4.39: 
	4.40: 
	4.41: 
	4.42: 
	4.43: 
	4.44: 
	4.45: 
	4.46: 
	4.47: 
	4.48: 
	4.49: 
	4.50: 
	4.51: 
	4.52: 
	4.53: 
	4.54: 
	4.55: 
	4.56: 
	4.57: 
	4.58: 
	4.59: 
	4.60: 
	4.61: 
	4.62: 
	4.63: 
	4.64: 
	4.65: 
	4.66: 
	4.67: 
	4.68: 
	4.69: 
	4.70: 
	4.71: 
	4.72: 
	4.73: 
	4.74: 
	4.75: 
	4.76: 
	4.77: 
	4.78: 
	4.79: 
	4.80: 
	4.81: 
	4.82: 
	4.83: 
	4.84: 
	4.85: 
	4.86: 
	4.87: 
	4.88: 
	4.89: 
	4.90: 
	4.91: 
	4.92: 
	4.93: 
	4.94: 
	4.95: 
	4.96: 
	4.97: 
	4.98: 
	4.99: 
	anm4: 
	5.0: 
	5.1: 
	5.2: 
	5.3: 
	5.4: 
	5.5: 
	5.6: 
	5.7: 
	5.8: 
	5.9: 
	5.10: 
	5.11: 
	5.12: 
	5.13: 
	5.14: 
	5.15: 
	5.16: 
	5.17: 
	5.18: 
	5.19: 
	5.20: 
	5.21: 
	5.22: 
	5.23: 
	5.24: 
	5.25: 
	5.26: 
	5.27: 
	5.28: 
	5.29: 
	5.30: 
	5.31: 
	5.32: 
	5.33: 
	5.34: 
	5.35: 
	5.36: 
	5.37: 
	5.38: 
	5.39: 
	5.40: 
	5.41: 
	5.42: 
	5.43: 
	5.44: 
	5.45: 
	5.46: 
	5.47: 
	5.48: 
	5.49: 
	5.50: 
	5.51: 
	5.52: 
	5.53: 
	5.54: 
	5.55: 
	5.56: 
	5.57: 
	5.58: 
	5.59: 
	5.60: 
	5.61: 
	5.62: 
	5.63: 
	5.64: 
	5.65: 
	5.66: 
	5.67: 
	5.68: 
	5.69: 
	5.70: 
	5.71: 
	5.72: 
	5.73: 
	5.74: 
	5.75: 
	5.76: 
	5.77: 
	5.78: 
	5.79: 
	5.80: 
	5.81: 
	5.82: 
	5.83: 
	5.84: 
	5.85: 
	5.86: 
	5.87: 
	5.88: 
	5.89: 
	5.90: 
	5.91: 
	5.92: 
	5.93: 
	5.94: 
	5.95: 
	5.96: 
	5.97: 
	5.98: 
	5.99: 
	anm5: 


