From random dynamics to fractional PDEs with several boundary conditions

Patrícia Gonçalves Joint with C. Bernardin (U Nice), B. Jiménez-Oviedo (U Costa Rica), S. Scotta (U Lisbon) and Pedro Cardoso (U Lisbon

Japan June 2021

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

- Independent Poissonian clocks:
- Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Exclusion: After one ring of a clock a particle jumps from x to y at rate p(y-x).

- ... N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - ightharpoonup microscopic $t\theta(N)$;
 - macroscopic t;

Exclusion: one ring of a clock.

- Independent Poissonian clocks:
- $lap{.}{\bullet}$ Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Exclusion: after the ring of the clock.

- Independent Poissonian clocks:
- Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Exclusion: the forbidden jumps.

- Independent Poissonian clocks:
- Transition probability $p(\cdot)$;
- $holdsymbol{\downarrow} \eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

This cannot happen.

- Independent Poissonian clocks:
- Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - \rightarrow microscopic $t\theta(N)$;
 - macroscopic t;

- Independent Poissonian clocks:
- lapha Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Arr Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Zero-Range: after one ring of a clock one particle jumps from x to y at rate $q(\eta(x))p(y-x)$.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Zero-Range: one ring of a clock.

- Independent Poissonian clocks;
- Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Zero-Range: after the ring of the clock.

- Independent Poissonian clocks;
- Transition probability $p(\cdot)$;
- $\frac{1}{2} \eta_t^N(x) = \text{number of particles at site } x;$
- Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Zero-Range: another ring of a clock.

- Independent Poissonian clocks;
- Transition probability $p(\cdot)$;
- $\eta_t^N(x) = \text{number of particles at site } x;$
 - Markov processes; (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

- N: scaling parameter;
- Space:
 - microscopic (discrete);
 - macroscopic (continuous);
- Time:
 - microscopic $t\theta(N)$;
 - macroscopic t;

Zero-Range: after the ring of the clock.

- Independent Poissonian clocks:
- Transition probability $p(\cdot)$;
- $hlterightarrow \eta_t^N(x) = \text{number of particles at site } x;$
- Markov processes: (continuous time)
- Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Simulations of Zero-Range: symmetric/asymmetric

Initial configurations:

```
 \eta_0 = (1,2,3,...,20,19,18,...,1,0,...,0,1,2,3,...,20,19,18,...,1) \text{ and } \xi_0 = (0,\cdots,0,100,...,100,0,...,0)  Upper displays: symmetric rates p(1) = 0.5 = p(-1).
```

Goal:

$$\begin{array}{l} \pi^N_t(\eta,du) \to_{N \to +\infty} \rho_t(u) du, \\ \text{where} \\ \pi^N_t(\eta,du) = \frac{1}{N} \sum_x \eta^N_t(x) \delta_{\frac{x}{N}}(du) \\ \text{and} \ \rho_t(\cdot) \ \text{is solution of the} \\ \text{hydrodynamic equation}. \end{array}$$

Possible hydrodynamic equations

Heat: $\partial_t \rho_t = \Delta \rho_t \ (p \ \text{symmetric}, \ tN^2)$

Porous media: $\partial_t \rho_t = \Delta \rho_t^m, 2 \leq m \in \mathbb{N} \ (p \ \text{symmetric}, tN^2)$

Inviscid Burgers: $\partial_t \rho_t = \nabla(\rho_t(1-\rho_t))$ (p asymmetric, tN)

Fractional heat: $\partial_t \rho_t = (-\Delta)^{\gamma/2} p_t \ (p(\cdot) = \frac{c}{|\cdot|^{1+\gamma}}, tN^{\gamma}, \gamma \in (1,2))$

The focus of this presentation:

- I will present the hydrodynamic limit for an exclusion process in contact with stochastic reservoirs when jumps are long range given by a symmetric probability transition rate:
 - with finite variance;
 - with infinite variance.

Let us start with the simplest case: jumps to nearest-neighbors.

Now
$$\Lambda=[0,1]$$
 and $\Lambda_N=\{1,...,N-1\}.$ The state space of the Markov process η^N_t is $\Omega_N=\{0,1\}^{\Lambda_N}.$

Invariant measures:

♣ If $\alpha = \beta = \rho$ the Bernoulli product measures are invariant (equilibrium measures):

$$\nu_{\rho}(\eta : \eta(x) = 1) = \rho.$$

- If $\alpha \neq \beta$ the Bernoulli product measure is no longer invariant, but since we have a finite state irreducible Markov process there exists a UNIQUE invariant measure: the stationary measure (non-equilibrium) denoted by μ_{ss} .
- By the matrix ansatz method one can get information about this measure. (Not in the long jumps case.)

 \clubsuit For $\eta \in \Omega_N$, let $\pi_t^N(\eta, dq) = \frac{1}{N} \sum_{x=1}^{N-1} \eta_{tN^2}(x) \delta_{x/N}(dq)$, be the empirical measure. (Diffusive time scaling!)

A Assumption: fix $g:[0,1] \to [0,1]$ measurable and probability measures $\{\mu_N\}_{N>1}$ such that for every $H \in C([0,1])$,

Hydrodynamics

$$\frac{1}{N} \sum_{x=1}^{N-1} H(\frac{x}{N}) \eta(x) \to_{N \to +\infty} \int_0^1 H(q) g(q) dq,$$

wrt μ_N . (μ_N is associated to $g(\cdot)$)

 \clubsuit Then: for any t>0,

$$\pi_t^N(\eta, dq) \to_{N \to +\infty} \rho(t, q) dq,$$

wrt $\mu_N(t)$, where $\rho(t,q)$ evolves according to a PDE, the hydrodynamic equation.

Hydrodynamic Limit:

Theorem [Baldasso et al]:

Let $g:[0,1] \to [0,1]$ be a measurable function and let $\{\mu_N\}_{N\geq 1}$ be a sequence of probability measures in Ω_N associated to $g(\cdot)$. Then, for any $0\leq t\leq T$,

$$\lim_{N \to \infty} \mathbb{P}_{\mu_N} \left(\left| \frac{1}{N} \sum_{x=1}^{N-1} H(\frac{x}{N}) \eta_{tN^2}(x) - \int_0^1 H(q) \rho(t, q) dq \right| > \delta \right) = 0$$

and $\rho_t(\cdot)$ is the UNIQUE weak solution of the heat equation with different boundary conditions depending on the range of the parameter θ and with initial condition $g(\cdot)$.

Hydrodynamic equations:

Heat equation:

$$\partial_t \rho_t(q) = \frac{1}{2} \partial_q^2 \rho_t(q).$$

- $\theta > 1$ Neumann b.c.: $\partial_q \rho_t(0) = \partial_q \rho_t(1) = 0.$
- $\theta = 1 \text{ Robin b.c.:}$ $\partial_q \rho_t(0) = \kappa(\rho_t(0) \alpha),$ $\partial_q \rho_t(1) = \kappa(\beta \rho_t(1)).$
- θ < 1 **Dirichlet b.c.:** $\rho_t(0) = \alpha, \ \rho_t(1) = \beta.$

Hydrostatic Limit:

Theorem: Let μ_{ss} be the stationary measure for the process $\{\eta_{tN^2}\}_{t\geq 0}$. Then, μ_{ss} is associated to $\bar{\rho}:[0,1]\to [0,1]$ given on $q\in (0,1)$ by

$$\bar{\rho}(q) = \left\{ \begin{array}{l} (\beta - \alpha)q + \alpha \, ; \, \theta < 1, \\ \frac{\kappa(\beta - \alpha)}{2 + \kappa}q + \alpha + \frac{\beta - \alpha}{2 + \kappa} \, ; \, \theta = 1, \\ \frac{\beta + \alpha}{2} \, ; \, \theta > 1, \end{array} \right.$$

 $\bar{\rho}(\cdot)$ is a stationary solution of the hydrodynamic equation.

The proof:

How do we prove the results?

Two things to do:

 $lap{.}{\bullet}$ Tightness of \mathbb{Q}_N , where \mathbb{Q}_N is induced by \mathbb{P}_{μ_N} and the map

$$\pi^N: \mathcal{D}([0,T],\Omega_N) \longrightarrow \mathcal{D}([0,T],\mathcal{M}_+)$$

Characterization of limit points: limit points are concentrated on trajectories of measures that are absolutely continuous wrt the Lebesgue measure and the density is a weak solution of the corresponding PDE:

$$\mathbb{Q}(\pi_{\cdot}: \pi_t(dq) = \rho(t,q)dq \text{ and } \rho_t(q) \text{ is solution to the PDE}) = 1.$$

Let us focus on last item.

The notion of weak solution:

Let $g:[0,1]\to [0,1]$ be measurable. We say $\rho:[0,T]\times [0,1]\to [0,1]$ is a weak solution to the heat equation with Dirichlet b.c. if:

- $\rho \in L^2(0,T;\mathcal{H}^1);$
- lap. ho satisfies the weak formulation:

$$\int_{0}^{1} \rho_{t}(q) H_{t}(q) - g(q) H_{0}(q) dq - \int_{0}^{t} \int_{0}^{1} \rho_{s}(q) \left(\frac{1}{2} \partial_{q}^{2} + \partial_{s}\right) H_{s}(q) ds dq + \frac{1}{2} \int_{0}^{t} \beta \partial_{q} H_{s}(1) - \alpha \partial_{q} H_{s}(0) ds = 0,$$

for all $t \in [0,T]$ and any function $H \in C_0^{1,2}([0,T] \times (0,1))$.

Definition

The Sobolev space \mathcal{H}^1 on (0,1) is the Hilbert space defined as the completion of $C^\infty([0,1])$ for the norm $\|\cdot\|_{\mathcal{H}^1}^2:=\|\cdot\|_2^2+\|\cdot\|_1^2$, where $\|H\|_1^2=\int_0^1(\partial_q H(q))^2\,dq$. The space $L^2(0,T;\mathcal{H}^1)$ is the set of measurable functions $f:[0,T]\to\mathcal{H}^1$ such that $\int_0^T\|f_s\|_{\mathcal{H}^1}^2\,ds<\infty$.

Other notion of solution:

Let $g:[0,1]\to [0,1]$ be measurable. We say $\rho:[0,T]\times [0,1]\to [0,1]$ is a weak solution to the heat equation with Dirichlet b.c. if:

- $\rho \in L^2(0,T;\mathcal{H}^1);$
- $lap{\rho}$ satisfies the weak formulation:

$$\int_0^1 \rho_t(q) H_t(q) - g(q) H_0(q) dq$$
$$- \int_0^t \int_0^1 \rho_s(q) \left(\frac{1}{2} \partial_q^2 + \partial_s\right) H_s(q) ds dq = 0,$$

for all $t \in [0,T]$ and any function $H \in C_c^{1,2}([0,T] \times (0,1))$;

 $\rho_t(0) = \alpha$ and $\rho_t(1) = \beta$, for $t \in (0, T]$.

How do we formulate the solution:

A simple computation shows that

$$N^{2}\mathcal{L}_{N}\langle\pi_{s}^{N},H\rangle = \langle\pi_{s}^{N},\frac{1}{2}\Delta_{N}H\rangle$$

$$+ \frac{1}{2}\nabla_{N}^{+}H(0)\eta_{sN^{2}}(1) - \frac{1}{2}\nabla_{N}^{-}H(1)\eta_{sN^{2}}(N-1)$$

$$+ \frac{\kappa}{2}N^{1-\theta}H\left(\frac{1}{N}\right)(\alpha - \eta_{sN^{2}}(1))$$

$$+ \frac{\kappa}{2}N^{1-\theta}H\left(\frac{N-1}{N}\right)(\beta - \eta_{sN^{2}}(N-1))$$

If H(0) = H(1) = 0, then from Dynkin's formula, we get

$$M_t^N(H) = \langle \pi_t^N, H \rangle - \langle \pi_0^N, H \rangle - \int_0^t \langle \pi_s^N, \frac{1}{2} \Delta_N H \rangle ds - \frac{1}{2} \int_0^t \nabla_N^+ H(0) \eta_{sN^2}(1) - \nabla_N^- H(1) \eta_{sN^2}(N-1) ds + O(N^{-\theta}).$$

How do we formulate the solution $\theta \in (0, 1)$:

Replacing $\eta_{sN^2}(1)$ by α and $\eta_{sN^2}(N-1)$ by β ($\theta < 1!$) then

$$M_t^N(H) = \langle \pi_t^N, H \rangle - \langle \pi_0^N, H \rangle - \int_0^t \langle \pi_s^N, \frac{1}{2} \Delta_N H \rangle ds$$
$$- \frac{1}{2} \int_0^t \nabla_N^+ H(0) \alpha - \nabla_N^- H(1) \beta ds + O(N^{-\theta}).$$

Take the expectation and assuming that $\rho_t^N(x) = \mathbb{E}_{\mu_N}[\eta_{tN^2}(x)] \sim \rho_t(x/N)$, for N big, we get

$$\int_0^1 \rho_t(q)H(q) - \rho_0(q)H(q)dq - \int_0^t \int_0^1 \frac{1}{2}\partial_q^2 H(q)\rho_s(q)dqds$$
$$-\frac{1}{2}\int_0^t \partial_q H(0)\alpha - \partial_q H(1)\beta ds = 0.$$

How do we formulate the solution $\theta \leq 0$:

Replacing $\eta_{sN^2}(1)$ by α and $\eta_{sN^2}(N-1)$ by β $(\theta < 1!)$ then

$$M_t^N(H) = \langle \pi_t^N, H \rangle - \langle \pi_0^N, H \rangle - \int_0^t \langle \pi_s^N, \frac{1}{2} \Delta_N H \rangle ds$$
$$- \frac{1}{2} \int_0^t \nabla_N^+ H(0) \alpha - \nabla_N^- H(1) \beta ds + O(N^{-\theta}).$$

Take the expectation and assuming that $\rho_t^N(x) = \mathbb{E}_{\mu_N}[\eta_{tN^2}(x)] \sim \rho_t(x/N)$, for N big, we get

$$\int_0^1 \rho_t(q)H(q) - \rho_0(q)H(q)dq - \int_0^t \int_0^1 \frac{1}{2}\partial_q^2 H(q)\rho_s(q)dqds$$
$$-\frac{1}{2}\int_0^t \partial_q H(0)\alpha - \partial_q H(1)\beta ds = 0.$$

The discrete profile:

Fix an initial measure μ_N in Ω_N . For $x \in \Lambda_N$ and t > 0, let

$$\rho_t^N(x) = \mathbb{E}_{\mu_N}[\eta_{tN^2}(x)].$$

We extend this definition to the boundary by setting

$$\rho_t^N(0) \ = \ \alpha \text{ and } \rho_t^N(N) \ = \ \beta \,, \text{ for all } t \geq 0 \,.$$

A simple computation shows that $\rho_t^N(\cdot)$ is a solution of

$$\partial_t \rho_t^N(x) = N^2(\mathcal{B}_N \rho_t^N)(x), \quad x \in \Lambda_N, \quad t \ge 0$$

where the operator \mathcal{B}_N acts on functions $f:\Lambda_N\cup\{0,N\}\to\mathbb{R}$ as

$$N^{2}(\mathcal{B}_{N}f)(x) = \frac{1}{2}\Delta_{N}f(x), \quad \text{for } x \in \{2, \cdots, N-2\},$$

$$N^{2}(\mathcal{B}_{N}f)(1) = N^{2}(f(2) - f(1)) + \frac{\kappa N^{2}}{N^{\theta}}(f(0) - f(1)),$$

$$N^{2}(\mathcal{B}_{N}f)(N-1) = N^{2}(f(N-2) - f(N-1)) + \frac{\kappa N^{2}}{N^{\theta}}(f(N) - f(N-1)).$$

Stationary empirical profile:

The stationary solution of the previous equation is given by

$$\rho_{ss}^{N}(x) = \mathbb{E}_{\mu_{ss}}[\eta_{tN^{2}}(x)] = a_{N}x + b_{N}$$

where
$$a_N = \frac{\kappa(\beta - \alpha)}{2N^\theta + \kappa(N-2)}$$
 and $b_N = a_N(\frac{N^\theta}{\kappa} - 1) + \alpha$, so that

$$\lim_{N \to \infty} \max_{x \in \Lambda_N} \left| \rho_{ss}^N(x) - \bar{\rho}(\frac{x}{N}) \right| = 0$$

where

$$\bar{\rho}(q) = \left\{ \begin{array}{l} (\beta - \alpha)q + \alpha \ ; \ \theta < 1, \\ \frac{\kappa(\beta - \alpha)}{2 + \kappa}q + \alpha + \frac{\beta - \alpha}{2 + \kappa} \ ; \ \theta = 1, \\ \frac{\beta + \alpha}{2} \ ; \ \theta > 1, \end{array} \right.$$

is a stationary solution of the hydrodynamic equation.

Exclusion in contact with infinitely many reservoirs

Let $p(\cdot)$ be a translation invariant transition probability given at $z \in \mathbb{Z}$ by

$$p(z) = \begin{cases} \frac{c_{\gamma}}{|z|^{\gamma+1}}, \ z \neq 0, \\ 0, \ z = 0, \end{cases}$$

where c_{γ} is a normalizing constant. Since $p(\cdot)$ is symmetric it is mean zero, that is:

$$\sum_{z \in \mathbb{Z}} z p(z) = 0$$

and take (by now) $\gamma > 2$ so that we define its variance by

$$\sigma_{\gamma}^2 = \sum_{z \in \mathbb{Z}} z^2 p(z) < \infty.$$

Heat eq. & Neumann b.c.

Heat eq. & Robin b.c.

$$\gamma = 2$$
 $\theta = 0$

Reaction eq. & Dirichlet b.c.

Heat equation:

$$\partial_t \rho_t(q) = \frac{\sigma^2}{2} \partial_a^2 \rho_t(q)$$

$$\theta = 1$$
 Robin b.c.:

$$\begin{array}{l} \partial_{q}\rho_{t}(0) = \frac{2m\kappa}{\sigma^{2}}(\rho_{t}(0) - \alpha), \\ \partial_{q}\rho_{t}(1) = \frac{2m\kappa}{\sigma^{2}}(\beta - \rho_{t}(1)), \end{array}$$

Reaction-diffusion eq.:

$$\partial_t \rho_t(q) = \frac{\sigma^2}{2} \partial_q^2 \rho_t(q) + \kappa (V_0(q) - V_1(q)\rho_t(q))$$

Reaction equation:

$$\partial_t \rho_t(q) = \kappa (V_0(q) - V_1(q)\rho_t(q))$$

Above

$$V_1(q) = \frac{c_{\gamma}}{\gamma} \left(\frac{1}{q^{\gamma}} + \frac{1}{(1-q)^{\gamma}} \right)$$
$$V_0(q) = \frac{c_{\gamma}}{2} \left(\frac{\alpha}{2^{\gamma}} + \frac{\beta}{(1-q)^{\gamma}} \right).$$

Stationary solutions:

What about $\gamma \in (1,2)$?

We will get a collection of fractional reaction-diffusion equations

$$\partial_t \rho_t(q) = \mathbb{L}_{\kappa} \rho_t(q) + \kappa V_0(q).$$

where the operator $\mathbb{L}_{\kappa}=\mathbb{L}-\kappa V_1$, \mathbb{L} is the regional fractional laplacian and

$$V_1(q) = \frac{c_{\gamma}}{\gamma} \left(\frac{1}{q^{\gamma}} + \frac{1}{(1-q)^{\gamma}} \right)$$

$$V_0(q) = \frac{c_{\gamma}}{\gamma} \left(\frac{\alpha}{q^{\gamma}} + \frac{\beta}{(1-q)^{\gamma}} \right).$$

The operator \mathbb{L} :

Let $(-\Delta)^{\gamma/2}$ be the fractional Laplacian of exponent $\gamma/2$ which is defined on the set of functions $H:\mathbb{R}\to\mathbb{R}$ such that

$$\int_{-\infty}^{\infty} \frac{|H(q)|}{(1+|q|)^{1+\gamma}} dq < \infty$$

by (provided the limit exists)

$$(-\Delta)^{\gamma/2}H(q) = c_{\gamma} \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \mathbf{1}_{|u-q| \ge \varepsilon} \frac{H(q) - H(u)}{|u-q|^{1+\gamma}} du.$$

Let \mathbb{L} be the regional fractional Laplacian on [0,1], whose action on functions $H \in C_c^{\infty}(0,1)$ is given by

$$(\mathbb{L}H)(q) = -(-\Delta)^{\gamma/2}H(q) + V_1(q)H(q)$$

$$= c_{\gamma} \lim_{\varepsilon \to 0} \int_0^1 \mathbf{1}_{|u-q| \ge \varepsilon} \frac{H(u) - H(q)}{|u-q|^{1+\gamma}} du, \quad q \in (0,1).$$

The fractional Sobolev space:

Definition

The Sobolev space $\mathcal{H}^{\gamma/2}$ consists of all square integrable functions $g:(0,1)\to\mathbb{R}$ such that $\|g\|_{\gamma/2}<\infty$, with

$$||g||_{\gamma/2} := \langle g, g \rangle_{\gamma/2} = \frac{c_{\gamma}}{2} \iint_{[0,1]^2} \frac{(g(u) - g(q))^2}{|u - q|^{1+\gamma}} du dq.$$

The space $L^2(0,T;\mathcal{H}^{\gamma/2})$ is the set of measurable functions $f:[0,T]\to\mathcal{H}^{\gamma/2}$ such that $\int_0^T \|f_t\|_{\mathcal{H}^{\gamma/2}}^2 dt < \infty$ where $\|f_t\|_{\mathcal{H}^{\gamma/2}}^2 := \|f_t\|^2 + \|f_t\|_{\gamma/2}^2$.

Weak solution of $\partial_t \rho_t(q) = \mathbb{L}_{\kappa} \rho_t(q) + \kappa V_0(q)$ with Dir.:

Let $g:[0,1]\to [0,1]$ be measurable. We say $\rho:[0,T]\times[0,1]\to[0,1]$ is a weak solution of the PDE above if:

- $\rho \in L^2(0,T;\mathcal{H}^{\gamma/2})$ and $\int_0^T \int_0^1 \left\{ \frac{(\alpha - \rho_t(q))^2}{q^{\gamma}} + \frac{(\beta - \rho_t(q))^2}{(1 - q)^{\gamma}} \right\} dq dt < \infty,$
- For all $t \in [0,T]$ and any function $H \in C_c^{1,\infty}([0,T] \times (0,1))$:

$$\int_0^1 \rho_t(q) H_t(q) - g(q) H_0(q) dq$$

$$- \int_0^t \int_0^1 \rho_s(q) \Big(\partial_s + \mathbb{L}_{\kappa} \Big) H_s(q) dq ds$$

$$- \kappa \int_0^t \int_0^1 V_0(q) H_s(q) dq ds = 0.$$

Open problems:

Conjecture:

For $\theta > 0$ small and $\gamma \in (1,2)$ the solution should correspond to the solution when $\kappa = 0$. Supported by the result:

Let $g:[0,1]\to [0,1]$ be measurable and ρ^{κ} be the weak solution of

$$\partial_t \rho_t(q) = \mathbb{L}_{\kappa} \rho_t(q) + \kappa V_0(q),$$

with Dirichlet boundary conditions and initial condition $g(\cdot)$. Then ρ^{κ} converges strongly to ρ^0 in $L^2(0,T;\mathcal{H}^{\gamma/2})$ as κ goes to 0, where ρ^0 is the weak solution of the equation with $\kappa=0$ and initial condition $g(\cdot)$.

Heat & Neumann b.c. Frac. Diff. Frac. Diff. & Rob. b.c. Heat & Rob. b.c. Frac. Reac. Diff.Frac. Reac. Diff. & Dir. Reaction & Dir. b.c.

Stationary solutions:

For the future:

- What about hydrostatics?
- Fluctuations?
- Other boundary conditions?

Thank you very much!!!