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Gaussian free field

o Recall the free field in the Euclidean quantum field theory. The usual free field
on the torus T is heuristically described by the following probability measure:

v(d®) = Cy ' N, cpad®(x) exp ( - /W(|Vc1>|2 + m¢2)dx>,

where Cp is the normalization constant and @ is the real-valued field.
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where Cp is the normalization constant and @ is the real-valued field.

e This corresponds to the Gaussian measure v := N(0, (m — A)™!) rigorously
defined on &'.
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Gaussian free field

o Recall the free field in the Euclidean quantum field theory. The usual free field
on the torus T is heuristically described by the following probability measure:

v(d®) = Cy ' N, cpad®(x) exp ( - /W(|Vc1>|2 + m¢2)dx>,

where Cp is the normalization constant and @ is the real-valued field.

e This corresponds to the Gaussian measure v := N(0, (m — A)™!) rigorously
defined on S’.

o The free field describes particles which do not interact.
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.
®* field

The ®% model is the simplest non-trivial Euclidean quantum field:

CiMeea@()exp (= [ (T000R +mo(o)
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The ®% model is the simplest non-trivial Euclidean quantum field:
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H

where Cp is the normalization constant and @ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
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.
®* field

The ®% model is the simplest non-trivial Euclidean quantum field:

Cy My cped®(x) exp ( - / (|V(x)]? + md?(x) + *(x)) dx),
d
: H

where Cp is the normalization constant and @ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the ®% field as
stationary distributions (limiting distributions) of stochastic processes, which are
solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Rdckner 91], [Da Prato, Debussche 03]).
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Cy My cped®(x) exp ( - / (|V(x)]? + md?(x) + *(x)) dx),
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: H

where Cp is the normalization constant and @ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the ®% field as
stationary distributions (limiting distributions) of stochastic processes, which are
solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
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The stochastic quantization of the ®% model:

H
at¢=—%+g=(A—m)¢—:¢3:+g,

Here £ is space-time white noise.
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H
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Here £ is space-time white noise.
o Regularity structures by [Hairer 14]
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The ®% model is the simplest non-trivial Euclidean quantum field:

Cy My cped®(x) exp ( - / (|V(x)]? + md?(x) + *(x)) dx),
d
: H

where Cp is the normalization constant and @ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the ®% field as
stationary distributions (limiting distributions) of stochastic processes, which are
solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Rdckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the ®% model:

H
at¢=—%+g=(A—m)¢—:¢3:+g,

Here £ is space-time white noise.

o Regularity structures by [Hairer 14]
e Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
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.
®* field

The ®% model is the simplest non-trivial Euclidean quantum field:

Cy My cped®(x) exp ( - / (|V(x)]? + md?(x) + *(x)) dx),
d
: H

where Cp is the normalization constant and @ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the ®% field as
stationary distributions (limiting distributions) of stochastic processes, which are
solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Rdckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the ®% model:

H
at¢=—%+g=(A—m)¢—:¢3:+g,

Here & is space-time white noise.
o Regularity structures by [Hairer 14]
e Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
o [Catellier, Chouk 18], [Mourrat, Weber 17], [Albeverio, Kusuoka 18],
[Gubinelli, Hofmanova 18, 19] , [Réckner, Zhu, Z. 17/Zhu, Z. 18 ]...
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O(N) linear sigma model

O(N) linear sigma model:

1 1 N m N 1 N 2
N 2 2 2
— 2 - Vo _’_75 ¢.+7(§ ¢.)d Do,
v ” exp ( /Td 5 jE:1 [Vo;] 2 f ST AN = J X)

where ® = (®4,...,dy) is the (vector-valued) field.
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-
O(N) linear sigma model

O(N) linear sigma model:
N N N
M= ep (2 [ S IVeR+ TS 0+ (3 0) ax) Do,
CN Td 2 j:1 J 2 j:1 J 4N j:]. J

where ® = (®4,...,dy) is the (vector-valued) field.

o Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74,
Witten 80]......
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O(N) linear sigma model

O(N) linear sigma model:
N — iexp (_2/ EXN:|V¢_|2+ EXN:¢2+ I(ZN:¢2.)2dx)D¢'
Cn Td 2 = J 2 = I AN = J ’
where ® = (®4,...,dy) is the (vector-valued) field.

o Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74,
Witten 80]......

o Mathematical results of large N: [Kupiainen 80], [Chatterjee 16, 19]
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O(N) linear sigma model

O(N) linear sigma model:
N N N
M= ep (2 [ S IVeR+ TS 0+ (3 0) ax) Do,
C[\[ 'I[*d 2 j:1 J 2 j:1 J 4N j:]. J

where ® = (®4,...,dy) is the (vector-valued) field.

o Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74,
Witten 80]......

o Mathematical results of large N: [Kupiainen 80], [Chatterjee 16, 19]
Stochastic quantization on TY, d = 2, 3:

N
1 2
Lo = = > &0+ &,

j=1

L=0—NA+m (f,-),N:l: independent space-time white noises.
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O(N) linear sigma model

O(N) linear sigma model:
N N N
M= ep (2 [ S IVeR+ TS 0+ (3 0) ax) Do,
C[\[ 'I[*d 2 j:1 J 2 j:1 J 4N j:]. J

where ® = (®4,...,dy) is the (vector-valued) field.

o Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74,
Witten 80]......

o Mathematical results of large N: [Kupiainen 80], [Chatterjee 16, 19]
Stochastic quantization on TY, d = 2, 3:

N
1 2
Lo = = > &0+ &,
j=1

L=0;— A+ m; (&)Y, independent space-time white noises.
Questions: Large N limit of the dynamics ®; and the field »V?
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Stochastic quantization: Da Prato-Debussche trick

o Stochastic quantization: (f,-)’-v,l: independent space-time white noises

LO; = (0r — A+ m)d Z¢2d> +&,
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Stochastic quantization: Da Prato-Debussche trick

o Stochastic quantization: (£;)Y;: independent space-time white noises

N
1
LO; = (0 — A+ m)d; = — Do+,
j=1

e &(t,x) is a random Gaussian function with covariance given by
ES(t, x)E(s,y) = 6(t — 5)d(x — y)
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Stochastic quantization: Da Prato-Debussche trick

o Stochastic quantization: (£;)Y;: independent space-time white noises

N
1
L= (0 — A+ m)d; = —NZ¢J?¢,- + &,
j=1
e &(t,x) is a random Gaussian function with covariance given by

() e~ )= =7
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Stochastic quantization: Da Prato-Debussche trick
o Stochastic quantization: (&)V;: independent space-time white noises

L= (0 — A+ m)d Z¢2<D + &,

e &(t,x) is a random Gaussian functlon with covariance given by

£ 06(0) e~y 6= 2

o (f,g) — fg is well-defined on C* x C# to C¥ only if a + 3 > 0.
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LO; = (0 — A+ m)d; = — Do+,

=1
e &(t,x) is a random Gaussian function with covariance given by
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o (f,g) — fg is well-defined on C* x C# to C¥ only if a + 3 > 0.
o b, cC ford=2®eC 2 ford=3
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Stochastic quantization: Da Prato-Debussche trick

o Stochastic quantization: (f,-)’-v,l: independent space-time white noises

LO; = (0 — A+ m)d; = —fzw +&,
j=1
e &(t,x) is a random Gaussian function with covariance given by

£ 06(0) e~y 6= 2

o (f,g) — fg is well-defined on C* x C# to C¥ only if a + 3 > 0.
o b, cC ford=2®eC 2 ford=3
o Decompose ®; = Y; + Z; as Da Prato-Debussche trick for d = 2

EZ/ :gia

N

1

LY =-4 (Y?Yi+ Y7 Z +2Y;YiZ
j=1

+2Y 1 ZZ: + ZP: Y+ ZZ7: ),
N—— N~ N——

Wick product  Wick product Wick product
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Stochastic quantization: Da Prato-Debussche trick

o Stochastic quantization: (f,-)’-v,l: independent space-time white noises

LO; = (0 — A+ m)d; = —fzw +&,
j=1
e &(t,x) is a random Gaussian function with covariance given by

£ 06(0) e~y 6= 2

o (f,g) — fg is well-defined on C* x C# to C¥ only if a + 3 > 0.
o b, cC ford=2®eC 2 ford=3
o Decompose ®; = Y; + Z; as Da Prato-Debussche trick for d = 2

LZ; =¢,
1 N
LY =-4 (Y?Yi+ Y7 Z +2Y;YiZ
j=1
+2Y 1 ZZ: + ZP: Y+ ZZ7: ),
—— —— ——
Wick product  Wick product Wick product

o Z; € C,Y; € C>; Wick product: : ZiZj = 7;Z; —EZ Z].
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-
Difficulty for d = 3

o Decompose ®; =Z;+ Yias d =2
LZ; =&, ZeCim

1
LY =—

=|

N
> (Yt YPZi+2Y;YiZ,
j=1

+2Y: ZiZ 2 Y+ 27 ),

C—l— C,1,

Nlw

c-
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o Key point: The red terms are not well defined even we do further
decomposition!
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LZ; =&, ZeCim
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LY =—
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N
> (Yt YPZi+2Y;YiZ,
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+2Y: ZiZ 2 Y+ 27 ),

C—l— C,1,

Nlw

c-

o Key point: The red terms are not well defined even we do further
decomposition!

o Local well-posedness: Regularity structure theory in [Hairer 14]/
Paracontrolled distribution method in [Gubinelli, Imkeller, Perkowski 15]
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-
Difficulty for d = 3

o Decompose ®; =Z;+ Yias d =2
LZ; =&, ZeCim

1
LY =—

=|

N
> (Yt YPZi+2Y;YiZ,
j=1

+2Y: ZiZ 2 Y+ 27 ),

C—l— C,1,

Nlw

c-

o Key point: The red terms are not well defined even we do further
decomposition!

o Local well-posedness: Regularity structure theory in [Hairer 14]/
Paracontrolled distribution method in [Gubinelli, Imkeller, Perkowski 15]

o This is not enough since the stopping time may depend on N
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Large N limit of the dynamics
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model
1N
Lo ==+ (O] ~E[Z7)®i &, @i(0) = ¢

Jj=1
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model

1 N
LC]),- = 7N Z ((DJ2 — E[Z,2])¢l + 51', (DI(O) = ¢i

Jj=1

o The limiting equation
LV; = —pV; + &, Vi(0) =y,
where u = E[WV? — Z?] € C~,
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model

1 N
LC]),- = 7N Z ((DJ2 — E[Z,2])¢l + 5[7 (DI(O) = ¢i

Jj=1

o The limiting equation
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model
L
Lo ==+ (O] ~E[Z7)®i &, @i(0) = ¢
j=1
o The limiting equation
LV, = —pV;+ &, WV;(0) =1y,

where = E[W? — Z?] € C~, Distributional dependent SPDE

Theorem [Shen, Scott, Zhu, Z. 20 ]

Suppose that d = 2 and (¢;,;) are independent and have the same law and for
p>1E[¢ — il =0, as N = oo.
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model
1N
Lo ==+ (O] ~E[Z7)®i &, @i(0) = ¢

Jj=1

o The limiting equation
LV, = —pV;+ &, WV;(0) =1y,
where = E[W? — Z?] € C~, Distributional dependent SPDE

Theorem [Shen, Scott, Zhu, Z. 20 ]

Suppose that d = 2 and (¢;,;) are independent and have the same law and for
p>1E[¢; —¢ill--. = 0, as N — oco. It holds that for t > 0,
E[[®;(t) — Wi(t)|[2 = 0
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model
1N
Lo ==+ (O] ~E[Z7)®i &, @i(0) = ¢

Jj=1

o The limiting equation
LV, = —pV;+ &, WV;(0) =1y,
where = E[W? — Z?] € C~, Distributional dependent SPDE

Theorem [Shen, Scott, Zhu, Z. 20 ]

Suppose that d = 2 and (¢;,;) are independent and have the same law and for
p>1E|¢; —i||”_. — 0, as N — oo. It holds that for t > 0,
EHCD,'(t) — W;(t)”%z — 0 and ||<D,' — W,’H(_-Tc—l —P 0, as N — oo.

o Mean field limit/ Propagation of chaos
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Large N limit of the dynamics

Idea of Proof: Uniform bounds

¢ =Zi+Y, Vi=Z+X

EZ,’ :é-h
1 N
LY;=— = (YVYi+ YPZi+2Y,Z)Y;+2Y: ZZ  + 2P Vit 2,27 ),
j=1
LX; = — (E[X?]X; + E[X?]Z; + 2E[X; Z}]X; + 2E[X; Z]] Z)),

where ;1 = E[W2 — 72] = E[X?] + 2E[X;Z].
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EZ,’ :§i7
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LY;=— = (YVYi+ YPZi+2Y,Z)Y;+2Y: ZZ  + 2P Vit 2,27 ),
j=1
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Large N limit of the dynamics

Idea of Proof: Uniform bounds

¢ =Zi+Y, Vi=Z+X

EZ,’ :é-h
N

1
LY;=- 5 (YYi+ YPZ+2Y;Z)Y, +2Y: ZiZ + 27 Vit 1 227 ),
j=1

LX; = — (E[X7]X; + E[X?]Z; + 2E[X; Z}] X; + 2E[X;Z}] Zy),
where = E[W? — Z?] = E[X?] + 2E[X;Z].Z; € C™, X;, Y, € C>~
Lemma 1
It holds that for p > 2

*E SUP Z:HY”B+ ZEHVYHLZ(O T;L2) JFEszz

tel0, T] = Jj=1 i=1
sup E||X:‘HLp +E|IVXilI220,7.02) + 1EXP 12200, 7.02) S 1,
te[0,T]

<1
12(0,T;L2)

i

o dissipation weaker as N — oo
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EZ,’ :é-h
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1
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j=1
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where = E[W? — Z?] = E[X?] + 2E[X;Z].Z; € C™, X;, Y, € C>~
Lemma 1
It holds that for p > 2

*E SUP Z:HY”B+ ZEHVYHLZ(O T;L2) JFEszz

tel0, T] = Jj=1 i=1
sup E||X:‘HLp +E|IVXilI220,7.02) + 1EXP 12200, 7.02) S 1,
te[0,T]

<1
12(0,T;L2)

i

o dissipation weaker as N — co /independence
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Invariant measures
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Invariant measures

Invariant measure to Limiting equation
e The limiting equation
(3t — A + m)\ll, = ,C\U, = —/I,\U,' + fi,
where u = E[W? — Z?],d = 2; u = E[W?],d = 1;

13 /19
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Invariant measures

Invariant measure to Limiting equation

e The limiting equation
(O = A+ mV; = LV; = —pV; +

where u = E[W? — Z?],d = 2; u = E[W?],d = 1;
o Invariant measure: Gaussian free field

N@O,(m—2A)1),d=2,3; N, (m+po—A)Y),d=1,
o > 0.
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Invariant measures

Invariant measure to Limiting equation

e The limiting equation
(Or — A4+ mV; =LV; = —pV; + &,
where u = E[W? — Z?],d = 2; u = E[W?],d = 1;
o Invariant measure: Gaussian free field
N, (m—A)1Y),d=2,3 N(O,(m+p—A)Y),d=1,

o > 0.
°

1 1 1
S
I<ezz2(|k|2+'u+m |k|2+m ;Zk2+u+m
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Invariant measures

Invariant measure to Limiting equation

e The limiting equation
(Or — A4+ mV; =LV; = —pV; + &,
where u = E[W? — Z?],d = 2; u = E[W?],d = 1;
o Invariant measure: Gaussian free field
N, (m—A)1Y),d=2,3 N(O,(m+p—A)Y),d=1,

o > 0.
° 1 1 1
Z(|k|2+u+m |k|2+m ;Zk2+u+m:“'

kez?

Theorem [Shen, Scott, Zhu, Z. 20]
For d = 1,2, there exists mg > 0 such that: for m > mg, the Gaussian free field

N(0,(m — A)~1) is the unique invariant measure to W.

13 /19
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Theorem [Shen, Scott, Zhu, Z. 20]
For d = 1,2, there exists mg > 0 such that: for m > mg, the Gaussian free field

N(0,(m — A)~1) is the unique invariant measure to W.

o Difficulty: Nonlinear Markov semigroup;
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Invariant measure to Limiting equation

e The limiting equation
(Or — A4+ mV; =LV; = —pV; + &,
where u = E[W? — Z?],d = 2; u = E[W?],d = 1;
o Invariant measure: Gaussian free field
N, (m—A)1Y),d=2,3 N(O,(m+p—A)Y),d=1,

o > 0.
° 1 1 1
Z(|k|2+,u+m |k|2+m ;Zk2+u+m:“'

kez?

Theorem [Shen, Scott, Zhu, Z. 20]
For d = 1,2, there exists mg > 0 such that: for m > mg, the Gaussian free field

N(0,(m — A)~1) is the unique invariant measure to W.

o Difficulty: Nonlinear Markov semigroup; no general theory;
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where u = E[W? — Z?],d = 2; u = E[W?],d = 1;
o Invariant measure: Gaussian free field
N, (m—A)1Y),d=2,3 N(O,(m+p—A)Y),d=1,

o > 0.
° 1 1 1
Z(|k|2+,u+m |k|2+m ;Zk2+u+m:“'

kez?

Theorem [Shen, Scott, Zhu, Z. 20]
For d = 1,2, there exists mg > 0 such that: for m > mg, the Gaussian free field

N(0,(m — A)~1) is the unique invariant measure to W.

o Difficulty: Nonlinear Markov semigroup; no general theory;

o Idea: solutions converges to each other as time goes to infinity.
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Invariant measures

Convergence of invariant measure (field)

e O(N) linear sigma model:

1 1 m & 1 N 2

N 2 2 2

= -2 Vo< + o + (O O]
v o exp( /Td2j§1 i 5 J-El i N(J-El J> dx)D ,

e v: Gaussian free field
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Invariant measures

Convergence of invariant measure (field)

e O(N) linear sigma model:

1 1Y m & 1 /h N2

N 2 2 2

- 2 S ve 2+ IS ¢ —( q>.)d Do,
e v: Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/Shen, Zhu, Z. 21]
For d =2,3
o N/ form a tight set of probability measures on C~2~* for x> 0.
o For m > mg, N+ converges to v; and v}Y converges to v x -+ x v, as
N — co. Furthermore, Wo (v, 1) < N~z

o Difficulty: don’t know each component of the tight limit is independent;

Nonlinear Markov semigroup P;vy # [ P;dxv1(dx); not easy to control the
nonlinear term as time goes to infinity
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Idea of proof: Wo(vN'/ 1) < N2 for d =3

e a coupling of vN'/ 1/ = take stationary solutions (®;, Z;)
o (Oe—D+m)Y;=—LS N (Y2 4+2Y,: ZZ 4+ 22 Y+,
e Cancelation from paraprodcts [Gubinelli Hofmanova 18]

N

> [a-my, vy - Z G ZiZ Y < 2 Y]

i=1 j=1
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N

Z[((A m)Y;, Yi) — NZ ;z,-zj:+Y,-<:zJ?:,v,->}
i=1

o Paracontrolled ansatz and further decomposntion

N
1
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Idea of proof: Wo(vN'/ 1) < N2 for d =3

e a coupling of vN'/ 1/ = take stationary solutions (®;, Z;)
o (Oe—D+m)Y;=—LS N (Y2 4+2Y,: ZZ 4+ 22 Y+,
e Cancelation from paraprodcts [Gubinelli Hofmanova 18]

N

Z[((A m)Y;, Yi) — NZ ;z,-zj:+Y,-<:zJ?:,v,->}

i=1
o Paracontrolled ansatz and further decomposntion

N
1
Y= — N(m—A)’:lE (Y = ZiZj +Y; < Z7 )
j=1

E(YIM(DIE) + 5 EZH e+ EHZ

(EN: 1Y; IILz) + CE/OT (Z ||Y,-Hiz)R,Vds+ C.

i=1
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Idea of proof: Wo(vN'/ 1) < N2 for d =3

e a coupling of vN'/ 1/ = take stationary solutions (®;, Z;)
o (Oe—D+m)Y;=—LS N (Y2 4+2Y,: ZZ 4+ 22 Y+,
e Cancelation from paraprodcts [Gubinelli Hofmanova 18]

N

Z[((A m)Y;, Yi) — NZ ;z,-zj:+Y,-<:zJ?:,v,->}
i=1

o Paracontrolled ansatz and further decomposntion

N
1
Y= — N(m—A)’:lE (Y = ZiZj +Y; < Z7 )
j=1

(Zuv IE:) + 2 EZH e+ EHZ
<E(Z||Y ||Lz)+CE/ (;uviniz)mmc.

Ry = Ry — E[RN] + E[RN]
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Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]

Suppose that ® = vN. For x > 0, m large enough, the following result holds:
o Jo i, i ®2 s tight in B, 3" ford =2 /B 17" ford =3

° 1 (Z,Nzl $2)2 : is tight in Bl_’f“ for d =2

o Ford=1,2,
N 1 N
lim o2 lim — . 72
N— oo \/N ; ! 7& N— oo \/N ; !
N N
— 2\2 . : = 2\2
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Suppose that ® = vN. For x > 0, m large enough, the following result holds:
o Jo i, i ®2 s tight in B, 3" ford =2 /B 17" ford =3

° 1 (Z,N:l $2)2 : is tight in Bl_’f“ for d =2

o Ford=1,2,
N 1 N
lim o2 lim — . 72
N— oo \/N ; ! 7& N— oo \/N ; !
N N
— 2\2 . : = 2\2

o Idea: Improved moment estimate for stationary case by independence
N q N q N
| (L) | e[ (vl +1) (T ivviie )] 51
i=1 i=1 i=1
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Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]

Suppose that ® = vN. For x > 0, m large enough, the following result holds:
o Jo i, i ®2 s tight in B, 3" ford =2 /B 17" ford =3

° 1 (Z,N:l $2)2 : is tight in Bl_’f“ for d =2

o Ford=1,2,
N 1 N
lim o2 lim — . 72
N— oo \/N ; ! 7& N— oo \/N ; !
N N
— 2\2 . : = 2\2

o Idea: Improved moment estimate for stationary case by independence

E[(inwniz)q] +E[(§nvfné +1)q(é||w-|%z)] <1

o Integration by parts formula/ Dyson-Schwinger from [Kupiainen 80]
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Further Problems

o Convergence of dynamics for d = 3/ Correlation of Observables for d = 37
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e How about infinite volume case? Tightness should be true. Convergence of
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Observables

Further Problems

o Convergence of dynamics for d = 3/ Correlation of Observables for d = 37

o how to drop m > mg? General theory on distributional dependent singular
SPDEs

e How about infinite volume case? Tightness should be true. Convergence of
the measure?

o Other models
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Observables

Thank you |
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