On the heat equation with a dynamic singular potential

Eiji Yanagida (Tokyo Tech)

in collaboration with

Izumi Okada (Kyushu Univ.) and Jin Takahashi (Tokyo Tech)

[Heat equation with a singular potential]

$$u_t = \Delta u + V(x, t)u, \qquad x \in \mathbb{R}^N \setminus \{\xi(t)\}.$$

where u = u(x, t), N > 2.

The potential V is assumed to be singular at $\xi(t)$: $V(x,t) \to \infty$ as $x \to \xi(t)$.

[Heat equation with a singular potential]

$$u_t = \Delta u + V(x, t)u, \qquad x \in \mathbb{R}^N \setminus \{\xi(t)\}.$$

where N > 2.

Topics:

- · Existence and non-existence of positive solutions
- · Optimal class of initial values for solvability
- · Lower and upper estimates
- Asymptotic profile around singularities
- · Classification of solutions
- Critical values of parameters

Plan of my talk:

I: Fixed singularity
$$V(x, t) = \frac{\lambda}{|x|^2}$$

PDE and probabilistic approach by Baras-Goldstein (1984)

Critical value $\lambda = \lambda_c(N)$ for existence

II: Moving singularity
$$V(x,t) \leq \frac{\lambda}{|x-\xi(t)|^2}$$

PDE approach by Chern-Hwang-Takahashi-Y (2021)

Extension of Baras-Goldstein

III: Asymptotics of solutions
$$V(x,t) \sim \frac{\lambda}{|x-\xi(t)|^2}$$

PDE approach by Takahashi-Y

Classification of singularities of solutions

IV: Fractional Brownian motion of
$$\xi(t)$$

$$V(x,t) = \frac{\lambda}{|x-\xi(t)|^{\mu}}$$
 Probabilistic approach by Okada-Y

Critical value $\mu = \mu_c(H)$ (H: the Hurst exponent)

[Part I: Fixed singularity]

 \dots PDE and probabilistic approach by Baras-Goldstein (1984)

Critical value $\lambda = \lambda_c(N)$ for existence

Elliptic equation with the Hardy potential:

$$\Delta u + \frac{\lambda}{|x|^2} u = 0, \qquad x \in \mathbb{R}^N \setminus \{0\}.$$

(Many studies have been done.)

Radial solutions

Assume N > 2. Substituting $u = r^{-\alpha}$, r := |x|, we have

$$u_{rr} + \frac{N-1}{r}u_r + \frac{\lambda}{r^2}u = \left\{\alpha^2 - (N-2)\alpha + \lambda\right\}r^{-\alpha-2}.$$

Hence $u = r^{-\alpha}$ is a solution if

$$\alpha^2 - (N-2)\alpha + \lambda = 0.$$

• Subcritical case: If $\lambda < \lambda_c = \frac{(N-2)^2}{4}$, the quadratic equation

$$\alpha^2 - (N-2)\alpha + \lambda = 0.$$

has two real roots:

$$0<\alpha_1<\frac{N-2}{2}<\alpha_2< N-2,$$

and there are two types of positive radial singular solutions:

$$u = C|x|^{-\alpha_1}$$
 (weak singularity)

$$u = C|x|^{-\alpha_2}$$
 (strong singularity)

· Supercritical case: If

$$V(x) > \frac{\lambda_c}{|x|^2}$$

then there are no positive radial solutions for

$$\Delta u + V(x)u = 0, \qquad x \in \mathbb{R}^N \setminus \{0\}.$$

Heat equation with the Hardy potential

$$u_t = \Delta u + \frac{\lambda}{|x|^2} u, \qquad x \in \mathbb{R}^N \setminus \{0\}.$$

Baras-Goldstein (1984) showed that $\lambda_c := \frac{(N-2)^2}{4} > 0$ is critical.

Theorem (Critical value for existence) —

- (i) If $0 < \lambda < \lambda_c$, there exists a positive global solution. (ii) If $\lambda > \lambda_c$, there exists no positive solution.

... by Energy method, Feynman-Kac formula

Many other works on

- Existence of solutions.
- Optimal class of initial values.

Question

What if the singular point $\xi(t)$ moves in time?

Heat equation with a dynamic singular potential

$$u_t = \Delta u + V(x, t)u, \qquad x \in \mathbb{R}^N \setminus \{\xi(t)\},$$

where V has a singularity at $\xi(t)$.

ex.
$$V(x,t) \simeq \frac{\lambda}{|x-\xi(t)|^{\mu}}$$
.

Interaction between V(x,t) and u(x,t) is more delicate if $\xi(t)$ moves.

$$u_t = \Delta u + V(x, t)u(x, t)$$

[Part II: Moving singularity]

... PDE approach by Chern-Hwang-Takahashi-Y (2021)

Extension of Baras-Goldstein

Initial value problem

$$\text{(IVP)} \quad \begin{cases} u_t = \Delta u + V(x,t)u, & x \in \mathbb{R}^N \setminus \{\xi(t)\}, \ t \in (0,T], \\ u(x,0) = u_0(x), & x \in \mathbb{R}^N \setminus \{\xi(0)\}. \end{cases}$$

Basic assumptions:

(A1)
$$V(x,t)$$
 is nonnegative and continuous in $(x,t) \in \mathbb{R}^N \setminus \{\xi(t)\} \times [0,\infty)$. $V(x,t)$ is singular at $\xi(t)$ (i.e., $V(x,t) \to \infty$ as $x \to \xi(t)$). $V(x,t)$ is bounded for $|x-\xi(t)| > 1$.

(A2)
$$\xi(t)$$
 is γ -Hölder continuous in $t \ge 0$ with $\gamma > 1/2$.

(A3)
$$u_0(x) \in C(\mathbb{R}^N \setminus \{\xi(0)\}), \ u_0(x) \ge 0, \not\equiv 0 \text{ for } x \ne \xi(0).$$

 $u_0(x)$ is bounded for $|x - \xi(0)| > 1$.

Def. Minimal solution

Define

$$V_n(x,t) := \min\{V(x,t), n\}.$$

If $u_0 \in L^1(\mathbb{R}^N)$, then for each $n \in \mathbb{N}$, there exists a unique bounded solution of the following regular problem:

$$\begin{cases} u_t(x,t) = \Delta u(x,t) + V_n(x,t)u, & x \in \mathbb{R}^N, \quad t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{R}^N. \end{cases}$$

We denote the unique solution by $u_n(x, t)$. If

$$u(x,t) := \lim_{n\to\infty} u_n(x,t), \qquad x\neq \xi(t),$$

exists, then the limiting function u(x,t) satisfies (IVP). We call such u(x,t) a minimal solution (or proper solution). For the existence of a minimal solution, it suffices to find an upper bound.

(IVP)
$$\begin{cases} u_t = \Delta u + V(x,t)u, & x \neq \xi(t), \ t \in (0,T] \\ u(x,0) = u_0(x), & x \neq \xi(0). \end{cases}$$

Theorem (Existence of a solution)

Assume that
$${\it V}$$
 satisfies

$$0 \le V(x,t) \le \frac{\lambda}{|x-\xi(t)|^2}, \qquad |x-\xi(t)| < R, \ t \in [0,T]$$

with some $\lambda \in (0, \lambda_c)$ and R > 0. If

$$0 \le u_0(x) \le C_1 |x - \xi(0)|^{-k}, \quad |x - \xi(0)| < R$$

with some $k < \alpha_2 + 2$ and $C_1 > 0$, then (IVP) has a minimal solution satisfying

$$u(x,t) \le C_2 |x - \xi(t)|^{-\alpha_1 - \varepsilon}, \qquad |x - \xi(t)| < R, \ t \in [\tau, T],$$

where $\varepsilon>0, \tau>0$ are arbitrary, $\mathit{C}_{2}=\mathit{C}_{2}(\varepsilon,\tau)>0$ is a constant.

Theorem 2 (Lower bound)

Assume that V satisfies

$$V(x,t) > \frac{\lambda}{|x - \xi(t)|^2}, \qquad |x - \xi(t)| < R, \ t \in [0, T]$$

with some $\lambda \in (0, \lambda_c)$ and R > 0. Then any solution of (IVP) satisfies

$$u(x,t) \geq C|x-\xi(t)|^{-\alpha_1+\epsilon}, \qquad |x-\xi(t)| < R, \ t \in [\tau,T],$$

where $\varepsilon, \tau > 0$ are arbitrary, $C = C(\varepsilon, \tau) > 0$ is a constant.

Rewrite the equation into an integral equation

$$u(x,t) = \int_{\mathbb{R}^N} G(x,y,t)u_0(y)dy$$
$$+ \int_0^t \int_{\mathbb{R}^N} G(x,y,t-s)V(y,s)u(y,s)dyds,$$

where G is the heat kernel given by

$$G(x, y, t) = \frac{1}{(4\pi t)^{N/2}} \exp\left(-\frac{|x - y|^2}{4t}\right).$$

Set

$$\tilde{x} = x - \xi(t), \quad \tilde{y} = y - \xi(s),$$
 $\tilde{u}(\tilde{x}, t) = u(x + \xi(t)), \qquad \tilde{V}(\tilde{x}, t) = V(\tilde{x} + \xi(t), t)$

to transform it to the case of a fixed singularity.

Then we have

$$\begin{split} \tilde{u}(\tilde{x},t) &= \int_{\mathbb{R}^N} G(x,y,t) u_0(y) dy \ &+ \int_0^t \int_{\mathbb{R}^N} G(\tilde{x}+\xi(t),\tilde{y}+\xi(s),s) \tilde{V}(\tilde{y},s) \tilde{u}(\tilde{y},s) d\tilde{y} ds. \end{split}$$

By the γ -Hölder continuity of $\xi(t)$ with $\gamma > 1/2$, the heat kernel satisfies

$$(1+\delta)G\left(\tilde{x},\tilde{y},\frac{t-s}{1+\delta}\right) \geq G(\tilde{x}+\xi(t),\tilde{y}+\xi(s),s) \geq (1-\delta)G\left(\tilde{x},\tilde{y},\frac{t-s}{1-\delta}\right)$$

with some small $\delta > 0$.

Using these inequalities, we obtain integral inequalities for u_n . Then Gronwall's inequalities yield upper and lower estimate of u_n .

Non-existence for large initial data

The conditions $\lambda < \lambda_c$ and $k < \alpha_2 + 2$ are essential for the existence.

$$u_t = \Delta u + V(x, t)u(x, t)$$

$$V(x,t) \simeq \frac{\lambda}{|x-\xi(t)|^2}$$

$$u_0(x) \simeq C|x - \xi(0)|^{-k}$$

Theorem (Non-existence for large initial data) -

Assume that V satisfies

$$V(x,t) \ge \frac{\lambda}{|x - \xi(t)|^2}, \qquad |x - \xi(t)| < R, \ t \in [0, T]$$

with some $\lambda \in (0, \lambda_c)$ and R > 0. If

$$u_0(x) \ge C|x - \xi(0)|^{-k}, \qquad |x - \xi(0)| < R$$

with some $k>\alpha_2+2$ and C>0, then (IVP) has no solution.

Theorem (Nonexistence in the supercritical case)

Assume that V satisfies

$$V(x,t) \ge \frac{\lambda}{|x - \xi(t)|^2}, \qquad |x - \xi(t)| < R, \ t \in [0, \tau]$$

with some $\lambda > \lambda_c$, R > 0, $\tau \in (0, T)$. Then (IVP) has no solution for any initial data.

Proof of the non-existence

By using Theorem (Lower bound), we can show that the integral operator

$$I[u] := \int_{\mathbb{R}^N} G(x, y, t) u_0(y) dy$$

$$+ \int_0^t \int_{\mathbb{R}^N} G(x, y, t - s) V(y, s) u(y, s) dy ds$$

satisfies I[u] > u. Hence there is no fixed point (no solution).

[Part III: Asymptotics of solutions]

... PDE approach by Takahashi-Y

Classification of singularities of solutions

$$\text{(IVP)} \quad \begin{cases} u_t = \Delta u + V(x,t)u, & x \in \mathbb{R}^N \setminus \{\xi(t)\}, \ t \in (0,T], \\ u(x,0) = u_0(x), & x \in \mathbb{R}^N \setminus \{\xi(0)\}. \end{cases}$$

Assume that V is expanded as

$$V(x,t) = \frac{\lambda}{|x - \xi(t)|^2} + o(|x - \xi(t)|^{-2+\delta})$$

as $x \to \xi(t)$ uniformly in $t \in [0, T]$, where $\delta > 0$ and $\lambda > 0$.

- Problem

Study the asymptotic behavior of solutions as $extit{x} o \xi(t)$.

We already proved in Theorem (Existence of a solution) and Theorem (Lower bound) that if $0 < \lambda < \lambda_c$ for $t \in [0, T]$, then the minimal solution of (IVP) satisfies

$$|C_1|x-\xi(t)|^{-\alpha_1+\varepsilon} \leq u(x,t) \leq |C_2|x-\xi(t)|^{-\alpha_1-\varepsilon},$$

where $\varepsilon > 0$ and $C_1, C_2 > 0$ are constants.

The minimal solution is unique, but there exist larger solutions.

Theorem (Larger solution) -

Assume $\lambda \in C^1([0,T])$ and $0 < \lambda < \lambda_c$. Let $h \in C^1([0,T])$ be an arbitrary positive function. If

$$u_0(x) = h(0)|x - \xi(0)|^{-\alpha_2} + O(|x - \xi(0)|^{-\alpha_2 + \mu})$$
 as $x \to \xi(0)$

for some $\mu > 0$, then (IVP) has a solution satisfying

$$u(x,t)=h(t)|x-\xi(t)|^{-\alpha_2}+O(|x-\xi(t)|^{-\alpha_2+\mu'})\ \ \text{as }x\to \xi(t)$$
 for every $t\in [0,T]$, where $0<\mu'<\mu.$

- The larger solution is asymptotically radially symmetric as $x \to \xi(t)$ for every t.
- Switching to a minimal solution is possible at any time.

Idea of the proof

We first consider the heat equation

$$U_t = \Delta U + \delta(x - \xi(t)),$$

where δ is a Dirac measure. The equation has a solution expressed as

$$U = C \int_{-1}^{t} G(x, \xi(s), t - s) ds, \qquad C = N(N - 2)|B|.$$

which satisfies

$$U(x, t) \sim C|x - \xi(t)|^{-(N-2)}$$
.

... Takahashi-Y (2015)

We also found that $u \simeq U^{\alpha_i/(N-2)}$ is a very nice approximate solution. We use this to construct suitable comparison functions.

Using the solution $\it U$ of the heat equation, we construct a supersolution of the form

$$u^{+}(x,t) := k(t)U(x,t)^{\alpha_{2}/(N-2)} + U(x,t)^{(\alpha_{2}-\mu')/(N-2)} + R(x,t),$$

and a subsolution of the form

$$u^{-}(x,t) := k(t)U(x,t)^{\frac{\alpha_{2}}{(N-2)}} - U(x,t)^{\frac{(\alpha_{2}-\mu')}{(N-2)}} - R(x,t),$$

where R(x, t) is a suitable bounded function. Namely,

$$u_t^+ > \Delta u^+ + \frac{\lambda}{|x - \xi(t)|^2} u^+,$$

 $u_t^- < \Delta u^+ + \frac{\lambda}{|x - \xi(t)|^2} u^-.$

Then the comparison principle implies that there exists a solution between u^+ and u^- .

Critical case $\lambda = \lambda_c$

Theorem (Critical case)

Assume
$$\lambda = \lambda_c$$
. If
$$0 < u_0(x) \le K \left\{ 1 + |x - \xi(0)|^{-\alpha_1} \left(\log \left(e + \frac{1}{|x - \xi(0)|} \right) \right)^{\beta} \right\},$$

for some K> 1, 0 $<\beta<$ 1, then (IVP) has a solution satisfying

$$\begin{aligned} &C_1|x-\xi(t)|^{-\alpha_1} \leq u(x,t) \leq C_2|x-\xi(t)|^{-\alpha_1} \left(\log\left(\mathrm{e} + \frac{1}{|x-\xi(t)|}\right)\right)^{\beta} \\ &\text{with some constants } C_1, C_2 > 0. \end{aligned}$$

We take a supersolution and a subsolution of the form

$$u^{\pm}(x,t) := CU(x,t)^{(\alpha_1)/(N-2)} (\log(e + U(x,t)))^{-\beta} \pm b(t),$$

where b(t) is a suitable bounded function

Theorem (Classification) -

solution:

Assume $0 < \lambda < \lambda_c$ for $t \in [0, T]$.

(i) Suppose that a solution
$$u$$
 satisfies

$$u(x,t) \le K|x-\xi(t)|^{-\alpha_2+\varepsilon}, \qquad |x-\xi(0)| < R,$$
 where $\varepsilon>0$ and $R>0$ are arbitrary and $K>0$. Then u is a minimal

 $u(x,t) \geq K|x-\xi(t)|^{-\alpha_1-\varepsilon}, \quad 0 < |x-\xi(t)| < R,$

$$C_1|x-\xi(t)|^{-\alpha_1+\varepsilon} < u(x,t) < C_2|x-\xi(t)|^{-\alpha_1-\varepsilon}$$

(ii) Suppose that a solution
$$u$$
 satisfies

where $\varepsilon > 0$, K > 0 and R > 0. Then u satisfies

where
$$\varepsilon > 0$$
, $K > 0$ and $R > 0$. Then u satisfies

 $|C_1|x-\xi(t)|^{-\alpha_2+\varepsilon} \leq u(x,t) \leq |C_2|x-\xi(t)|^{-\alpha_2-\varepsilon}$.

By a careful estimate of the integral

$$I[u] = \int_{\mathbb{R}^N} G(x,y,t)u_0(y)dy + \int_0^t \int_{\mathbb{R}^N} G(x,y,t-s)V(y,s)u(y,s)dyds,$$

we can show that I[u] has a fixed point only in the case as assumed.

In fact,

$$0 < u(x,t) \le C|x - \xi(t)|^{-\alpha_1 + \varepsilon} \qquad \Longrightarrow I[u] > u$$

$$C_1|x - \xi(t)|^{-\alpha_1 - \varepsilon} \le u(x,t) \le C_2|x - \xi(t)|^{-\alpha_2 + \varepsilon} \qquad \Longrightarrow I[u] < u$$

$$C_1|x - \xi(t)|^{-\alpha_2 - \varepsilon} \le u(x,t) \le C_1|x - \xi(t)|^{-\alpha_2 - 2 + \varepsilon} \qquad \Longrightarrow I[u] > u$$

[Part IV: Fractional Brownian motion of $\xi(t)$]

Probabilistic approach by Okada-Y

Critical value $\mu = \mu_c(H)$ (H: the Hurst exponent)

$$u_t = \frac{1}{2}\Delta u + V(x,t)u, \qquad x \in \mathbb{R}^N \setminus \{\xi(t)\}, \quad 0 < t < T,$$

where

$$V(x,t) = \frac{\lambda}{|x - \xi(t)|^{\mu}}.$$

Assume that $\xi(t)$ is a sample path of the Fractional Brownian motion. Then u(x,t) can be regarded as a random variable.

Fractional Brownian motion

Fractional Brownian motion $\{B^H(t)\}_{t\geq 0}$ with the Hurst exponent 0 < H < 1 is the Gaussian process specified by

- (i) $B(0)^H = 0$.
- (ii) $E[B^{H}(t)] = 0$ for $t \ge 0$.

(iii)
$$E[B^H(t)B^H(s)] = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t-s|^{2H})$$
 for $t, s \ge 0$.

Self-similar process

$$E[B^{H}(\beta t)^{2}] = |\beta|^{2H} E[B^{H}(t)^{2}], \quad E[B^{H}(\beta t)B^{H}(\beta s)] = |\beta|^{2H} E[B^{H}(t)B^{H}(s)]$$

- Sample path is $(H \varepsilon)$ -Hölder continuous in t > 0 a.s, a.e.
 - \implies If H > 1/2, then there exists a positive solution.
- H = 1/2 corresponds to the standard Brownian motion.

Theorem (The case H < 1/2) –

Assume that $\xi(t)$ is a sample path of the fractional Brownian motion with the Hurst exponent 0 < H < 1/2.

- (i) If $\mu \geq (1/H) \wedge N$, then the equation has no positive solution. (ii) If $2 < \mu < (1/H) \wedge N$, then the equation has a positive solution.
- (i) If $\mu \geq (1/H) \wedge N$, then

$$P_{\xi}(u(x,t) = \infty \text{ for all } x \in \mathbb{R}^N \setminus \{\xi(t)\}) = 1$$

for every t > 0.

(ii) If $0 < \mu < (1/H) \land N$, then

$$P_{\xi}(\forall r > 0, \exists C > 0 \text{ s.t. } u(x,t) \leq C \text{ for all } (t,x) \not\in \mathcal{N}_r(0,0)) = 1.$$

Feynman-Kac formula

By the Feynman-Kac formula, the solution can be expressed as

$$u(x,t) = E^{x} \left[u_0(B(t)) \exp\left(\lambda \int_0^t |B(s) - \xi(t-s)|^{-\mu} ds \right) \right],$$

where B(t) stands for the N-dimensional standard Brownian motion.

- · Explicit expression
- · Probabilistic techniques are available

Properties of the fractional Brownian motion

Chebychev's inequality, Borel-Cantelli's lemma

· Improper integral leads to a minimal solution

• H>1/2: Diffusion is faster than $\xi(t)\Longrightarrow$ There exists a solution.

• $1/N < H \le 1/2$: Diffusion is slower than $\xi(t)$

Then solution u satisfies the following ODE approximately:

$$\frac{d}{dt}u(x,t)\simeq |x-\xi(t)|^{-\mu}u(x,t),$$

so that

$$\int_0^t |B(s) - \xi(t-s)|^{-\mu} ds \simeq \int_0^t |\xi(t-s)|^{-\mu} ds$$

$$\approx \sum_{m=0}^\infty \int_0^t e^{\mu m} 1_{\{e^{-m-1} \le |\xi(t-s)| \le e^{-m}\}} ds \quad \text{(occupation time)}$$

which is bounded if $\mu < 1/H$.

• $0 < \mu \le 1/N$: Singularity of the potential is too strong. $V(x,t) = \frac{\lambda}{|x - \mathcal{E}(t)|^{\mu}} \not\in L^1_{loc}(\mathbb{R}^N) \Longrightarrow \text{No solution.}$

Summary

Baras-Goldstein (Energy method, Feynman-Kac formula) Existence

Critical value $\lambda = \lambda_c(N)$

Chern-Hwang-Takahashi-Y (Heat kernel)

Extension of Baras-Goldstein $(1/2 + \varepsilon)$ -Hölder continuity of $\xi(t)$

Takahashi-Y (Comparison method)

Asymptotics around a singularity

Classification of singularities

Okada-Y (Feynman-Kac formula)

Fractional Brownian motion with the Hurst exponent 0 < H < 1/2

Critical value $\mu = \mu_c(H)$

Thank you for your attention!