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Notation

R™ O 8™~ ! : unit sphere centered at the origin.

x -y : canonical inner product of R"

lz|| == vz -

P(R™) : the vector space of polynomials,
f(x) = f(x1,...,2,), over R.

Hom;(R") : the subspace consisting of
homogeneous polynomials of degree 1.

P (R™) := @!_,Hom;(R").

H(R™): the subspace consisting of all the
harmonic polynomials.

Harm;(R™) := H(R") N Hom;(R™).

When we consider polynomials on a subset

X C R™ we use the following notation.

P(X),Hom(X), Pi(X), H(X), Harm; (X))




Notation
R™ D Y: finite set: {|ly|| |y e Y} = {r1,...,mp},

Possibly one of r; is 0.
Si ={z € R" | [|y|| = ri},
Y;=5nY (1<i<p)
S=uUP_S;, S is called the support of Y
Y is supported by p concentric

spheres
w: Y — Ry, a weight function
w(YZ) — Zyeifi w(y)9
571 = Jqido(@),  |Si| = [y, doi(a),
If r;, = 0, then |le| fSi f(x)do;(x) = f(0)
for 7 f(z) € P(R"),
|S;| = "1 S™ Y| for r; > 0.



Euclidean designs

Definition(Neumaier-Seidel, 1988 [24])
(Y, w) is a Euclidean t-design if

w( i)
ISI

/f(y)daz(y) S w(y)f(v)

yey

for any polynomial f(y) of degree at most t,
where w(Y;) = >,y w(y).
Remarks:
ep=1,Y # {0}, w(y) =1 = Spherical t-designs.
e Assume 0 €Y.
Then (Y, w) is a Euclidean t-design if and only
if (Y U {0}, w) is a Euclidean t-design
(w(0) can be any positive real number).



Natural lower bounds
Theorem (Moller 1979) [23]
(Original theorem was given in terms of general cubature formula)
R™ O Y: a finite set, with the support S =S, U---US,
(1) Y: Euclidean 2e-design = |Y| > dim(P.(S))
(2) Y: Euclidean (2e 4 1)-design
(a) eodd, or eeven and 0 € Y
— Y| > 2dim(P:(S))
(b) eevenand 0 € Y
—> |Y| > 2dim(P;(S)) — 1

P.(R") = @¢_,Hom;(R"), P*(R") = @, ;Hom,_5;(R™)

]



Definition of Tight designs
If “ =7 holds then (Y, w) is called a tight t-design
on p concentric spheres in R"
Moreover if
(1) dim(P.(S)) = dim(P(R™)) (for t = 2e),
or
(2) dim(P2(S)) = dim(P}(R")) (for t = 2e 4 1)
holds, then (Y, w) is called a tight t-design of R”

If p > [¢£5] + 1 or p > [£] + 1, then (1) and (2) (resp.) are always

satisfied. (e =0if 0 & S,eg =11if 0 € S)

Formulas for dim(P.(S)), dlm(’P*(S)) are explicitly known.
dim(P;(R™) = ("),

dim(P.(E) = (") = T, ("),
dim(P?(R™)) = 32, ("3 ).

e—21
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The explicit formula for dim(P.(S)) is known and it depends
on the number p of spheres supporting Y (see [20, 15]).
Let es =1if0€ S,and eg =0if 0 € S. Then

dim(Pe(S)) = E£g —I— Z

2(pes)—1 (n—|—e —71—1
i=0

) < dim(P.(E"),

e —1
for p < [<59].

dim(P.(S)) = 3

1=0

for p > [“1F5] + 1.

e ("7 = dimepaen)

e —1

Therefore, in particular for t = 2e, 0 € Y and p < [7], we can express the
lower bound of the cardinality of a Euclidean 2e-design as

Y| > he + he—1 + ...+ he_pt1, where h; = dim(Hom,;(R"))



Euclidean 8-designs in R?

regular 9-gon is a tight spherical 8-design
case 0 €Y regular 7-gon is a tight spherical 6-design

(regular 9-gon)U{0} (2 regular 7-gons)U{0}

tight 8-design of R?

tight 8-design on 2
concentric spheres in R?

. 2 _
case 0 & ¥ 2 ti 1 d1m(7?€1$1}i& ) iti o~ btained by rotati
2 regular 7-gons consecutive polygons are at the position obtained by rotating
one of them 1/2xcentral angle of the other

tight 8-design on 2
concentric spheres in R?

Ratio of the radii r;/r;+1 can be any real number # 1,
and the weight is constant on each circle, and the ratio
of the weights w;/w; are determind explicitly by r;.
rE < rg < - < Tp.



If t =9, then we have the following

regular 10-gon is a tight .
Case 0 € X. gpherical 9-design regular 8-gon is a
tight spherical 7-design

regular regular
10-gon 8-gons and 0
and 0

t=9(k=2),p=2

tight 9-design on 2 | X| =17

concentric spheres tight 9 design on 3 spheres

tight 9 design of R?
regular hexagon is a
Case 0 ¢ X. tight spherical 5-design

tight 9 design on
2 concentric spheres

hexagons regular 8-gons
t=29, t=9,p=2
p=k+1=3 | X| =16

| X| =18

tight 9-design of R?

Ratio of the radii can be any real number # 1, and the weight is constant on
each circle and the ratio of the weights are determind explicitly by the radii.

Note that dim(P}(R?)) = 9.



Existence Theorem
(Seymour and Zaslavsky (1984)[26])
If the N is sufficiently large natural integer, then there always
exists a Euclidean t-design Y satisfying |Y| = N. (The lower
bound of N depends on n and t).

Our interest is finding or classifying tight Euclidean t-design,
or Euclidean t-design Y, with smallest possible cardinality.



Euclidean designs and coherent configurations

(Y, w): Euclidean t-design on p concentric spheres.

Y =U_ Y.

Notation

A(YzaY) — {||m||||y|| lz€Y;, y€E Y, © # Y},

sij = |A(Y:, Y))|, (si; = sj4)-

(Y; is a s;;-distance set.

A(Y;,Y)) = {al?) |1 < v < s
(m—11<z<p

10
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The following facts are known for tight Euclidean t-designs
on p concentric spheres.

t = 2e

Theorem (B-B 2006 ([3]))

Y : tight 2e-design on p concentric spheres
—
(1) w is constant on each shell Y;.
(2) si; <e(1<i<p),
in particular, Y; is at most an e-distance set.
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When t is odd, the situation is a bit complicated.

Theorem (Moller 1979 [23], B-B-Hirao-Sawa 2010 ([10]))

Y : tight 2e 4+ 1-design on p concentric spheres
—

(1) If e is odd, then Y is antipodal and 0 € Y.

Moreover w(—y) = w(y) for any y € Y (centrally symmetric).
(2) If e is even and 0 € Y, then Y is antipodal and

w is centrally symmetric.

(3) Ifeiseven, 0 €Y, and p < ¢ + 1, then Y is antipodal and
w is centrally symmetric.
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Theorem (et-B 2006 [15])

Let Y be an antipodal Euclidean tight (2e 4+ 1)-design.
Assume w is centrally symmetric.

Let Y =Y*U(=Y*),Y*N(=Y*) =0 or {0}.

Then the followng hold:

(1) w is constant on each shell Y;.

(2) Each Y;* = Y; N Y™ is an at most e-distance set.

(3) sij <e+1, 1 <1,5 <pin particular each Y; is at most
an (e + 1)-distance set.

(4) If w is constant on Y \{0}, then p — eg < e.
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Theorem (B-B 2010 ([6]))
(1) Y: t-design.
Assume
w(y) =w,, y €Y, (1<v < p),
Sapv+ Supu <t —2(p—2) for any A, v, p 1 <A v, pu <p).
— Y has the structure of a coherent configuration.

(2) Y antipodal t-design.

Assume

w(y) = wy, z € X, (1 <v < p).

Sav+ Sup— 0y — 0y, <t —2(p— 2), for any

A vy (1< A v, p < p).

— Y has the structure of a coherent configuration..

If p=2and X;, X, # {0}, then these conditions are satisfied.
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Known results for the classification of tight

Euclidean t-designs

on —=2:
Verlinden-Cools (1992)

Bajnok (2006)
B-B-Hirao-Sawa (2010)

ot =2:

B-B-Suprijanto (2007, Europ. J. Comb)

Y: l-innerproduct set with a negative inner product, |Y|=n+1
ot =3:

Bajnok (2006)[1], etB (2005) [15]

Y = {Zi:’l“iei | 1=1,.. .,’n,}, w(riei) — nLriz’

- those with p < [4] + 1
are completely described

{e1,...,e,} is a canonical basis of R".

e We cannot expect the complete classification for ¢ > 4 in general.
If p is not small enough, many deformations (non-rigidity) are usually

possible (B-B-Suprijanto, 2007)

So, here we mainly study the cases where ¢ > 4 and p = 2.



Known results (continued)

For odd t we have the following:

et =05, p=2:etB (2006) [15].
Y = {0} U Y3, Y; is a spherical tight 5-design,
If0 €Y, then Y is similar to one the 4 cases in R"”,
n=23,56.

ot =17, p=2: B-B (2009) [4]

similar to one of the 3 cases in R" n = 2,4,7.
ot =9,p=2: B-B (2011) [5]), non-existence for n > 3.
et >11,p = 2 : classification is still open for n > 3 .

et =2e+1>13,p = 2: B-B toappear in [7] (2014)
n is bounded above by a certain function of . This
means for n > 3, there are finitely many ¢-designs for

each odd t > 13.

16



For even t we have the following:
ot =4, p=2: etB [16] (2009), several interesting examples
for n = 2,4,5,6 and 22.
For n = 22, examples related to tight 4-(23,7,1)
design in J(23,7) and tight 4-design in H (11, 3).
Also partial classification.
B-B [6] (2010) further partial classification

et =06, p= 2 : B-B-Shigezumi [12] (2012),
one interesting example with n = 22 and | X| = 275

For p > 3 (and t > 4), some sporadic examples are known.
ep=3,1t=7mn=3, | X|=26: Bajnok [2] (2007)
ep=23,t=5 n=4, | X|=22: Hirao-Sawa-Zhou [21] (2011)

17



Classical design theory
(Combinatorial design theory)
\

Designs in Q-polynomial
association schemes

U
Spherical designs

4

Euclidean designs

4

Relative designs in Q-polynomial
association schemes

18
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Relative t-designs in Q-polynomial association schemes

Some more notation:
X = (X, {Ri}o<i<a): Q-polynomial association scheme.
F(X) : the vector space of all the real valued functions

defined on X.
We identify F(X) and RX! and consider x € F(X) as a vector in RIX!

whose z-entry is defined by x(x) for x € X.

For Y C X, let ¢y € F(X) be defined by
1 forxeY,
(@) = {

. characteristic function of Y)
0 otherwise. (

If Y = {u}, then we write ¢,.

Let L;(X) be the subspace of F(X) spanned by all
the column vectors of E;, 0 < 72 < d. Then we have
F(X)=Lo(X) LLy(X)L.-- L Ly(X).



Designs in a Q-polynomial association scheme
Definition(Delsarte 1973, 1977)
t: natural integer
X € F(X) is a t-design of X
<
Eijx =0for 3y =1,2,...,t.

The following facts are well known
Let Y C X.
¢y is a t-design in Johnson scheme J(v, k)

<= Y is a classical t-(v, k, \) design in a v point set.

¢y is a t-designs in Hamming schemes H (d, q)
<= Y is an orthogonal array

20
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Natural lower bound (Delsarte (1973) [17])
X € F(X): at-design, Y := {y € X | x(y) # 0},
—= Y| >mo+my+ -+ me
where e = [], m; = rank(E;) = dim(L;(X))

Compare with the lower bound of Euclidean 2e-design
(mentioned in p. 6) !

Definition (Delsarte (1977) [18])
Let ug € X and ¢,, € F(X) (the characteristic function of uy).
X € F(X) is a relative t-design with respect to ug

<
E;x and FE;¢,, are linearly dependent for 3 =1, 2,...%.



Delsarte(1977) [18]
o x € F(X) is a t-design

—> X is a relative t-design w.r.t. any ug in X

® ¢x, is a relative d-design w.r.t. ug
for any 2 =0,1,...,d
(X; ={x € X | (xz,u0) € R;})

@x, is called a trivial design.

22



X = H(n,2) = (X,{Ri}o<i<a)

X =F F, = {0,1}, R = {(z,y) | H{J | =z; # y;} =i},
where € = (1,...,2,),y = (Y15-..,Yn) € X.

Let ug = (0,0,...,0),

X ={x € X | (x,u) € Ri}.

X}, has the structure of J(n, k) induced by H(n,2).

Delsarte(1977) [18]
Let Y C Xj. Then the following holds.

Y is a relative t-design w.r.t. ug
<
Y is a t-design of J(n, k)

23
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Some more notation:
Canonical inner product:
f-9= ZwEX f(x)g(x), f,g € F(X).
{¢. | u € X} forms the canonical orthonormal basis of F(X).
L;(X):= subspace spanned by {E,¢, | u € X}.
column space of E;
Then we have
e dim(L;(X)) = m; = rank(E;),
e F(X)=Lo(X) L Ly(X) L .-+ L Ly(X)
(with respect to the canonical inner product given above).
Consider (Y, w),
YCX, Y.=YnNJX,
w: a positive weight function on Y
Let p:= [{r | Y N X, # 0}| and
{ri,re, ..., ={r | Y NX, #0}
Let § = X, , U---UX,,: support of Y(=Y,, U---UY,).



Definition B-B (2012) [8](New formulation)
(Y, w):=positive weighted set in a Q-polynomial
association scheme X
S:= X, U---U X, support of Y. Then
(Y w) is a relative t-design w.r.t. ug € X

Z’“’(Y’“@) Y f@) =Y ww)f)

1=1 TZ mEXT yey

for any f € LO(X) + Li(X) + - -+ + Ly(X)
Here w(Yy,) := ) _ ey, w(y) (1 < < p).

25



Theorem B-B (2012) [§]
(New formulation of Delsarte’s idea)
Let x be a nonnegative function on X, x¥ € F(X) be the
function defined by
X(x) := L%—zl > _yex; X(y) for any z € X;.
Let Y := {x € X | x(x) # 0}.

Then the following (1), (2) and (3) are equivalent.
(1) x is a relative t-design with respect to wuy.
(2) E;jx and E;X are linearly dependent for any
j=1,2,...,t
(3) Let w = x|y. Then (Y, w) is a relative t-design
with respect to uy.
This theorem shows that the original definition of relative
t-design by Delsarte and the new formulation given in
p.25 are equivalent !

26



Theorem (B-B (2012) [8])
Let (Y, w) be a relative 2e-design. Then

Y] > dim(Lo(S) + L1(S) + - -+ + Le(S))

holds. Here S = X, U X,, U-.--U X, .
(Y, w) is called tight if equality holds in above.

e The explicit formula for

dim(Lo(S) + L1(S) + -+ - + Le(S))

are not known in general.

It is important to determine the explicit formula.

27



28

Examples

5]
relative tight 2-design in H (6, 2)

w.r.t. (0,0,0,0,0,0)

Y| =7
Lejmove one point from
symmetric 2-(7,3,1) design

set of points on a line
1 9 3 considered in FY

e.g. {1,2,3} = (1,1,1,0,0,0) € X5
{3,6} = (0,0,1,0,0,1) € X,

Y consists of 4 blocks with 3 points,
3 blocks with 2 points,

tight 4-(23,7,1) design
—> relative tight 4-design in H(22,2) w.r.t. (0,0,...,0)
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Known facts related to the relative t-designs of
Q-polynomial schemes.

Explicit formula for the lower bound.
It was conjectured that

dim(Lo(S) + L1(S) + -+ + L.))

=Me~+ Me_1+ -+ Me_pi1

holds for Q-polynomial schemes and Xiang proved it for the
case H(n,2) (2012) [27].
B-B-Suda-Tanaka (2013) [13], give a condition using the
property of Terwilliger algebra of X which implies the formula
given above. In particular H(d, q) satisfies this condition.
See also Li-B-B (2014) [22].
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Theorem (B-B-B (2014))

X = (X,{R,}o<r<d) : Q-polynomial scheme.

(Y, w): tight relative 2e-design on X with respect to uy € X.
G: the automorphism group of X.

Assume that the stabilizer G, of ugy acts transitively on every
shell X,., 1 < r < d.

Then the weight function w is constant on each

Yri =YnNn X'ria

where {ry,...,r,} ={r | Y N X, # 0}
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Tight relative 2-designs on H (n, 2)

Theorem (B-B-B-2014)

Let (Y, w) be a tight relative 2-design of H(n,2) supported
by 2 shells, S = X,, U X,,.

Let N,, = |Y;.|, w(y) =w,, ony €Y, for 1 =1,2.

Then N,, + N,, = n + 1, and the following (1), (2), (3),
and (4) hold.

(1) 2 < N,,, N, <n —1 holds and

Wy N’f’1r1(n - NT‘1)(n - 'rl)
ro(Np, — 1)(n+1— N, ) (n — 'rz)'

Wy
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(2) For any integers ry, 73 satisfying 1 < r; <r, <n —1,
the following holds

2(n — ry)r; N, ]
A(Y,,) = Jfori=1,2
A(Y;l, K,Z) _ {n(rl —|— 7"'2) — 2?“1’1”‘2}
n

This means that Y =Y, UY,, has a structure of coherent configuration.
We also determined existence and nonexistence for all the feasible
parameters for n < 30.

(3) If n = 6 (mod 8), and there exists Hadamard matrix of
size %n + 1, then we can construct a tight relative 2 design
Y C X, U X% (r1 = 2, 72 = ) whose weights satisfy

wr, 8
Wy T n+42?

i.e., w is not constant on Y.
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(4) If n < 30 and Y is not related to the Hadamard

matrices given above, then the weight function is constant
onY.

Recently Hong Yue (student at Hebei Normal Univ.)
explicitly determined all the feasible parameters for

31 < n < 50 and determined existence and non existence
for each of them.

She checked (4) is also true for 31 < n < 50.

Except the example given in (3), all the known examples are
corresponding to symmetric designs.
The classification problem is still open.
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Outline of the the method we use for Q-polynomial scheme X
in general.

Let (Y,w) be a relative 2e design of Q-polynomial scheme X.
Let § = X, U---U X, be the support of Y.

Let F(S) be the restriction of F(X) to S.
We consider the inner product on F(S) defined by

(f,9) = Z

Z f(z)g()

i zeX,,

for f,g € F(S).
For a Q polynomial scheme it is known that if f,g € L;(X) then

fg € Zl o L21(X) holds.
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Let {(1017' <. 990N} C LO(X) L LI(X) Lol Le(X)'
Since ¢p;p; € Lo(X) L L1(X) L --+ L Ly.(X) and we can apply the
formula of the definition of relative t-design to ¢;p;.
Assume that {y1]|s,...,¥nN|s} is an orthonormal basis of
Lo(S) + L1(S) + - - + Lo(S)
with respect to the inner product ( , ) given in p.34,
where L;(S) is the restriction of L;(X) to S.
Let H be the matrix whose rows are indexed by Y with IN columns

and (y,¢)-entry is defined by /w(y)p:(y).
Then we have the following

(‘H H)(i,5) = >_ w(®)ei(y)e;(y)

yey

i (@)e(x) =

Hence we have
rank(H) = Y| > N = dim(Lo(S) + L1(S) + -+ - + Le(S).
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Assume that (Y, w) is a tight relative 2e-design.
Then |Y| = N holds. Then H is an invertible matrix and

H 'H = I holds.
Therefore we have

(H'H)(y1,92) = 3 Vo) w(we)e: (1) i(v2) = 3y

This implies

Zsoz(w)soz(y) = (@, y)—— ( 3
If the stabilizer G, of uy in the automorphism group G of

X acts transitively on each shell X, (1 < r < d), we can prove
the following:



For any ¢1,...,oN € Lo(X) + L1(X) + -+ - 4+ L.(X) with
the property that {¢1|s,...,¥n|s} is an orthonormal
basis of Lo(S) + L1(S) + -+ + L.(S), the following hold.

Z%‘(m)z =

, foranyxze€Y,,2=1,...,p

1
wy,

and

N
> pi(x)pi(y) =0, for any z,y €Y, x # y.
1=1

37
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Tight relative 2-designs supported by 2 shells of J(n,d)
(The following is done joint with Y. Zhu (student at SJTU)

and Eiichi Bannai. )

For the relative 2-design in J(n,d) on 2 shells X,, U X,.,
we found out that (n — 1) column vectors ¢, of E;, at

u € X; and the column vector ¢o(= 1) of E, span

Lo(S) —+ Ll(S), i.e., dlm(LO(S) + Ll(S)) = m, + mgyg = n.
Starting from these n functions, we compute orthonormal
basis of Ly(S) + L1(S) and determined all the feasible
parameters n, d, r1, 2, N, N, and the relations between
the points in Y, for n < 100.



At this moment the remaining possible parameter up to
n = 100 is for n = 16, 36,45, 64, 96, 100.

All of them corresponds to the constant weight.

All of the remaining cases have the structure of coherent
configurations.

For n = 16,36,45, Y is 1-distance set and using the
symmetric design we actually constructed tight relative
2-designs.

39
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