From random dynamics to fractional PDEs with several boundary conditions

Patrícia Gonçalves

Joint with C. Bernardin (U Nice), B. Jiménez-Oviedo (U Costa Rica), S. Scotta (U Lisbon) and Pedro Cardoso (U Lisbon

Japan June 2021

Particle system:

N : scaling parameter;
Space:
2 microscopic (discrete);
\& macroscopic (continuous);
Time:
2 microscopic $t \theta(N)$;
\& macroscopic t;
\& Independent Poissonian clocks;
2 Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Exclusion: After one ring of a clock a particle jumps from x to y at rate $p(y-x)$.

Particle system:

N : scaling parameter;
Space:
2 microscopic (discrete);
\& macroscopic (continuous);
Time:
2 microscopic $t \theta(N)$;
\& macroscopic t;

Exclusion: one ring of a clock.

Independent Poissonian clocks;
Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site x;
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Particle system:

N : scaling parameter;
Space:
2 microscopic (discrete);
\& macroscopic (continuous);
or Time:
2 microscopic $t \theta(N)$;
\& macroscopic t;

Exclusion: after the ring of the clock.
\& Independent Poissonian clocks;
\therefore Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site x;
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Particle system:

d N : scaling parameter;
of Space:
\& microscopic (discrete);
\& macroscopic (continuous);

Time:

\& microscopic $t \theta(N)$;
d macroscopic t;

Exclusion: the forbidden jumps.
\& Independent Poissonian clocks;
Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site x;
Markov processes; (continuous time)
\& Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

> not allowed

Particle system:

N : scaling parameter;
Space:
2 microscopic (discrete);
\& macroscopic (continuous);
of Time:
2 microscopic $t \theta(N)$;
\& macroscopic t;
This cannot happen.
\& Independent Poissonian clocks;
\therefore Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Particle system:

\& N : scaling parameter;
Space:
\& microscopic (discrete);
\& macroscopic (continuous);
Time:
2 microscopic $t \theta(N)$;
\& macroscopic t;
\& Independent Poissonian clocks;
\& Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site x;
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Zero-Range: after one ring of a clock one particle jumps from x to y at rate $g(\eta(x)) p(y-x)$.

Particle system:

d N : scaling parameter;
os Space:
\& microscopic (discrete);
\& macroscopic (continuous);

Time:

\& microscopic $t \theta(N)$;
\& macroscopic t;
do Independent Poissonian clocks;
${ }_{2}{ }^{2}$ Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
2. Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Zero-Range: one ring of a clock.

Particle system:

2 N : scaling parameter;
S Space:
\& microscopic (discrete);
\& macroscopic (continuous);

Time:

\& microscopic $t \theta(N)$;
\& macroscopic t;

Zero-Range: after the ring of the clock.

Independent Poissonian clocks;
Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Particle system:

\& N : scaling parameter;
or Space:
\& microscopic (discrete);
\& macroscopic (continuous);

Time:

\& microscopic $t \theta(N)$;
\& macroscopic t;

Zero-Range: another ring of a clock.

Independent Poissonian clocks;
Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Particle system:

\& N : scaling parameter;
Space:
\& microscopic (discrete);
\& macroscopic (continuous);

Time:

\& microscopic $t \theta(N)$;
d macroscopic t;
Zero-Range: after the ring of the clock.

Independent Poissonian clocks;
Transition probability $p(\cdot)$;
$\eta_{t}^{N}(x)=$ number of particles at site $x ;$
Markov processes; (continuous time)
Density $\sum_{x} \eta_{t}^{N}(x)$ is conserved.

Simulations of Zero-Range: symmetric/asymmetric

Initial configurations:
$\eta_{0}=(1,2,3, \ldots, 20,19,18, \ldots, 1,0, \ldots, 0,1,2,3, \ldots, 20,19,18, \ldots, 1)$ and $\xi_{0}=(0, \cdots, 0,100, \ldots, 100,0, \ldots, 0)$
Upper displays: symmetric rates $p(1)=0.5=p(-1)$.

Lower displays: asymmetric rates $p(1)=0.9, p(-1)=0.1$.

Hydrodynamic Limit: empirical measure

Goal:
$\pi_{t}^{N}(\eta, d u) \rightarrow_{N \rightarrow+\infty} \rho_{t}(u) d u$,
where
$\pi_{t}^{N}(\eta, d u)=\frac{1}{N} \sum_{x} \eta_{t}^{N}(x) \delta_{\frac{x}{N}}(d u)$ and $\rho_{t}(\cdot)$ is solution of the hydrodynamic equation.

Possible hydrodynamic equations
Heat: $\partial_{t} \rho_{t}=\Delta \rho_{t}\left(p\right.$ symmetric, $\left.t N^{2}\right)$
Porous media: $\partial_{t} \rho_{t}=\Delta \rho_{t}^{m}, 2 \leq m \in \mathbb{N}\left(p\right.$ symmetric, $\left.t N^{2}\right)$ Inviscid Burgers: $\partial_{t} \rho_{t}=\nabla\left(\rho_{t}\left(1-\rho_{t}\right)\right)(p$ asymmetric, $t N)$ Fractional heat: $\partial_{t} \rho_{t}=(-\Delta)^{\gamma / 2} \rho_{t}\left(p(\cdot)=\frac{c}{\mid \cdot 1^{1+\gamma}}, t N^{\gamma}, \gamma \in(1,2)\right)$

The focus of this presentation:

I will present the hydrodynamic limit for an exclusion process
in contact with stochastic reservoirs when jumps are long range given by a symmetric probability transition rate:
\% with finite variance;
\% with infinite variance.

Let us start with the simplest case: jumps to nearest-neighbors.

Now $\Lambda=[0,1]$ and $\Lambda_{N}=\{1, \ldots, N-1\}$.
The state space of the Markov process η_{t}^{N} is $\Omega_{N}=\{0,1\}^{\Lambda_{N}}$.

SSEP in contact with reservoirs:

Invariant measures:

20 If $\alpha=\beta=\rho$ the Bernoulli product measures are invariant (equilibrium measures):
$\nu_{\rho}(\eta: \eta(x)=1)=\rho$.
If $\alpha \neq \beta$ the Bernoulli product measure is no longer invariant, but since we have a finite state irreducible Markov process there exists a UNIQUE invariant measure: the stationary measure (non-equilibrium) denoted by $\mu_{\text {ss }}$.

By the matrix ansatz method one can get information about this measure. (Not in the long jumps case.)

Hydrodynamic Limit:

\& For $\eta \in \Omega_{N}$, let $\pi_{t}^{N}(\eta, d q)=\frac{1}{N} \sum_{x=1}^{N-1} \eta_{t N^{2}}(x) \delta_{x / N}(d q)$, be the empirical measure. (Diffusive time scaling!)
\& Assumption: fix $g:[0,1] \rightarrow[0,1]$ measurable and probability measures $\left\{\mu_{N}\right\}_{N \geq 1}$ such that for every $H \in C([0,1])$,

$$
\frac{1}{N} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right) \eta(x) \rightarrow_{N \rightarrow+\infty} \int_{0}^{1} H(q) g(q) d q
$$

wrt $\mu_{N} \cdot\left(\mu_{N}\right.$ is associated to $\left.g(\cdot)\right)$
\& Then: for any $t>0$,

$$
\pi_{t}^{N}(\eta, d q) \rightarrow_{N \rightarrow+\infty} \rho(t, q) d q
$$

wrt $\mu_{N}(t)$, where $\rho(t, q)$ evolves according to a PDE, the hydrodynamic equation.

Hydrodynamic Limit:

Theorem [Baldasso et al]:

Let $g:[0,1] \rightarrow[0,1]$ be a measurable function and let $\left\{\mu_{N}\right\}_{N \geq 1}$ be a sequence of probability measures in Ω_{N} associated to $g(\cdot)$. Then, for any $0 \leq t \leq T$,
$\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left(\left|\frac{1}{N} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right) \eta_{t N^{2}}(x)-\int_{0}^{1} H(q) \rho(t, q) d q\right|>\delta\right)=0$
and $\rho_{t}(\cdot)$ is the UNIQUE weak solution of the heat equation with different boundary conditions depending on the range of the parameter θ and with initial condition $g(\cdot)$.

Hydrodynamic equations:

Heat equation:

$$
\partial_{t} \rho_{t}(q)=\frac{1}{2} \partial_{q}^{2} \rho_{t}(q)
$$

$\theta>1$ Neumann b.c.:
$\partial_{q} \rho_{t}(0)=\partial_{q} \rho_{t}(1)=0$.
$\theta=1$ Robin b.c.:
$\partial_{q} \rho_{t}(0)=\kappa\left(\rho_{t}(0)-\alpha\right)$,
$\partial_{q} \rho_{t}(1)=\kappa\left(\beta-\rho_{t}(1)\right)$.
\& $\theta<1$ Dirichlet b.c.:
$\rho_{t}(0)=\alpha, \rho_{t}(1)=\beta$.

Hydrostatic Limit:

Theorem: Let $\mu_{s s}$ be the stationary measure for the process $\left\{\eta_{t N^{2}}\right\}_{t \geq 0}$. Then, $\mu_{s s}$ is associated to $\bar{\rho}:[0,1] \rightarrow[0,1]$ given on $q \in(0,1)$ by

$$
\bar{\rho}(q)=\left\{\begin{array}{l}
(\beta-\alpha) q+\alpha ; \theta<1, \\
\frac{\kappa(\beta-\alpha)}{2+\kappa} q+\alpha+\frac{\beta-\alpha}{2+\kappa} ; \theta=1, \\
\frac{\beta+\alpha}{2} ; \theta>1,
\end{array}\right.
$$

$\bar{\rho}(\cdot)$ is a stationary solution of the hydrodynamic equation.

The proof:

How do we prove the results?

Two things to do:
R Tightness of \mathbb{Q}_{N}, where \mathbb{Q}_{N} is induced by $\mathbb{P}_{\mu_{N}}$ and the map

$$
\pi^{N}: \mathcal{D}\left([0, T], \Omega_{N}\right) \longrightarrow \mathcal{D}\left([0, T], \mathcal{M}_{+}\right)
$$

\& Characterization of limit points: limit points are concentrated on trajectories of measures that are absolutely continuous wrt the Lebesgue measure and the density is a weak solution of the corresponding PDE:
$\mathbb{Q}\left(\pi .: \pi_{t}(d q)=\rho(t, q) d q\right.$ and $\rho_{t}(q)$ is solution to the PDE$)=1$.

Let us focus on last item.

The notion of weak solution:

Let $g:[0,1] \rightarrow[0,1]$ be measurable. We say
$\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution to the heat equation with Dirichlet b.c. if:

$$
\rho \in L^{2}\left(0, T ; \mathcal{H}^{1}\right) ;
$$

2 ρ satisfies the weak formulation:

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H_{t}(q)-g(q) H_{0}(q) d q-\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\frac{1}{2} \partial_{q}^{2}+\partial_{s}\right) H_{s}(q) d s d q \\
& +\frac{1}{2} \int_{0}^{t} \beta \partial_{q} H_{s}(1)-\alpha \partial_{q} H_{s}(0) d s=0
\end{aligned}
$$

for all $t \in[0, T]$ and any function $H \in C_{0}^{1,2}([0, T] \times(0,1))$.

Definition

The Sobolev space \mathcal{H}^{1} on $(0,1)$ is the Hilbert space defined as the completion of $C^{\infty}([0,1])$ for the norm $\|\cdot\|_{\mathcal{H}^{1}}^{2}:=\|\cdot\|_{2}^{2}+\|\cdot\|_{1}^{2}$, where $\|H\|_{1}^{2}=\int_{0}^{1}\left(\partial_{q} H(q)\right)^{2} d q$, The space $L^{2}\left(0, T ; \mathcal{H}^{1}\right)$ is the set of measurable functions $f:[0, T] \rightarrow \mathcal{H}^{1}$ such that $\int_{0}^{T}\left\|f_{s}\right\|_{\mathcal{H}^{1}}^{2} d s<\infty$.

Other notion of solution:

Let $g:[0,1] \rightarrow[0,1]$ be measurable. We say
$\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution to the heat equation with Dirichlet b.c. if:
\& $\rho \in L^{2}\left(0, T ; \mathcal{H}^{1}\right)$;
\& ρ satisfies the weak formulation:

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H_{t}(q)-g(q) H_{0}(q) d q \\
& -\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\frac{1}{2} \partial_{q}^{2}+\partial_{s}\right) H_{s}(q) d s d q=0
\end{aligned}
$$

for all $t \in[0, T]$ and any function $H \in C_{c}^{1,2}([0, T] \times(0,1))$;
$\rho_{t}(0)=\alpha$ and $\rho_{t}(1)=\beta$, for $t \in(0, T]$.

How do we formulate the solution:

A simple computation shows that

$$
\begin{aligned}
N^{2} \mathscr{L}_{N}\left\langle\pi_{s}^{N}, H\right\rangle & =\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle \\
& +\frac{1}{2} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\frac{1}{2} \nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) \\
& +\frac{\kappa}{2} N^{1-\theta} H\left(\frac{1}{N}\right)\left(\alpha-\eta_{s N^{2}}(1)\right) \\
& +\frac{\kappa}{2} N^{1-\theta} H\left(\frac{N-1}{N}\right)\left(\beta-\eta_{s N^{2}}(N-1)\right)
\end{aligned}
$$

If $H(0)=H(1)=0$, then from Dynkin's formula, we get

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) d s+O\left(N^{-\theta}\right)
\end{aligned}
$$

How do we formulate the solution $\theta \in(0,1)$:

Replacing $\eta_{s N^{2}}(1)$ by α and $\eta_{s N^{2}}(N-1)$ by $\beta(\theta<1$!) then

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \alpha-\nabla_{N}^{-} H(1) \beta d s+O\left(N^{-\theta}\right)
\end{aligned}
$$

Take the expectation and assuming that $\rho_{t}^{N}(x)=\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x)\right] \sim \rho_{t}(x / N)$, for N big, we get

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H(q)-\rho_{0}(q) H(q) d q-\int_{0}^{t} \int_{0}^{1} \frac{1}{2} \partial_{q}^{2} H(q) \rho_{s}(q) d q d s \\
& -\frac{1}{2} \int_{0}^{t} \partial_{q} H(0) \alpha-\partial_{q} H(1) \beta d s=0
\end{aligned}
$$

How do we formulate the solution $\theta \leq 0$:

Replacing $\eta_{s N^{2}}(1)$ by α and $\eta_{s N^{2}}(N-1)$ by $\beta(\theta<1$!) then

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \alpha-\nabla_{N}^{-} H(1) \beta d s+O\left(N^{-\theta}\right)
\end{aligned}
$$

Take the expectation and assuming that $\rho_{t}^{N}(x)=\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x)\right] \sim \rho_{t}(x / N)$, for N big, we get

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H(q)-\rho_{0}(q) H(q) d q-\int_{0}^{t} \int_{0}^{1} \frac{1}{2} \partial_{q}^{2} H(q) \rho_{s}(q) d q d s \\
& -\frac{1}{2} \int_{0}^{t} \partial_{q} H(0) \alpha-\partial_{q} H(1) \beta d s=0 .
\end{aligned}
$$

The discrete profile:

Fix an initial measure μ_{N} in Ω_{N}. For $x \in \Lambda_{N}$ and $t \geq 0$, let

$$
\rho_{t}^{N}(x)=\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x)\right]
$$

We extend this definition to the boundary by setting

$$
\rho_{t}^{N}(0)=\alpha \text { and } \rho_{t}^{N}(N)=\beta, \text { for all } t \geq 0
$$

A simple computation shows that $\rho_{t}^{N}(\cdot)$ is a solution of

$$
\partial_{t} \rho_{t}^{N}(x)=N^{2}\left(\mathcal{B}_{N} \rho_{t}^{N}\right)(x), \quad x \in \Lambda_{N}, \quad t \geq 0
$$

where the operator \mathcal{B}_{N} acts on functions $f: \Lambda_{N} \cup\{0, N\} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
& N^{2}\left(\mathcal{B}_{N} f\right)(x)=\frac{1}{2} \Delta_{N} f(x), \quad \text { for } x \in\{2, \cdots, N-2\}, \\
& N^{2}\left(\mathcal{B}_{N} f\right)(1)=N^{2}(f(2)-f(1))+\frac{\kappa N^{2}}{N^{\theta}}(f(0)-f(1)), \\
& N^{2}\left(\mathcal{B}_{N} f\right)(N-1)=N^{2}(f(N-2)-f(N-1))+\frac{\kappa N^{2}}{N^{\theta}}(f(N)-f(N-1)) .
\end{aligned}
$$

Stationary empirical profile:

The stationary solution of the previous equation is given by

$$
\rho_{s s}^{N}(x)=\mathbb{E}_{\mu_{s s}}\left[\eta_{t N^{2}}(x)\right]=a_{N} x+b_{N}
$$

where $a_{N}=\frac{\kappa(\beta-\alpha)}{2 N^{\theta}+\kappa(N-2)}$ and $b_{N}=a_{N}\left(\frac{N^{\theta}}{\kappa}-1\right)+\alpha$, so that

$$
\lim _{N \rightarrow \infty} \max _{x \in \Lambda_{N}}\left|\rho_{s s}^{N}(x)-\bar{\rho}\left(\frac{x}{N}\right)\right|=0
$$

where

$$
\bar{\rho}(q)=\left\{\begin{array}{l}
(\beta-\alpha) q+\alpha ; \theta<1, \\
\frac{\kappa(\beta-\alpha)}{2+\kappa} q+\alpha+\frac{\beta-\alpha}{2+\kappa} ; \theta=1, \\
\frac{\beta+\alpha}{2} ; \theta>1,
\end{array}\right.
$$

is a stationary solution of the hydrodynamic equation.

Exclusion in contact with infinitely many reservoirs

What if jumps are arbitrarily big?

Let $p(\cdot)$ be a translation invariant transition probability given at $z \in \mathbb{Z}$ by

$$
p(z)=\left\{\begin{array}{l}
\frac{c_{\gamma}}{|z|^{\gamma+1}}, z \neq 0 \\
0, z=0
\end{array}\right.
$$

where c_{γ} is a normalizing constant. Since $p(\cdot)$ is symmetric it is mean zero, that is:

$$
\sum_{z \in \mathbb{Z}} z p(z)=0
$$

and take (by now) $\gamma>2$ so that we define its variance by

$$
\sigma_{\gamma}^{2}=\sum_{z \in \mathbb{Z}} z^{2} p(z)<\infty
$$

Heat eq. \& Neumann b.c.

$$
\begin{aligned}
& \gamma=2 \\
& \theta=1
\end{aligned}
$$

Heat eq. \& Robin b.c.
$\gamma=2$
$\theta=0$
Heat eq.
\& Dirichlet b.c.
$\theta=2-\gamma$
of Heat equation:
$\partial_{t} \rho_{t}(q)=\frac{\sigma^{2}}{2} \partial_{q}^{2} \rho_{t}(q)$
\& $\theta=1$ Robin b.c.:

$$
\begin{aligned}
& \partial_{q} \rho_{t}(0)=\frac{2 m \kappa}{\sigma^{\sigma^{2}}}\left(\rho_{t}(0)-\alpha\right), \\
& \partial_{q} \rho_{t}(1)=\frac{2 \sigma^{2}}{\sigma^{2}}\left(\beta-\rho_{t}(1)\right),
\end{aligned}
$$

Reaction-diffusion eq.:

$$
\begin{aligned}
\partial_{t} \rho_{t}(q) & =\frac{\sigma^{2}}{2} \partial_{q}^{2} \rho_{t}(q) \\
& +\kappa\left(V_{0}(q)-V_{1}(q) \rho_{t}(q)\right)
\end{aligned}
$$

Reaction equation:
$\partial_{t} \rho_{t}(q)=\kappa\left(V_{0}(q)-V_{1}(q) \rho_{t}(q)\right)$
Above

$$
\begin{aligned}
& V_{1}(q)=\frac{c_{\gamma}}{\gamma}\left(\frac{1}{q^{\gamma}}+\frac{1}{(1-q)^{\gamma}}\right) \\
& V_{0}(q)=\frac{c_{\gamma}}{\gamma}\left(\frac{\alpha}{q^{\gamma}}+\frac{\beta}{(1-q)^{\gamma}}\right) .
\end{aligned}
$$

Stationary solutions:

What about $\gamma \in(1,2)$?

We will get a collection of fractional reaction-diffusion equations

$$
\partial_{t} \rho_{t}(q)=\mathbb{L}_{\kappa} \rho_{t}(q)+\kappa V_{0}(q) .
$$

where the operator $\mathbb{L}_{\kappa}=\mathbb{L}-\kappa V_{1}, \mathbb{L}$ is the regional fractional laplacian and

$$
\begin{aligned}
& V_{1}(q)=\frac{c_{\gamma}}{\gamma}\left(\frac{1}{q^{\gamma}}+\frac{1}{(1-q)^{\gamma}}\right) \\
& V_{0}(q)=\frac{c_{\gamma}}{\gamma}\left(\frac{\alpha}{q^{\gamma}}+\frac{\beta}{(1-q)^{\gamma}}\right) .
\end{aligned}
$$

The operator \mathbb{L} :

Let $(-\Delta)^{\gamma / 2}$ be the fractional Laplacian of exponent $\gamma / 2$ which is defined on the set of functions $H: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\int_{-\infty}^{\infty} \frac{|H(q)|}{(1+|q|)^{1+\gamma}} d q<\infty
$$

by (provided the limit exists)

$$
(-\Delta)^{\gamma / 2} H(q)=c_{\gamma} \lim _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} \mathbf{1}_{|u-q| \geq \varepsilon} \frac{H(q)-H(u)}{|u-q|^{1+\gamma}} d u
$$

Let \mathbb{L} be the regional fractional Laplacian on $[0,1]$, whose action on functions $H \in C_{c}^{\infty}(0,1)$ is given by

$$
\begin{aligned}
(\mathbb{L} H)(q) & =-(-\Delta)^{\gamma / 2} H(q)+V_{1}(q) H(q) \\
& =c_{\gamma} \lim _{\varepsilon \rightarrow 0} \int_{0}^{1} \mathbf{1}_{|u-q| \geq \varepsilon} \frac{H(u)-H(q)}{|u-q|^{1+\gamma}} d u, \quad q \in(0,1) .
\end{aligned}
$$

The fractional Sobolev space:

Definition

The Sobolev space $\mathcal{H}^{\gamma / 2}$ consists of all square integrable functions $g:(0,1) \rightarrow \mathbb{R}$ such that $\|g\|_{\gamma / 2}<\infty$, with

$$
\|g\|_{\gamma / 2}:=\langle g, g\rangle_{\gamma / 2}=\frac{c_{\gamma}}{2} \iint_{[0,1]^{2}} \frac{(g(u)-g(q))^{2}}{|u-q|^{1+\gamma}} d u d q
$$

The space $L^{2}\left(0, T ; \mathcal{H}^{\gamma / 2}\right)$ is the set of measurable functions $f:[0, T] \rightarrow \mathcal{H}^{\gamma / 2}$ such that $\int_{0}^{T}\left\|f_{t}\right\|_{\mathcal{H}^{\gamma / 2}}^{2} d t<\infty$ where $\left\|f_{t}\right\|_{\mathcal{H}^{\gamma / 2}}^{2}:=\left\|f_{t}\right\|^{2}+\left\|f_{t}\right\|_{\gamma / 2}^{2}$.

Weak solution of $\partial_{t} \rho_{t}(q)=\mathbb{L}_{\kappa} \rho_{t}(q)+\kappa V_{0}(q)$ with Dir.:

Let $g:[0,1] \rightarrow[0,1]$ be measurable. We say
$\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution of the PDE above if:

$$
\begin{aligned}
& \rho \in L^{2}\left(0, T ; \mathcal{H}^{\gamma / 2}\right) \text { and } \\
& \int_{0}^{T} \int_{0}^{1}\left\{\frac{\left(\alpha-\rho_{t}(q)\right)^{2}}{q^{\gamma}}+\frac{\left(\beta-\rho_{t}(q)\right)^{2}}{(1-q)^{\gamma}}\right\} d q d t<\infty
\end{aligned}
$$

\& For all $t \in[0, T]$ and any function $H \in C_{c}^{1, \infty}([0, T] \times(0,1))$:

$$
\begin{aligned}
\int_{0}^{1} \rho_{t}(q) H_{t}(q)- & g(q) H_{0}(q) d q \\
& -\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\partial_{s}+\mathbb{L}_{\kappa}\right) H_{s}(q) d q d s \\
& -\kappa \int_{0}^{t} \int_{0}^{1} V_{0}(q) H_{s}(q) d q d s=0
\end{aligned}
$$

Open problems:

Conjecture:

For $\theta>0$ small and $\gamma \in(1,2)$ the solution should correspond to the solution when $\kappa=0$. Supported by the result:

Let $g:[0,1] \rightarrow[0,1]$ be measurable and ρ^{κ} be the weak solution of

$$
\partial_{t} \rho_{t}(q)=\mathbb{L}_{\kappa} \rho_{t}(q)+\kappa V_{0}(q),
$$

with Dirichlet boundary conditions and initial condition $g(\cdot)$. Then ρ^{κ} converges strongly to ρ^{0} in $L^{2}\left(0, T ; \mathcal{H}^{\gamma / 2}\right)$ as κ goes to 0 , where ρ^{0} is the weak solution of the equation with $\kappa=0$ and initial condition $g(\cdot)$.

Solved problem:

Stationary solutions:

For the future:

- What about hydrostatics?
- Fluctuations?
- Other boundary conditions?

Thank you very much!!!

