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0. General remarks from physics perspective

PDE and probability: deterministic and fluctuating

Thermodynamics (macro) and statistical mechanics (micro)

for equilibrium systems.

Fluctuations (probabilistic) only in the latter.

For non-equilibrium systems, space-time dependent

macroscopic description is hydrodynamics (PDE).

Also interested in non-equilibrium fluctuations.

Underlying dynamics can be taken to be Hamiltonian

(deterministic) or Markov (stochastic).
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1. Introduction: ASEP and KPZ universality
ASEP = asymmetric simple exclusion process
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e Discrete Markov process. Non-equilibrium microscopic model.

e Bernoulli (independent sites) with density p is stationary.

e Hydrodynamics: Burgers eq. for density field u = wu(x, t)
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Note the average current 3(p) = (p — q)p(1 — p).

e N(x,t): Integrated current at (x,x 4+ 1) upto time ¢



Current fluctuations

Th. For TASEP (g = 0) with the step i.c. oeee®
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where F3(s) is the GUE Tracy-Widom distribution

F>(s) = det(1 — PsKaiPs)p2(rw)

where Ps: projection onto the interval s, c0)

and K aj is the Airy kernel 02!
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Rem: Generalization to ASEP is available ( )



Gaussian Unitary Ensemble (GUE)
Measure for N-dim hermitian matrices H

1
- exp[—Tr H*|dH
Eigenvalues (x;) density for GUE (Product of two determinants)

1
7 @i —2j)* [[ e

1<J
Largest eigenvalue distribution (GUE TW for N — o0)
Plxmax < 8] = det(1 — PsKnNPs)r2w) (= F2)
N-1
Kn(z,y) = Y cnHn(z)Hp(y)e™ @ Tv)/2
n=0

GOE TW for real symmetric matrix ensemble.



Surface growth related to ASEP

Mapping to a surface growth model (single step model)

or

Current fluctuation < Height fluctuation

M
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Shows universal behaviors.




KPZ equation
h(x,t): height at position * € R and at time ¢t > 0

(SPDE)
Oith(x,t) = %(Bmh(a:, t))? + %(‘ﬁh(m, t) + n(x,t)

where 1) is the Gaussian noise with mean 0 and covariance

<77(w9 t)"?(if/", t,)> — 5($ T :B,)(S(t T t,)
e Can be obtained by a weak asymmetry limit of ASEP.
e Well-definedness of the equation (= )

e Th. ( )
Height at = 0: h(x = 0,t) = vt + ct'/3xy
Xt tends to TW when t — oo (KPZ universality class)



Noisy Burgers equation

o For u(x,t) = 9, h(x,t), the KPZ equation becomes the

noisy Burgers equation
1 2 1 2
Oiu = —0,u + —0zu” + O;m
2 2
This is obtained by adding noise 0,1 to the Burgers equation.

e Remark: Weakly asymmetric limit can not be taken for
TASEP. But the correct universality can be captured by

adding noise to its hydrodynamic equation (Burgers).

e This may be considered as the simplest example of fluctuating

hydrodynamics for the case of single conserved quantity.



3 important cases
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Stationary two point correlation
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The solid curve is the scaling limit g’ (y).

For ASEP corresponds to 2-pt correlation (n;(t)no(0)).
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Short summary of Part 1

ASEP is a microscopic model with Markov dynamics and has

a single conserved quantity.
Hydrodynamics is well-known (Burgers equation).
Fluctuations can be studied exactly (integrable probability).

Adding noise to hydrodynamics, one gets noisy Burgers
equation (~ KPZ equation).

This can also be studied exactly with the same universal
behaviors with ASEP.
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2. Nonlinear fluctuating hydrodynamics

Fermi-Pasta-Ulam chain

2
H=)_ <p2‘7 + V(x4 — fL’j))
J
with Vi(x) = 1:32 + B + gt
2 3 4
e Microscopic model with Hamiltonian dynamics.

e FPU tried to see thermalization numerically, but recurrence
seemed to occur. (— Chaos, Soliton, ...)

e It is still difficult to study large time behaviors of the model,
but some aspects may be understood by using a connection to
KPZ through nonlinear fluctuating hydrodynamics.
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Nonlinear fluctuating hydrodynamics
A conjectural theory for 1D multi-component systems which

predicts that the distributions and correlations of "normal modes”
are described by the ones of the single-component KPZ equation.

For an anharmonic chain, there are three conserved fields.

P;

5 T Vi(r;)

rj = Lj41 — L5y Pjy €5 =
Equations of motion
j = Pj+1 — Pj
ﬁj — V,(’l“j) — V’(rj_l)
éj = pj+1V'(rj) — p;V'(rj-1)
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This can be summarized as the continuity equation

d - Ny .
GO +I(G+1,t) —J(5t) =0
where
G = (rjapja ej) J = (_pja _V,(rj—l)a _pjvl('rj—l))
Hydrodynamics: Euler equation (like Burgers for ASEP)

s, Ly s, > _§
8tg (’9:13]_

For taking into account the fluctuations effectively, we add noise
(1) and a diffusion term to get a SPDE

8“‘+ 8(”+8 DG+ Bif) =0
8tg 8%3 x/gd n) —

Remark: This "derivation” is heuristic, not at all rigorous.
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Expanding around equilibrium up to the 2nd order, we find

0, 7 0,
—u -
ot ox
Diagonalizing A as RAR™! = diag(cy, cg, c_1) and setting

é = R@ (normal modes), we get

1
(Aii + _ (@, Hi) + 8, Dii + Bif) = 0

o o 1, = . N
acba + £(Ca¢a + 5<¢, G%®) 4+ 0r(Dp)a + (B1)a) =0

This is multi-component KPZ eq (well-definedness by
). Assuming main contributions from the
nonlinear term come from diagonal terms, the equation for a

component is noisy-Burgers equation.

—=> Correlations and distributions for the normal modes are
expected to be described by the ones of the KPZ equation.
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Simulations and problem
For an anharmonic chain, e = £c¢, cg = 0, corresponding to

two sound modes and one heat mode. The correlation of each
sound mode seems to be given by the stationary KPZ 2pt function.

MD simulations for shoulder potential ( )

V(w)=oo(0<w<%),1(%<ac<1), O(x > 1)
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Problem 1: Can we prove them (or Show them analytically) ?
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Universal KPZ distributions?

e By considering the integrated current for

normal modes, one can also observe Fj.

e For step type initial condition in which the
macro paramters (temperature, pressure)

change at the origin, one observes GUE TW.
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3. NLFHD for stochastic models

NLFHD theory applies to more general multi-component

systems with more than one conserved quantities.
Stochastic systems should be easier to treat.

There are various interesting problems from points of view of

interacting particle systems and integrable probability.

The case where the "sound modes’ are linear are easier and
there have been several results (fractional diffusion for
momentum exchange model by etc). The case of

KPZ fluctuations have been less studied.
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Two species ASEP

AHR model ( )

B 1 a |
N N PN ¥\ P e: |+ particle
- —@-@-O-@0—@- O O—+——0O0-0O00 - o — partide

e The model has two conserved quantities (numbers of +
particles). NLFHD can be applied.

e We will focus on the case where g = 0 and o« + 3 = 1, for

which the stationary measure is factorized. (Mostly

a == % below.)

e T[he integrability was shown by

There are multi-species ASEP with Uy (sly,) symmetry but
AHR is different.
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Monte Carlo simulation for AHR model

For AHR model, stationary KPZ 2pt function had been observed
in MC simulations ( ).

For step i.c. GUE TW was observed ( )

Problem 2: Can we prove these?
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p — 1 Step i.c.

Infinite 4+ particles (®) with density p on the left and infinite —
particles (o) packed on the right.

time t
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Hydrodynamics

Macroscopic densities of £ particles, u(t,x) = (p+, p—), satisfy

Ou(t,z) Oj(u(t,z))
ot + ox -

where j4 (u) represent macroscopic current of &+ particle,

0

j+(u) =pr(1 —py — p-) +2p4p-
j-(u) == —py —p-)p— — 2p4p-

This set of coupled equations can be solved.

23



Normal modes for p — 1 step i.c.

The NLFHD predicts
tlim Po,o[s—(n,m, p,t) < s_]| = Fa(s_)
—00

lim Poo oo[s4(n,m,p,t) < s1] = Fa(sy)

t— o0

where n, m are the numbers of =+ particles which passed the

origin up to time t and scaled variables s+ (n, m, p,t) are given
by

(1‘|‘P)'n—(3—p)-m+(1_p)(1_¥)t
(3/16)1/3(1 — p)(3 — p)2/3(1 + p)2/3t1/3

3—(’"/9 m, p, t) —

—2(2—p)-n+2p-m+2(2—p)(1—p)pt
3(1— p)3/2\/p(2 — p)t'/?

S—I—(na m, p, t) —
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4. Exact confirmation of NLFHD for p-1 AHR model

The AHR (with g = 0) is exactly solvable.

e By using Bethe ansatz, one can find eigenfunctions for the

generator of the AHR model.

e When a + 3 = 1, the stationary measure is Bernoulli. We

focus on this case (we will set « = 8 = 1/2 later).
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Transition probability (Green’s function)

Let :13(0) (0) be initial positions of 4+ and — ticl d x;, y;

i Y P particles and x;, y;
final positions at time t. Using the Bethe ansatz eigenfunctions,
for certain special cases, one can write down the Green's function
(probability of x;, y; at t given a:Z(O), y§0) at t = 0) as a multiple
integral.
Assume wgo) < e < :13§3) < ygo) < e < y](\(/_),).
The Green's function for the case (the order has not changed)

r<...<zxn<y1<...<Ynm,
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is given by, with A = Bz,fil(zi_l — 1)+ az,f:\il(wi_l — 1),

G({x; — 2"} {ue — v} 1)
i
i 27i P 27i
—1\’ 2% 1
X Z sign () H ( 1) zf_;’zj v

TESN

M—Ek
<Y s1gn<p>n( ) el
PES M Wor

where all contour integrals are around the origin.
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+— — —-+ boundary conditions

For the ordering (complete exchange of 4+ and — particles)

NmM<...<yyuy<r1<...<aTn,

G({zj — w“”}, {yr —y .V}, t)

- I G e T

271'1 et =1 ,Bzﬁ7 + awy,
—1 7 R A |
X Z sign () H — zﬁ;zj 3
TESN
M—k
wg — 1 _ y(o)—l
< Y sign(p) H ( ) e
PES M
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Multiple-integral formula for current distribution

A step i.c. in which there are IN + particles on the left with
density p and M — particles are packed on the right.

When o« + 3 = 1, for the currents N (%) at the origin,

PNM(N_|_(t) = N N_(t) = M) NI f H dzg H d’LUk eAt

27 271
PNl (zi—z)? ] (o —we)?
1<i<j<N 1<k<I<M
H<zg ~ )N = (1= p)z) H e~ M T 11 @z + Bu )
71=1k=1

with A =3 B(1/2z; — 1) + gty o(1/wg — 1),
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NLFHD prediction for finite particles case

e The original NLFHD is formulated for infinite systems.
Poo,oo[N+(t) =n,N_(t) = m] ~ F(,;'(S-I-)FZI(S—)

e QOur formula is for finite number of particles. We can

formulate a generalization of NLFHD prediction for finite case.

Conjecture (Theorem ( )
tll>r£10 PNy [N+ (t) = N,N_(t) = M| = Fg(s4+)Fa(s-)

This may look very similar to the original conjecture but is in

fact a very nontrivial generalization. (Note the difference of
P,[N,(t) = N,N_(t) = M] ast — o0.)
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Confirmation of the conjecture by simulation

PN,M[Il+(t) = N, Il-(t) = M]

cooocococoooo~
—NWEAULVOANJIO\O

30

40
- particle number M
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Analytic confirmation by the multiple integral formula

In the multiple integral formula, we take the simple pole at
z; =1/(1 — p) and find
Pn [Ny () = N,N_(t) = M| =1+ J X I

where

Ao, M

e t H1§k<l§M(wl — ’wk)z
Ly M'/H 273 [Tnty (wi — DM [Tl (3(1 + wi))N
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- (520) o | Lo

H1§i<j§N—1(zi — 2j)? H (1 — (1 — P)/ZJ)

% eAN—l,ot

[ (2 — DNV TG ( (1 + z;))M
dwy, Ao, MtH1<k<l<M(wl ’wk)2
f2 = M'/H Hk (wp — 1)M
o+ z)M (G + )M
Hk LTS (2 +'wk)( +wk))

We can study asymptotics of the integrals to show
Il,Iz ~ FQ(S_), J ~ F(;'(S_|_) — 1.

The first analytic confirmation of the KPZ prediction of NLFHD!
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A key observation for the proof

By a standard procedure to rewrite a mutliple integral into a

Fredholm determinant,
I, = det(1 — sz)ﬁz(N)

where the kernel is given by, with p’ = 1 — p,

1 — 2z

dz z—l—p’( z )mnl:[ll—l—zjz 2t/2

K., (x =
ZJ( 7y) %12772 Zm_l_]_

7{ dw wY (1 — w) H we
X , .
0,—p' {1/}, 2mtw + p'\ w = 1+ Zw
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This still depends on {z;}'s but can be written as a rank-one

perturbation, inside the mutliple integral over {z;}'s.

_n—l P

K., (i, ;) = Ki(zi,z5) — | Y]] (24 — 1) Ap(:) | B(=y)

p=1q=1

K (x,vy) is the kernel which is obtained by setting all of z;s to 1
in K,.(z,y) and Aj(x) and B(y) are of the form,

Aj(@) = § ofesn) () 1;

B()—?{ dw( )( w )"’_1 1
4= 0, p—12 RYW ]_—|—’UJ ].—I—’UJ

One can show that the contribution from the perturbation part is

small for large t. One can also estimate how the error decays.
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Summary

Nonlinear fluctuating hydrodynamics is a conjectural physical
theory which can predict correlation and fluctuations of
multi-component systems, including Hamiltonian dynamics.

The conjectures have been tested in Monte Carlo simulations

with reasonably good agreement.

Theoretical and mathematical understanding is unsatisfactory.

The conjectures apply also to stochastic models, which seems

more tractable.

We have given a confirmation of the conjecture for a two
species exclusion process by exact calculations using
techniques of integrable probability.
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Open problems

Stochastic interacting particle systems
e Establishing hydrodynamics for multi-component systems.

e Deriving multi-component KPZ equations for

multi-component systems.
e Establishing universal behaviors,....
Integrable probability

e Other initial conditions, boundary conditions, quantities for
AHR model

e More general parameters for AHR model

e Other multi-component models, ...
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