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1 Introduction
• Cubic NLS with 3rd order dispersion.

∂tu = −i(i∂3
x + β∂2

x)u− i|u|2u, (1)

t ∈ R, x ∈ T = R/2πZ,

u(0, x) = u0(x), x ∈ T, (2)

where u : R×T → C and β is the dispersion

constant.

Assume throughout this talk that

2β/3 ̸∈ Z\{0} (NR)



• Conservation Laws

Mass Conservation: ∥u(t)∥L2 = ∥u0∥L2 ,

Energy Conservation:

E(u(t)) := Im

∫
T

∂2
xu ∂xu dx

+
β

2
∥∂xu∥2L2 +

1

3
∥u∥4L4 = E(u0).

Remark 1 The energy E is NOT positive

definite even if the size of the mass is small.

This is a sharp contrast to the cubic NLS. We



can not expect the Gibbs measure for (1).

• Gaussian Measures

Gaussian measure µs, s ∈ R with covariance

operator 2(I −∆)−s is formally defined as

dµs =
∏
k∈Z

Z−1
s,ke

− 1
2 ⟨k⟩

2s(a2
k+b2k) dakdbk, (3)

⟨k⟩ := (1 + |k|2)1/2.

dak, dbk ; Lebesgue measures on R,

Zs,k ; normalization constants.



Let û(k) denote the k-th Fourier coefficient of

u and

XN =
{
v =

∑
|k|≤N

(ak + ibk)
eikx√
2π

∣∣∣
ak, bk ∈ R

}
,

PN : L2(T) → XN , orthogonal projection.

Remark 2 Restriction µs,N of µs to XN is

the 2N + 1 dimensional Gaussian distribution



and µs can be defined as

µs := lim
N→∞

µs,N ,

which is a measure on the space

X =
∩

l<s−1/2

Hs(T) ⊂ Hs−1/2(T).

Another way to define Gaussian measures is as

follows.

(Ω,M, P ) ; probability space,



{gn(ω)}∞n=−∞ ; sequence of independent

standard complex Gaussian variables on

(Ω,M, P ).

Define random variable u as

ω 7→ u(x;ω) =
∑
k∈Z

gk(ω)

⟨k⟩s
eikx√
2π

. (4)

Gaussian measure µs is the distribution that u

obeys.

Remark 3 How does the infinite product of



(3) or the series of (4) make sense? In other

words, in which function space does the

Gaussian measure live? This is equivalent to

the following question: For what σ does u

given by (4) belong to Hσ(T)? In fact,

σ < s− 1

2
=⇒ u ∈ Hσ(T) a.s.

E∥u∥2Hσ =

∫
Ω

∑
k∈Z

⟨k⟩2(σ−s)|û(k;ω)|2 dPω



=
∑
k∈Z

⟨k⟩2(σ−s)E|gk|2

=
∑
k∈Z

⟨k⟩2(σ−s) < ∞ if σ − s < −1/2.

Furthremore, for the d-dimensional case, the

support of µs is Hσ(Td) with σ < s− d/2.

Example 1 When s = 1 , µ1 is called the

“Wiener” measure.



• Invariant Gibbs Measure

i∂tu =− ∂2
xu+ |u|2u, (5)

t ∈ R, x ∈ T2,

u(0, x) = u0(x), x ∈ T2. (6)

dµG :=Z−1e−
1
4∥u∥

4
L4 dµ1

= lim
N→∞

{
Z−1
N e−

1
4∥PNu∥4

L4



×
∏

|k|≤N

e−
1
2 ⟨k⟩

2(a2
k+b2k) dakdbk

}
,

ak = Re û(k), bk = Im û(k) ∈ R2,

u ∈ suppµG = ∩s<0H
s(T) ⊂ Hσ(T), σ < 0.

[B1] Bourgain, 1996, cubic NLS on T2

LWP in X ⊃ suppµG =⇒ a.s. GWP in X

and ∃ invariant Gibbs measure,

where X is a function space ⊃ L2(T).



[B2] Bourgain, 1997, KdV and mKdV on T,

∃ invariant Gibbs measure in X ⊃ H1/2(T).

Before Bourgain’s work in 1996, it was known

that one of either a.s. GWP in X or ∃ Gibbs

measure yields another. But Bourgain proved

the both assertions simultaneously by using

LWP in X. Furthermore, as a result of his

proof, growth rate of the X norm of solutions

is O(
√
log t) as t → ∞.



Remark 4 Gibbs measure seems to be natural

and important. But it lives on rough function

spaces. This excludes an interesting class of

solutions, for example, the measure of the set

of all finite energy solutions is zero.

Furthermore, not all Hamiltonian systems

have the Gibbs measure like NLS (1) with

third order dispersion.

• Quasi-Invariance of Gaussian Measures



Quasi-invariance might be able to replace

invariance. If it would be the case,

quasi-invariant measures would be useful to

study a class of solutions which invariant

Gibbs measures neglect.

Aim: Prove the quasi-invariance of the

Gaussian measure with the explicit formula of

the Radon-Nikodym derivative. Namely, prove

the Gaussian measure is mutually absolutely

continuous with the Gaussian measure



transported by (1). If it is the case, what is

the Radon-Nikodym derivative like?

Definition 1 (X,M, µ) ; measure space,

Mapping T : X → X is said to be measurable

if T−1A ∈ M for A ∈ M. For a measure µ

on X, the pushforward measure T∗µ is defined

as µ(T−1A) for A ∈ M.

(i) µ is said to be invariant under T if

T∗µ(A) = µ(A) for A ∈ M.

(ii) µ is said to be quasi-invariant under T if



T∗µ and µ are equivalent, i.e., mutually

absolutely continuous with respect to each

other.

Related Results to Our Problem

Quasi-Invariance, Gaussian Measure and

Formula of Radon-Nikodym Derivative are

referred to as QI, GM and FRND, respectively.

[Ku] H.-H. Kuo (1971), QI of GM with FRND

for general nonlinear maps which have the



form I +H, where H is of trace class.

[R] Ramer (1974), QI of GM with FRND for

general nonlinear maps which have the form

I +H, where H and DH are

Hilbert-Schdmidt.

[Cr] Cruzeiro (1983), QI of GM with FRND

under flows of ODEs driven by vector fields.

[Tz] Tzvetkov (2015), QI of GM for 1D

nonlinear Hamiltonian PDEs.

(4th order NLS) Oh and Tzvetkov (2017),



Oh, Sosoe and Tzvetkov (2018),

(Semilinear wave equations) Sosoe, Trenberth

and X. Xiao (2019),

(3rd order NLS) Oh, Tsutsumi and Tzvetkov

(2019), QI of GM for α > 3/4

[BT] Burq and Thomann (2020),

arXiv:2012.13571v1,

almost sure scattering for 1D NLS by using

quasi-invariance of Gaussian measure.

• Main Results



Theorem 1 (Debussche-Y.T, 2021) (NR),

α > 1/2, R > 0 =⇒ Gaussian measure

χ{∥u0∥L2(T)≤R}µα(du0) with L2 cut-off is

quasi-invariant under the flow generated by

the third-order cubic NLS (1).

We next consider the finite dimensional

approximation to (1). Let uN be a solution of

the following Cauchy problem:

∂tuN =− i(i∂3
x + β∂2

x)uN (7)



−iPN

(
|uN |2uN

)
, t ∈ R, x ∈ T,

uN (0, x) =PNu0(x), x ∈ T. (8)

Put (·, ·) = Re (·, ·)L2(T) and regard L2(T) as

a real Hilbert space. Let D = (−∂2
x)

1/2. Set

fN (t, u0) =χ{∥u0∥L2(T)≤R} (9)

× exp
(
−
∫ t

0

(
i(|uN |2uN )(−r, u0),

D2αuN (−r, u0)
)
dr
)
,



f(t, u0) =χ{∥u0∥L2(T)≤R} (10)

× exp
(
−
∫ t

0

(
i(|u|2u)(−r, u0),

D2αu(−r, u0)
)
dr
)
.

Theorem 2 (Debussche-Y.T, 2021) R > 0,

α > 1/2, 0 < s < α− 1/2, u0 ∈ Hs(T).

{fN (t, u0)} is uniformly bounded in N ∈ N in

Lp(dµα) for some p > 1. =⇒ f(t, u0) is in

Lp(dµα) and is the Radon-Nikodym derivative



at time t of the L2 cut-off Gaussian measure

transported by (1).

• Sketch of Proofs for Thoerems 1 and 2

We now consider the Liouville equation with

respect to the Radon-Nikodym derivative

associated with the Gaussian measure

transported by the finite dimensional

approximation (7).

νN,α,R := χ{∥uN∥2≤R}µα,

φ; C1 cylinder function with compact



support in the open ball of radius R,

gN (t, u0,N ); Radon-Nikodym derivative of

νN,α,R transported by (7),

d

dt

∫
φ(u0,N )gN (t, u0,N )dνN,α,R(u0,N )

∣∣
t=t0

=

∫
φ(u0,N )

([
i
(
i∂3

x + β∂2
x

)
u0,N (11)

+ PN

(
i|u0,N |2u0,N

)]
,

∇u0,N
gN (t0, u0,N )

)
dνN,α,R(u0,N )



−
∫

φ(u0,N )
(
D2αu0,N , PN

(
i|u0,N |2u0,N

))
× gN (t0, u0,N ) dνN,α,R(u0,N ), t0 > 0

(12)

where ∇u0,N is gradient with respect to u0,N .

Here, we have used the following cancellation:

Tr
[
divu0,N

(
i(i∂3

x + β∂2
x)u0,N

+ iPN

(
|u0,N |2u0,N

))]
=Tr

[
divu0,NJ∇u0,NH(u0,N )

]
= 0.



[dBBF] de Bouard, Debussche and Fukuizumi,

SIAM J. Math. Anal., 56 (2018), on the last

line of page 5900.

Since φ is an arbitrary C1 cylinder function,

(12) yields

d

dt
gN (t+ t0, uN (t, u0,N ))

∣∣
t=0

=
({

∂3
xu0,N

+ PN

(
|u0,N |2u0,N

)}
,∇u0,N

gN (t0, u0,N )
)

−
(
D2αu0,N , PN

(
|u0,N |2u0,N

))
gN (t0, u0,N ).



Let t0 > 0 be fixed. We write gN (t, u0,N )

(0 ≤ t ≤ t0) for gN (t+ t0, uN (t, u0,N ))

(−t0 ≤ t ≤ 0) by changing the variables

t+ t0 7→ t.　The above equation of

gN (t0, u0,N ) with gN (0, ·) = 1 implies the

explicit formula of the density: For t ∈ [0, t0],

gN (t, u0,N ) = exp
{
−
∫ t

0

(
D2αuN (−r, u0,N ),

i
(
|uN |2uN

)
(−r, u0,N )

)
dr
}

=fN (t, u0,N ). (13)



This leads to Theorem 2.

Remark 5 The formula (13) seems to be

natural, because we have the L2 energy

estimate as follows.

1

2
∥Dαu(t)∥22 −

1

2
∥Dαu0∥22

= −
∫ t

0

(
Dα(i|u|2u)(r), Dαu(r)

)
dr.

We note that the first and the second terms

on the left side correspond to the weights of



the Gaussian measures at time t and at 0 with

respect to the Lebesgue measure, respectively

(see (3) on page 4).

All what we have to do for the proof of

Theorem 1 is to bound the time integral in

(13) by the Hα−1/2−ε norm of the solution u,

where ε is a small positive constan. This can

be done by the dispersive PDE smoothing

effect for equation (1). In fact,

time average =⇒ spatial regularity.



Thus, Theorem 2 and the following lemma

yield Theorem 1.

For r ≥ 1 and B > 0, we set

F (ω) := χ{(∑
n∈Z |gn(ω)|2/⟨n⟩2α

)1/2
<B

}
× exp

(∥∥∑
n∈Z

gn(ω)

⟨n⟩α
einx

∥∥r
Bs

p(T)

)
,

where {gn} is a sequence of independent

equidistributed complex centered Gaussian

random variables.



Lemma 1 (Debussche-Y.T, 2021) Let

α > 0, p ≥ 2 and s ≥ 0 be such that

α− 1 + 1/p > s. Assume that B > 0 for

r < 4αp
p−2+2ps and B is sufficiently small for

r = 4αp
p−2+2ps . Then, F (ω) ∈ L1(dω).

The proof of Lemma 1 follows from

Bourgain’s argument (1996).

Debussche and Tsutsumi, J. Funct. Anal.,

281 no.3 (2021).



Thank you for your attention!

ご清聴ありがとうございました．


