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Main goals

• Obtain homogenization results for Hamilton-Jacobi equations{
uεt + H(Duε)− V

(
x
ε

)
= 0 in Rn × (0,∞),

uε(x , 0) = g(x) on Rn.
(1)

In practice, ε > 0 is a fixed length scale, which is quite small.

• Qualitative properties, representation formulas of the effective
Hamiltonian in homogenization theory (in both periodic and general
stationary ergodic settings).
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Homogenization theory aims at studying macroscopic behavior of PDEs
which typically have high oscillations in the space (or time-space)
variables. Basic problems include

(I) well-posedness: obtaining the existence of limiting effective equations
as ε→ 0;

(II) understanding finer properties of the limiting process and the effective
equation.

PDEs are usually set in self-averaging (periodic, almost periodic or
random) environments. In the periodic setting, (I) is quite well established
for some nonlinear PDEs (e.g., first-order and second-order HJ equations,
fully nonlinear elliptic equations). Not much in the random setting
because of the lack of compactness.

Very little is known about (II) because of the nonlinear nature in these
equations.
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Periodic homogenization of Hamilton-Jacobi equations

For each ε > 0, let uε ∈ C (Rn × [0,∞)) be the viscosity solution to{
uεt + H(Duε)− V

(
x
ε

)
= 0 in Rn × (0,∞),

uε(x , 0) = g(x) on Rn.

Here the Hamiltonian is of separable form with H ∈ C (Rn), which is
coercive, and V ∈ C (Rn), which is Zn-periodic.

It was known (Lions-Papanicolaou-Varadhan, 1987), that uε, as ε→ 0,
converges locally uniformly to u, the solution of the effective equation,{

ut + H(Du) = 0 in Rn × (0,∞),

u(x , 0) = g(x) on Rn.
(2)

H : Rn → R is called the effective Hamiltonian.
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Heuristic derivation

Search for an ansatz for u, and a correct one is

uε(x , t) = u(x , t) + εv(
x

ε
) + · · · = u(x , t) + εv(y) + · · · ,

where x is the macro variable, and y = x
ε is the micro variable.

Plug this into the PDE to get

ut(x , t) + H(Du(x , t) + Dv(y))− V (y) = 0.

Assume now that x and y are unrelated. Fix (x , t) and think of the above
PDE as an equation in y . Let p = Du(x , t) ∈ Rn, and c = −ut(x , t) ∈ R,

H(p + Dv(y))− V (y) = c .
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Effective Hamiltonian H

For any p ∈ Rn, there exists a UNIQUE number H(p) such that

H(p + Dv)− V (y) = H(p) in Rn, (3)

has a periodic solution (corrector) v = v(y).

Evans: perturbed test function method.

However, in general, deep properties of H are not known so much,
especially in the nonconvex setting.

In the stationary ergodic setting, we don’t have compactness, and (3)
might not have sublinear solutions.
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Stationary ergodic setting

Let (Ω,F ,P) be a probability space. Suppose that {τy}y∈Rn is a
measure-preserving translation group action of Rn on Ω satisfying

(1) (Semi-group property)

τx ◦ τy = τx+y for all x , y ∈ Rn.

(2) (Ergodicity) For any E ∈ F ,

τx(E ) = E for all x ∈ Rn ⇒ P(E ) = 0 or P(E ) = 1.

The potential V (x , ω) : Rn × Ω→ R is stationary, bounded and uniformly
continuous. More precisely, V (x + y , ω) = V (x , τyω) for all x , y ∈ Rn and
ω ∈ Ω, ess supΩ |V (0, ω)| < +∞ and

|V (x , ω)− V (y , ω)| ≤ c(|x − y |) for all x , y ∈ Rn and ω ∈ Ω,

for some function c : [0,∞)→ [0,∞) satisfying limr→0 c(r) = 0.
7 / 20



Nonexistence of sublinear correctors

An 1-D example: H(p)− V (y) = |p| − (2− cos y − cos(
√

2y)) by
Lions-Souganidis. At p = 0, we have H(0) = 0, and corrector problem is

|v ′(y)| = V (y) = 2− cos y − cos(
√

2y), y ∈ R.

Note: V ≥ 0, and V (y) = 0 iff y = 0. Geometrically, the graph of v
cannot have corners from below at points y 6= 0. So, there exists y0 ∈ R
such that v ′(y) doesn’t change sign for y > y0. Let’s consider the case
v ′(y) = 2− cos y − cos(

√
2y) for y > y0. Then,

v(y)

|y |
≥ 1

|y |

(∫ y

y0

V (s) ds − |v(y0)|
)
≥ 2− C

|y |
,

which means that v is not sublinear.

Homogenization in the almost periodic setting: Ishii.
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Stochastic homogenization of first-order HJ eqns

- Convex/quasiconvex case: Souganidis (1999) and Rezakhanlou-Tarver
(2000). Davini-Siconolfi (2009), Armstrong-Souganidis (2013).

• Major open problem. Stochastic homogenization of nonconvex cases?
- Specific n-D case: H(p) = (|p|2 − 1)2 (Armstrong -T.-Yu (2013)).
- One dimension: Armstrong -T.-Yu (2014) for general separable case
H(p)− V (x), Gao (2015) for general non-separable case.
- Counterexample: If H has strict saddle point, then there exists V such
that homogenization does not hold (Ziliotto (2016), Feldman-Souganidis
(2016)).
- In i.i.d setting: Armstrong-Cardaliaguet (2015), Feldman-Souganidis
(2016) for k-positively homogeneous H.
- Some general n-D cases: Qian-T.-Yu.
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Some ideas in the convex case 1

Replace the corrector problem by the metric problem: For z ∈ Rn fixed,{
H(Dv(x))− V (x , ω) = µ in Rn \ {z},
v(z) = 0.

Here, µ ∈ R is a parameter. Let mµ(x , z) be the maximal solution to the
above, that is,

mµ(x , z , ω) = sup{v(x) : v is a subsolution to the above}.

Then, mµ has the subadditive property

mµ(x , z , ω) ≤ mµ(x , y , ω) + mµ(y , z , ω).

By the subadditive ergodic theorem and some further deductions

lim
t→∞

1

t
mµ(tx , 0, ω) = mµ(x).
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Some ideas in the convex case 2

How do we relate this large time average to homogenization? For ε > 0,
let mε

µ(x , ω) = εmµ( xε , 0, ω). Then, mε
µ solves{

H(Dmε
µ)− V ( xε , ω) = µ in Rn \ {0},

mε
µ(0, ω) = 0.

We already got mε
µ(x , ω)→ mµ(x), and we should have{

H(Dmµ) = µ in Rn \ {0},
mµ(0) = 0.

And this helps to identify H (Armstrong-Souganidis, Armstrong-T.)

H(p) = inf{µ : mµ(y) ≥ p · y for all y ∈ Rn}.
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Some ideas in the convex case 3

Representation formula of mµ, which is related to first passage percolation.

mµ(x , y , ω) = inf
{∫ t

0
(L(γ̇(s)) + V (γ(s), ω) + µ) ds :

t > 0, γ(0) = y , γ(t) = x
}
.

See [T., Chapter 2] for more. Shapes of {mµ}µ and identification of H.
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New results - Simplest case

r1
ψ1

ψ2

ψ

Let H(p) = ψ(|p|), H1(p) = ψ1(|p|), and H2(p) = ψ2(|p|). Let H,H1,H2

be the effective Hamiltonians of H − V , H1 − V , H2 − V , respectively.

Theorem (Qian - T. - Yu)

Assume the above, and V ∈ C (Tn) with minV = 0. Then

H = max
{
H1,H2, 0

}
.
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Important consequences

• H is even as H1,H2 are even.

• In case that minV = 0 and maxV ≥ ψ(0), then H2 ≤ 0. We then get

H = max
{
H1, 0

}
,

and thus, H is quasiconvex. Strong V makes H better.

• In case that minV = 0 and maxV ≥ ψ(0). Let K : Rn → R such that
K (p) = H(p) = ψ(|p|) for |p| ≥ 1, and 0 ≤ K (p) ≤ H(p) for |p| ≤ 1. Let
K be the effective Hamiltonian corresponding to K − V . Then we always
have

K = H.
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New results - A bit more general case

r1 2

ϕ3ϕ2

ϕ1

ϕ

Theorem (Qian-T.-Yu)

Let H(p) = ϕ(|p|) and V ∈ C (Tn). Then,

H = max
{

0,H1,min
{
H2,H3, ϕ(1)−maxV

}}
.
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New results - Most general case

r

ϕ

s1 s2 s2m

Theorem (Qian-T.-Yu)

Let H(p) = ϕ(|p|). Then we have a representation formula

H = max min max min . . .

Related results: Armstrong-T.-Yu (2013, 2014), Gao (2015, 2018).
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Application: Random homogenization - New results

Theorem (Qian-T.-Yu)

Stochastic homogenization holds for all H mentioned in Theorems 1–3.
Moreover, representation formulas also hold true.

Key philosophy. Knowledge on H (in periodic setting) helps to recover
same formulas in random setting, and overcome the lack of compactness.

Counterexamples of Ziliotto (2016), Feldman-Souganidis (2016) require V
to have small oscillation to see the local structure of the saddle points.
When the oscillation of V is large enough, we do not see such local
structure and hence we still have the averaging effect in certain cases.

More or less, the whole set of new developments gives rather clear answers
to the open question in the general stationary ergodic setting.
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Some ideas in the proof of Theorem 1

• It is clear that H ≥ H i as H ≥ Hi for i = 1, 2. Also, H ≥ 0 and
H(p) = 0 for |p| = 1. Therefore, H ≥ max{H1,H2, 0}.

• Pick p ∈ Rn such that H1(p) ≥ max{H2(p), 0}. We show

H1(p) ≥ H(p).

As H1 is even, H1(−p) = H1(p). Let v(y ,−p) be a solution to

H1(−p + Dv(y ,−p))− V (y) = H1(−p) = H1(p) in Tn.

Let w(y) = −v(y ,−p). If q ∈ D+w(y), then −q ∈ D−v(y ,−p) and

0 ≤ H1(p) = H1(−p− q)−V (y) = H1(p + q)−V (y) = H(p + q)−V (y).

Thus, w is a subsolution, and the conclusion follows.
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Some ideas in the proof of Theorem 1

• Pick p ∈ Rn such that H2(p) ≥ max{H1(p), 0}. This is similar to the
above, but we just need to choose w(y) = v(y , p).

• Gluing step. Assume max{H1(p),H2(p)} < 0. We show H(p) = 0. For
σ ∈ [0, 1], let H

σ
,H

σ
i be effective Hamiltonians corresponding to

H(p)− σV (y), Hi (p)− σV (y), respectively. It is clear that

0 ≤ H = H
1 ≤ H

σ
for all σ ∈ [0, 1].

WLOG, assume |p| > 1. As H1(p) = H
0
1(p) > 0 and H1(p) = H

1
1(p) < 0,

we can find s ∈ (0, 1) such that H
s
1(p) = 0. It is clear that

H
s
2(p) ≤ H2(p) < 0 there. Thus,

max{Hs
1(p),H

s
2(p)} = 0⇒ H

s
(p) = 0⇒ H(p) = 0.
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Conclusion

• Still many important questions to be studied in qualitative
homogenization theory.

• Quantitative results: Optimal rates of convergence? Largely open so
far in the random setting.
In the periodic setting: Mitake-T.-Yu.

THANK YOU
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