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0. General remarks from physics perspective

• PDE and probability: deterministic and fluctuating

• Thermodynamics (macro) and statistical mechanics (micro)

for equilibrium systems.

Fluctuations (probabilistic) only in the latter.

• For non-equilibrium systems, space-time dependent

macroscopic description is hydrodynamics (PDE).

Also interested in non-equilibrium fluctuations.

• Underlying dynamics can be taken to be Hamiltonian

(deterministic) or Markov (stochastic).
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2. Nonlinear fluctuating hydrodynamics

3. NLFHD for stochastic particle systems
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1. Introduction: ASEP and KPZ universality
ASEP = asymmetric simple exclusion process

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3

• Discrete Markov process. Non-equilibrium microscopic model.

• Bernoulli (independent sites) with density ρ is stationary.

• Hydrodynamics: Burgers eq. for density field u = u(x, t)
∂

∂t
u + (p − q)

∂

∂x
u(1 − u) = 0.

Note the average current j(ρ) = (p − q)ρ(1 − ρ).

• N(x, t): Integrated current at (x, x + 1) upto time t
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Current fluctuations

2000 Johansson

Th. For TASEP (q = 0) with the step i.c.

lim
t→∞

P
[
N(0, t) − t/4

−2−4/3t1/3
≤ s

]
= F2(s)

where F2(s) is the GUE Tracy-Widom distribution

F2(s) = det(1 − PsKAiPs)L2(R)

where Ps: projection onto the interval [s,∞)

and KAi is the Airy kernel

KAi(x, y) =

∫ ∞

0
dλAi(x + λ)Ai(y + λ) -6 -4 -2 0 2

0.0
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0.2

0.3

0.4

0.5

s

Rem: Generalization to ASEP is available (Tracy-Widom 2009).
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Gaussian Unitary Ensemble (GUE)
Measure for N -dim hermitian matrices H

1

Z
exp[−Tr H2]dH

Eigenvalues (xi) density for GUE (Product of two determinants)

1

Z

∏
i<j

(xi − xj)
2
∏
i

e−x2
i

Largest eigenvalue distribution (GUE TW for N → ∞)

P[xmax ≤ s] = det(1 − PsKNPs)L2(R) (⇒ F2)

KN(x, y) =

N−1∑
n=0

cnHn(x)Hn(y)e
−(x2+y2)/2

GOE TW for real symmetric matrix ensemble.
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Surface growth related to ASEP

Mapping to a surface growth model (single step model)

Step

Wedge Flat

Current fluctuation ⇔ Height fluctuation

Shows universal behaviors.
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KPZ equation
h(x, t): height at position x ∈ R and at time t ≥ 0

1986 Kardar Parisi Zhang (SPDE)

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) + η(x, t)

where η is the Gaussian noise with mean 0 and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x − x′)δ(t − t′)

• Can be obtained by a weak asymmetry limit of ASEP.

• Well-definedness of the equation (⇒ Hairer, etc )

• Th. (TS-Spohn, Amir et al 2010)

Height at x = 0: h(x = 0, t) = vt + ct1/3χt

χt tends to TW when t → ∞ (KPZ universality class)
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Noisy Burgers equation

• For u(x, t) = ∂xh(x, t), the KPZ equation becomes the

noisy Burgers equation

∂tu =
1

2
∂2
xu +

1

2
∂xu

2 + ∂xη

This is obtained by adding noise ∂xη to the Burgers equation.

• Remark: Weakly asymmetric limit can not be taken for

TASEP. But the correct universality can be captured by

adding noise to its hydrodynamic equation (Burgers).

• This may be considered as the simplest example of fluctuating

hydrodynamics for the case of single conserved quantity.
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3 important cases

Wedge Stationary Flat

2λt/δ
x

h(x,t)

x

h

t2/3 t1/3

∂xh(x,t)∂xh(0,0)
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Simplest Non-eq stat. state Standard for growth

GUE TW dist F0 (BR dist) GOE TW dist

eh(x,0) = δ(x) h(x, 0) = B(x) h(x, 0) = 0
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Stationary two point correlation

Imamura TS (2012)

⟨∂xh(x, t)∂xh(0, 0)⟩ =
1

2
(2t)−2/3g′′

t (x/(2t)
2/3)

x

h

t2/3 t1/3

∂xh(x,t)∂xh(0,0)

o
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y
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γt=∞

The solid curve is the scaling limit g′′(y).

For ASEP corresponds to 2-pt correlation ⟨nj(t)n0(0)⟩.
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Short summary of Part 1

• ASEP is a microscopic model with Markov dynamics and has

a single conserved quantity.

• Hydrodynamics is well-known (Burgers equation).

• Fluctuations can be studied exactly (integrable probability).

• Adding noise to hydrodynamics, one gets noisy Burgers

equation (∼ KPZ equation).

• This can also be studied exactly with the same universal

behaviors with ASEP.

12



2. Nonlinear fluctuating hydrodynamics

Fermi-Pasta-Ulam chain

H =
∑
j

(
p2
j

2
+ V (xj+1 − xj)

)
with

V (x) =
1

2
x2 +

α

3
x3 +

β

4
x4

• Microscopic model with Hamiltonian dynamics.

• FPU tried to see thermalization numerically, but recurrence

seemed to occur. (→ Chaos, Soliton, ...)

• It is still difficult to study large time behaviors of the model,

but some aspects may be understood by using a connection to

KPZ through nonlinear fluctuating hydrodynamics.
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Nonlinear fluctuating hydrodynamics
A conjectural theory for 1D multi-component systems which

predicts that the distributions and correlations of ”normal modes”

are described by the ones of the single-component KPZ equation.

van Beijreren 2011, Spohn 2013-

For an anharmonic chain, there are three conserved fields.

rj = xj+1 − xj, pj, ej =
p2
j

2
+ V (rj)

Equations of motion

ṙj = pj+1 − pj

ṗj = V ′(rj) − V ′(rj−1)

ėj = pj+1V
′(rj) − pjV

′(rj−1)
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This can be summarized as the continuity equation

d

dt
G⃗(j, t) + J⃗(j + 1, t) − J⃗(j, t) = 0

where

G⃗ = (rj, pj, ej) J⃗ = (−pj,−V ′(rj−1),−pjV
′(rj−1))

Hydrodynamics: Euler equation (like Burgers for ASEP)

∂

∂t
g⃗ +

∂

∂x
j⃗ = 0

For taking into account the fluctuations effectively, we add noise

(η) and a diffusion term to get a SPDE

∂

∂t
g⃗ +

∂

∂x
(⃗j + ∂xDg⃗ + Bη⃗) = 0

Remark: This ”derivation” is heuristic, not at all rigorous.
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Expanding around equilibrium up to the 2nd order, we find

∂

∂t
u⃗ +

∂

∂x
(Au⃗ +

1

2
⟨u⃗,Hu⃗⟩ + ∂xDu⃗ + Bη⃗) = 0

Diagonalizing A as RAR−1 = diag(c1, c0, c−1) and setting

ϕ⃗ = Ru⃗ (normal modes), we get

∂

∂t
ϕα +

∂

∂x
(cαϕα +

1

2
⟨ϕ⃗, Gαϕ⃗⟩+ ∂x(Dϕ⃗)α + (Bη⃗)α) = 0

This is multi-component KPZ eq (well-definedness by

Funaki-Hoshino ). Assuming main contributions from the

nonlinear term come from diagonal terms, the equation for a

component is noisy-Burgers equation.

⇒ Correlations and distributions for the normal modes are

expected to be described by the ones of the KPZ equation.
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Simulations and problem
For an anharmonic chain, c± = ±c, c0 = 0, corresponding to

two sound modes and one heat mode. The correlation of each

sound mode seems to be given by the stationary KPZ 2pt function.

MD simulations for shoulder potential (Mendl Spohn )

V (x) = ∞ (0 < x < 1
2
), 1(1

2
< x < 1), 0(x > 1)

Problem 1: Can we prove them (or Show them analytically) ?
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Universal KPZ distributions?

Mendl Spohn

• By considering the integrated current for

normal modes, one can also observe F0.

• For step type initial condition in which the

macro paramters (temperature, pressure)

change at the origin, one observes GUE TW.
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3. NLFHD for stochastic models

• NLFHD theory applies to more general multi-component

systems with more than one conserved quantities.

• Stochastic systems should be easier to treat.

• There are various interesting problems from points of view of

interacting particle systems and integrable probability.

• The case where the ”sound modes” are linear are easier and

there have been several results (fractional diffusion for

momentum exchange model by Olla et al etc). The case of

KPZ fluctuations have been less studied.
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Two species ASEP

AHR model (1998 Arndt-Heinzel-Rittenberg)

•: + particle
◦: − particle

• The model has two conserved quantities (numbers of ±
particles). NLFHD can be applied.

• We will focus on the case where q = 0 and α + β = 1, for

which the stationary measure is factorized. (Mostly

α = β = 1
2
below.)

• The integrability was shown by Cantini 2008.

There are multi-species ASEP with Uq(sln) symmetry but

AHR is different.
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Monte Carlo simulation for AHR model

For AHR model, stationary KPZ 2pt function had been observed

in MC simulations (Ferrari TS Spohn 2014).
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For step i.c. GUE TW was observed (Mendl Spohn)

Problem 2: Can we prove these?
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ρ − 1 Step i.c.

Infinite + particles (•) with density ρ on the left and infinite −
particles (◦) packed on the right.
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Hydrodynamics

Fritz Toth 2004

Macroscopic densities of ± particles, u(t, x) = (ρ+, ρ−), satisfy

∂u(t, x)

∂t
+

∂j(u(t, x))

∂x
= 0

where j±(u) represent macroscopic current of ± particle,

j+(u) = ρ+(1 − ρ+ − ρ−) + 2ρ+ρ−

j−(u) = −(1 − ρ+ − ρ−)ρ− − 2ρ+ρ−

This set of coupled equations can be solved.
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Normal modes for ρ − 1 step i.c.

The NLFHD predicts

lim
t→∞

P∞,∞[s−(n,m, ρ, t) ≤ s−] = F2(s−)

lim
t→∞

P∞,∞[s+(n,m, ρ, t) ≤ s+] = FG(s+)

where n,m are the numbers of ± particles which passed the

origin up to time t and scaled variables s±(n,m, ρ, t) are given

by

s−(n,m, ρ, t) =
(1 + ρ) · n − (3 − ρ) · m + (1 − ρ)(1 − (1−ρ)2

4
)t

(3/16)1/3(1 − ρ)(3 − ρ)2/3(1 + ρ)2/3t1/3

s+(n,m, ρ, t) =
−2(2 − ρ) · n + 2ρ · m + 2(2 − ρ)(1 − ρ)ρt

3(1 − ρ)3/2
√

ρ(2 − ρ)t1/2
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4. Exact confirmation of NLFHD for ρ-1 AHR model

The AHR (with q = 0) is exactly solvable.

• By using Bethe ansatz, one can find eigenfunctions for the

generator of the AHR model.

• When α + β = 1, the stationary measure is Bernoulli. We

focus on this case (we will set α = β = 1/2 later).
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Transition probability (Green’s function)

Let x
(0)
i , y

(0)
j be initial positions of + and − particles and xi, yj

final positions at time t. Using the Bethe ansatz eigenfunctions,

for certain special cases, one can write down the Green’s function

(probability of xi, yj at t given x
(0)
i , y

(0)
j at t = 0) as a multiple

integral.

Assume x
(0)
1 < . . . < x

(0)
N < y

(0)
1 < . . . < y

(0)
M .

The Green’s function for the case (the order has not changed)

x1 < . . . < xN < y1 < . . . < yM ,
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is given by, with Λ = β
∑N

i=1(z
−1
i − 1) + α

∑M
i=1(w

−1
i − 1),

G({xj − x
(0)
j }, {yk − y

(0)
k }, t)

=

∮ N∏
j=1

dzj

2πi

M∏
k=1

dwk

2πi
eΛt

×
∑

π∈SN

sign(π)

N∏
j=1

(
zj − 1

zπj − 1

)j−1

zxj
πj
z
−x

(0)
j −1

j

×
∑

ρ∈SM

sign(ρ)

M∏
k=1

(
wk − 1

wρk − 1

)M−k

w−yk
ρk

w
y
(0)
k −1

k ,

where all contour integrals are around the origin.
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+− → −+ boundary conditions

For the ordering (complete exchange of + and − particles)

y1 < . . . < yM < x1 < . . . < xN ,

G({xj − x
(0)
j }, {yk − y

(0)
k }, t)

=

∮ N∏
j=1

dzj

2πi

M∏
k=1

dwk

2πi
eΛt

M∏
k=1

N∏
j=1

1

βzj + αwk

×
∑

π∈SN

sign(π)
N∏

j=1

(
zj − 1

zπj − 1

)j−1

zxj
πj
z
−x

(0)
j −1

j

×
∑

ρ∈SM

sign(ρ)
M∏
k=1

(
wk − 1

wρk − 1

)M−k

w−yk
ρk

w
y
(0)
k −1

k
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Multiple-integral formula for current distribution

A step i.c. in which there are N + particles on the left with

density ρ and M − particles are packed on the right.

When α + β = 1, for the currents N±(t) at the origin,

PN,M(N+(t) = N,N−(t) = M) =
1

N !M !

∮ N∏
j=1

dzj

2πi

M∏
k=1

dwk

2πi
eΛt

ρN
∏

1≤i<j≤N

(zi − zj)
2

∏
1≤k<l≤M

(wl − wk)
2

n∏
j=1

(zj − 1)N(1 − (1 − ρ)zj)

M∏
k=1

(wk − 1)M
N∏

j=1

M∏
k=1

(
αzj + βwk

)
with Λ =

∑N
j=1 β(1/zj − 1) +

∑M
k=1 α(1/wk − 1).
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NLFHD prediction for finite particles case

• The original NLFHD is formulated for infinite systems.

P∞,∞[N+(t) = n,N−(t) = m] ≃ F ′
G(s+)F ′

2(s−)

• Our formula is for finite number of particles. We can

formulate a generalization of NLFHD prediction for finite case.

Conjecture (Theorem (2021 Chen, de Gier, Hiki, TS, Usui))

lim
t→∞

PN,M [N+(t) = N,N−(t) = M ] = FG(s+)F2(s−)

This may look very similar to the original conjecture but is in

fact a very nontrivial generalization. (Note the difference of

P∗[N+(t) = N,N−(t) = M ] as t → ∞.)
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Confirmation of the conjecture by simulation
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Analytic confirmation by the multiple integral formula

In the multiple integral formula, we take the simple pole at

zj = 1/(1 − ρ) and find

PN,M [N+(t) = N,N−(t) = M ] = I1 + J × I2

where

I1 =
1

M !

∫ M∏
k=1

dwk

2πi

eΛ0,M t
∏

1≤k<l≤M(wl − wk)
2∏M

k=1(wk − 1)M
∏M

k=1(
1
2
(1 + wk))N
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J =
ρN−1

(1 − ρ)N

(
2(1 − ρ)

2 − ρ

)M e−ρt/2

(N − 1)!

∫
1

N−1∏
j=1

dzj

2πi

× eΛN−1,0t

∏
1≤i<j≤N−1(zi − zj)

2
∏N−1

j=1 (1 − (1 − ρ)/zj)∏N−1
j=1 (zj − 1)N

∏N−1
j=1 (1

2
(1 + zj))M

,

I2 =
1

M !

∫ M∏
k=1

dwk

2π
eΛ0,M t

∏
1≤k<l≤M(wl − wk)

2∏M
k=1(wk − 1)M

×
∏N−1

j=1 (1 + zj)
M( 1

1−ρ
+ 1)M∏M

k=1(
∏N−1

j=1 (zj + wk)(
1

1−ρ
+ wk))

.

We can study asymptotics of the integrals to show

I1, I2 ≃ F2(s−), J ≃ FG(s+) − 1.

The first analytic confirmation of the KPZ prediction of NLFHD!
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A key observation for the proof

By a standard procedure to rewrite a mutliple integral into a

Fredholm determinant,

I2 = det(1 − Kzj)ℓ2(N)

where the kernel is given by, with ρ′ = 1 − ρ,

Kzj(x, y) =

∮
1

dz

2πi

z + ρ′

zx+1

(
z

1 − z

)m n−1∏
j=1

1 + zjz

z
e−zt/2 1

w − z

×
∮
0,−ρ′,{−1/zj}n−1

j=1

dw

2πi

wy

w + ρ′

(
1 − w

w

)m n−1∏
j=1

wewt/2

1 + zjw
.
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This still depends on {zj}’s but can be written as a rank-one

perturbation, inside the mutliple integral over {zj}’s.

Kzj(xi, xj) = K1(xi, xj) −

n−1∑
p=1

p∏
q=1

(zq − 1)Ap(xi)

B(xj)

K1(x, y) is the kernel which is obtained by setting all of zjs to 1

in Kzj(x, y) and Aj(x) and B(y) are of the form,

Aj(x) =

∮
1

dz

2πi
f(x; z)

(
1 + z

z

)n−j 1

1 + z

B(y) =

∮
0,−ρ′,−1

dw

2πi
g(y;w)

(
w

1 + w

)n−1 1

1 + w

One can show that the contribution from the perturbation part is

small for large t. One can also estimate how the error decays.
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Summary

• Nonlinear fluctuating hydrodynamics is a conjectural physical

theory which can predict correlation and fluctuations of

multi-component systems, including Hamiltonian dynamics.

• The conjectures have been tested in Monte Carlo simulations

with reasonably good agreement.

Theoretical and mathematical understanding is unsatisfactory.

• The conjectures apply also to stochastic models, which seems

more tractable.

• We have given a confirmation of the conjecture for a two

species exclusion process by exact calculations using

techniques of integrable probability.
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Open problems

Stochastic interacting particle systems

• Establishing hydrodynamics for multi-component systems.

• Deriving multi-component KPZ equations for

multi-component systems.

• Establishing universal behaviors,....

Integrable probability

• Other initial conditions, boundary conditions, quantities for

AHR model

• More general parameters for AHR model

• Other multi-component models,...
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