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[ Heat equation with a singular potential ]

u = Au+ V(x, t)u, x e RV \ {£(b)}.

where u = u(x,t), N > 2.
The potentisl V is assumed to be singular at £(t): V(x,t) — oo as x — &(t).
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[ Heat equation with a singular potential ]

u=Au+ V(x, t)u,  xeRV\ {£)}

where N > 2.

Topics:
* Existence and non-existence of positive solutions

* Optimal class of initial values for solvability
* Lower and upper estimates
* Asymptotic profile around singularities

* Classification of solutions

* Critical values of parameters



Plan of my talk:

A

Ix[?

PDE and probabilistic approach by Baras-Goldstein (1984)

I: Fixed singularity V(x,t) =

Critical value A = Ac(IV) for existence
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PDE approach by Chern-Hwang-Takahashi-Y (2021)
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Extension of Baras-Goldstein
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PDE approach by Takahashi-Y

Classification of singularities of solutions
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Probabilistic approach by Okada-Y

Critical value = pc(H)  (H: the Hurst exponent)



[ Part I: Fixed singularity ]
... PDE and probabilistic approach by Baras-Goldstein (1984)

Critical value A = Ac(N) for existence
Elliptic equation with the Hardy potential:
A N
AU—FWU:O, x € R™\ {0}.
(Many studies have been done. )

Radial solutions

Assume N > 2. Substituting u = r=%, r := |x

, we have

N—-1
Uy +

A e
u,+ﬁu={a2—(N—2)a+)\}r 2,

[e3

Hence u = r~% is a solution if

o —(N-2)a+X=0.



. (N —2)? . .
* Subcritical case: If A < Ac = o the quadratic equation

o® —(N—-2)a+X=0.

has two real roots:

D<o <

<ar <N -2,

and there are two types of positive radial singular solutions:
u=C|x|~™ (weak singularity)
u= C|x|~* (strong singularity)

* Supercritical case: If

Ac

|x|?

then there are no positive radial solutions for

V(x) >

Au+ V(x)u=0, x e R\ {0}.



Heat equation with the Hardy potential

ur = Au+ x e R\ {0}.

X

N —2)?

Baras-Goldstein (1984) showed that A\c := ( 2 > 0 is critical.

Theorem (Critical value for existence)

(i) If 0 < X < A, there exists a positive global solution.

(ii) If A > Ac, there exists no positive solution.

... by Energy method, Feynman-Kac formula
Many other works on
> Existence of solutions.

» Optimal class of initial values.



Question

What if the singular point £(t) moves in time?

Heat equation with a dynamic singular potential
= Au+ V(x, t)u, x e RM\ {£(1)},

where V' has a singularity at £(t).

A
T =g

I
=

ex. V(x,t) ~

R N




Interaction between V/(x, t) and u(x, t) is more delicate if £(t) moves.

= Au+ V(x, t)u(x,t)
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[ Part II: Moving singularity ]
... PDE approach by Chern-Hwang-Takahashi-Y (2021)

Extension of Baras-Goldstein

Initial value problem
{ut =Au+ V(x,t)u, xeRY\{1)}, te(0,T],
(IVP)
u(x,0) = wo(x), x e RM\ {£(0)}.

Basic assumptions:

(A1) V(x,t) is nonnegative and continuous in (x, t) € RN\ {&(t)} x [0, c0).
V(x,t) is singular at £(t) (i.e., V(x,t) = oo as x — &(t)).
V(x,t) is bounded for |x — &(t)| > 1.

(A2) £(t) is y-Hdlder continuous in t > 0 with v > 1/2.

(A3) w(x) € C(RY\ {£(0)}), wo(x) > 0, O for x # £(0).
uo(x) is bounded for |x — £(0)| > 1.



Def. Minimal solution

Define
Vi(x, t) := min{V(x, t), n}.

If ugp € LI(RN), then for each n € N, there exists a unique bounded solution of
the following regular problem:

u(x, t) = Au(x, t) + Va(x, t)u, xeR", t>0,

u(x,0) = uo(x), x e R".

We denote the unique solution by u,(x, t). If
u(x,t) ;= lim un(x,t), x # &(t),
n— oo

exists, then the limiting function u(x, t) satisfies (IVP). We call such u(x, t) a
minimal solution (or proper solution). For the existence of a minimal solution,

it suffices to find an upper bound.



ur=Au+ V(x,t)u, x#E(t), te(0,T]
(IVP)
{u(x, 0) = wo(x), x # £(0).

e Theorem (Existence of a solution)

Assume that V satisfies

A
Ix —&(t)1*
with some A € (0, Ac) and R > 0. If

0< V(x,t) < [x —&(t)| < R, t€]0,T]

0<w(x) < Glx—£0)7",  [x—£0) <R

with some k < az +2 and G > 0, then (IVP) has a minimal solution
satisfying

u(, 1) < Gx =&, x=E@)I <R, te[r,T],

where £ > 0,7 > 0 are arbitrary, C; = G(e,7) > 0 is a constant.




e Theorem 2 (Lower bound)

Assume that V satisfies

A
Ix =&t
with some A € (0, Ac) and R > 0. Then any solution of (IVP) satisfies

V(x,t) > |x —&(t)| < R, t€]0, T]

u(x,t) > Clx — ()|, x —&(t)| < R, te€[r, T),

where e, 7 > 0 are arbitrary, C = C(e,7) > 0 is a constant.




Key observation for the proof

Rewrite the equation into an integral equation
wet) = [ Gy, u(y)dy
RN

t
[ ] Gleyit= Vi, s)uty, s)dves,
o JRN
where G is the heat kernel given by

1 Ix =yl
GOy t) = g o® (~ T ).

Set
)?:Xié-(t)v y:yff(s)v
i(x,t) = u(x + &(t)), V(%,t) = V(% +£(t), t)

to transform it to the case of a fixed singularity.



Then we have

(:0)= [ | Gy unly)dy

<

+/Ot y G(x+&(t), 7 +£(s), s)V(§, s)ii(y, s)dyds.

By the y-Hdlder continuity of £(t) with v > 1/2, the heat kernel satisfies

(1+o)6 (XV}%Z) > G(%+£(1).7 +£(s).5) > (1-6)G (Xy f—S)

—_
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with some small § > 0.

Using these inequalities, we obtain integral inequalities for u,. Then Gronwall's

inequalities yield upper and lower estimate of u,.



Non-existence for large initial data

The conditions A < A and k < ap + 2 are essential for the existence.

ur = Au+ V(x, t)u(x, t)

/\‘/(I‘t)

RN z=¢(t) by
Vix,t)  ————
8 = e@r

uo(x) = Clx — £(0)|



-~ Theorem (Non-existence for large initial data) ~

Assume that V satisfies
A
V(ix,t) > ————, x—&(t) <R, tel0, T
(x, t) PRI Ix — &(t)] [0, 7]

with some A € (0, Ac) and R > 0. If

uo(x) > Clx —€(0)| ", x—¢&(0)) <R
with some k > o> + 2 and C > 0, then (IVP) has no solution.
J
e Theorem (Nonexistence in the supercritical case) ~

Assume that V satisfies

A
V(x,t) > W,

with some A > Ac, R >0, 7 € (0, T). Then (IVP) has no solution for any
initial data.

|x —&(t)] < R, t €10,7]

J




Proof of the non-existence

By using Theorem (Lower bound), we can show that the integral operator
M= [ Gy, Ounly)ay
R

t
+ / / G(x,y.t — 5)V(y, s)uly, s)dyds
0o JRN

satisfies /[u] > u. Hence there is no fixed point (no solution).



[ Part Ill: Asymptotics of solutions |
... PDE approach by Takahashi-Y

Classification of singularities of solutions

{ut =Au+ V(x, t)u, xeRY\{1)}, te(0,T],
(IVP)
u(x,0) = wo(x), x e RM\ {£(0)}.

Assume that V is expanded as

_ A . —2+8
V(X7 t) - ‘X _ E(t)|2 + O(‘ £(t)| )

as x — £(t) uniformly in t € [0, T], where § > 0 and X > 0.

Problem

Study the asymptotic behavior of solutions as x — &(t).




We already proved in Theorem (Existence of a solution) and Theorem (Lower
bound) that if 0 < A < A for t € [0, T], then the minimal solution of (IVP)
satisfies

Gilx = €(8)] 7 < ulx, 1) < Golx — £(0) 77,

where € > 0 and G, G; > 0 are constants.

The minimal solution is unique, but there exist larger solutions.



Existence of a larger solution

e Theorem (Larger solution) ~

Assume A € CY([0, T]) and 0 < X\ < Ac. Let h € CY([0, T]) be an arbitrary
positive function. If

uo(x) = h(0)|x — £(0)]~** + O(|x — £(0)|"**™") as x — £(0)
for some p > 0, then (IVP) has a solution satisfying

u(x, ) = h(t)x = £(£)] % + O(Ix — ()| ~***) as x = &(1)

for every t € [0, T], where 0 < p < p.

J

» The larger solution is asymptotically radially symmetric as x — &(t) for

every t.

» Switching to a minimal solution is possible at any time.



Idea of the proof

We first consider the heat equation
U = AU+ 6(x — &(1)),
where § is a Dirac measure. The equation has a solution expressed as
U= c/t G(x,&(s),t —s)ds, €= N(N—2)|B].
-1

which satisfies
U(x,t) ~ Clx — ()2

... Takahashi-Y (2015)

We also found that u ~ U%/("=2) is a very nice approximate solution. We use

this to construct suitable comparison functions.



Using the solution U of the heat equation, we construct a supersolution of the

form

ut(x, t) == k(t)U(x, £)°2/ N2 4 U(x, £) @2V (VD 4 R(x 1),
and a subsolution of the form

U (x, t) i= k(£)U(x, £)*>/ VD — U(x, £) @2 VD Ry,

where R(x,t) is a suitable bounded function. Namely,

A
+ + +
up > Au" + ————u,
‘ Ix — &(t)?
_ A _
up <Aut 4+ ——u”.
‘ Ix — &(t))?

Then the comparison principle implies that there exists a solution between u

and u™.



Critical case A = A\

Theorem (Critical case
- ( : ™

Assume X\ = A.. If

for some K > 1, 0 < 8 < 1, then (IVP) has a solution satisfying

Cilx — €(8) ™ < u(x, ) < Golx = £(0)] ™ ('°g <e+ x—ls(rn»ﬁ

with some constants Ci, G; > 0.

We take a supersolution and a subsolution of the form
uE(x,t) := CU(x, £) "D (log(e + U(x, t)))? + b(t),

where b(t) is a suitable bounded function



e Theorem (Classification) ~

Assume 0 < XA < A for t € [0, T].

(i) Suppose that a solution u satisfies
u(x, t) < Klx —g(8)] 7, [x—¢(0)| <R,

where € > 0 and R > 0 are arbitrary and K > 0. Then v is a minimal
solution:

Glx —&(8)] " < u(xt) < Glx —&(1)] " °

(i) Suppose that a solution u satisfies
u(, ) 2 Klx =¢()7" 77, 0<x =&)< R,

where e > 0, K > 0 and R > 0. Then u satisfies

Gilx — £(1)|*"° < u(x, t) < Glx — £(t)] > ~.




Idea of the proof

By a careful estimate of the integral

Iu] = /RN G(x,y, t)uo(y)dy + /Ot/RN G(x,y,t —s)V(y,s)u(y, s)dyds,

we can show that /[u] has a fixed point only in the case as assumed.

In fact,
0 < u(x,t) < Clx —&(t)| 7" = I[u] >u
Glx =€) "7 S ulxt) < Glx = &(8)] " = Iu] <u
Glx—&(6) ™7 < ulx,t) < Glx— &8 22 = Il > u



[ Part IV: Fractional Brownian motion of £(t)]
Probabilistic approach by Okada-Y
Critical value © = puc(H)  (H: the Hurst exponent)

ue = %Aqu Vi, By,  xeRV\ (1), 0<t<T,
where
A
Ix —&(t)[+

Assume that £(t) is a sample path of the Fractional Brownian motion. Then

V(x,t) =

u(x, t) can be regarded as a random variable.



Fractional Brownian motion

Fractional Brownian motion {B"(t)}+>0 with the Hurst exponent 0 < H < 1 is

the Gaussian process specified by

(i) B(0)" = 0.
(i) E[B"(t)] =0 for t > 0.
(iit) E[B"(£)B"(s)] = %(m?” 182K — |t — sP*) for t,5 > 0.

* Self-similar process
E[B"(Bt)] = |B*"E[B" ()], E[B"(Bt)B"(Bs)] = |B[*"E[B"(t)B" ()]

* Sample path is (H — £)-Hdlder continuous in t > 0 a.s, a.e.
= If H > 1/2, then there exists a positive solution.

* H = 1/2 corresponds to the standard Brownian motion.



Theorem (The case H < 1/2)

Assume that &(t) is a sample path of the fractional Brownian motion with
the Hurst exponent 0 < H < 1/2.

(i) If o> (1/H) A N, then the equation has no positive solution.

(ii) If 2 < p < (1/H) A N, then the equation has a positive solution.

(i) If > (1/H) A N, then

Pe(u(x, t) = oo for all x € RV \ {¢(¢)}) =1
for every t > 0.
(ii) If 0 < yu < (1/H) A N, then

P:(Vr >0, 3C > 0s.t. u(x,t) < C forall (t,x) € N.(0,0)) = 1.



Non-existence

i Existence i

1/:N 1}2



Feynman-Kac formula

By the Feynman-Kac formula, the solution can be expressed as

(. £) = E*[un(B(1)) exp ( / 1B(s) — &(t — 5)| )],

where B(t) stands for the N-dimensional standard Brownian motion.

* Explicit expression

* Probabilistic techniques are available
Properties of the fractional Brownian motion
Chebychev's inequality, Borel-Cantelli's lemma

* Improper integral leads to a minimal solution



tH (H > 1/2)

e/ .

t>0
t=0 — :
£00)=0 #1/2
th (0< H<1/2)
>0 -
t=0

t1/2



* H > 1/2: Diffusion is faster than {(t) = There exists a solution.

* 1/N < H < 1/2: Diffusion is slower than &(t)

Then solution u satisfies the following ODE approximately:

d K
U t) = x = ()] ulx 1),

/|B t—s|“ds~/|§t—s)| Hds

~ Z/ "ML e—m—1<|¢(r—s)|<e—m1ds  (occupation time)

so that

which is bounded if 1 < 1/H.

c0<u< 1/N Singularity of the potential is too strong.

V(x,t) = & Li,.(RM) = No solution.

x— ( )



Summary

Non-existence

i Existence !

=g

N

1)2



Baras-Goldstein (Energy method, Feynman-Kac formula)
Existence

Critical value A = A:(N)

Chern-Hwang-Takahashi-Y (Heat kernel)

Extension of Baras-Goldstein

(1/2 4 €)-Hdlder continuity of £(t)

Takahashi-Y (Comparison method)

Asymptotics around a singularity

Classification of singularities

Okada-Y (Feynman-Kac formula)

Fractional Brownian motion with the Hurst exponent 0 < H < 1/2

Critical value u = uc(H)



Thank you for your attention !



