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1 Assumed results

(i) Vandermonde determinant:∣∣∣∣∣∣∣∣∣
1 · · · 1
a1 · · · am

...

am−1
1 · · · am−1

m

∣∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤m

(aj − ai) 6= 0 if a1, . . . , am are distinct.

(ii) If A1, . . . , An ∈ Matn(R) are pairwise commutative symmetric matrices, then there
exists an orthogonal matrix T ∈ Matn(R) such that TAiT

−1 is diagonal for all i.

(iii) If E ∈ Matn(R) is positive semidefinite symmetric matrix, then there exists an n ×
rank(E) matrix F such that E = FF>.

J stands for a matrix all of whose entries are 1. For a positive integer m, denote by [m] the
set {1, 2, . . . ,m}. Unless otherwise noted, X will denote a finite set with |X| = n.

2 Graphs and their adjacency matrices

Let Γ = (X,E) be a undirected simple graph. The adjacency matrix A of Γ is defined as

(A)xy =

{
1 if {x, y} ∈ E,

0 otherwise.

Then

(A2)xy =
∑
z∈X

(A)xz(A)zy

= # path of length 2 from x to y

=

{
deg x if x = y,

# common neighbors otherwise
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∂(x, y) = distance between x and y. The i-th distance matrix is defined as

(Ai)xy = δi,∂(x,y).

For the 3-cube,

A2 = 3I + 0 ·A+ 2A2 + 0 ·A3 =⇒ A2 ∈ 〈I, A,A2〉,
A2 ∈ 〈I, A,A2〉, A2 /∈ 〈I, A〉,

AA2 = 0 · I + 2A+ 0 ·A2 + 3A3 =⇒ A3 ∈ 〈I, A,A2, A3〉,
A3 ∈ 〈I, A,A2, A3〉, A3 /∈ 〈I, A,A2〉,

AA3 = A2 =⇒ A4 ∈ 〈I, A,A2, A3〉 ⊂ 〈I, A,A2, A3〉.

By induction An ∈ 〈I, A,A2, A3〉 for all n ∈ N. Thus

R[A] = 〈I, A,A2, A3〉. (1) 2

where R[A] is the subalgebra of the full matrix algebra MatX(R) generated by A. Observe
that R[A] is an algebra with respect to matrix multiplication, while 〈I, A,A2, A3〉 is in gen-
eral just a vector subspace. However, by considering the entrywise product, 〈I, A,A2, A3〉
is also an algebra. This implies that (1) is closed under both multiplications.

3 Coherent algebras

Let F be a field. An algebra A over F is a commutative ring with 1 which is also an F-vector
space, satisfying come compatibility axioms. An example is a subring of Matn(F) which
is also closed under scalar multiplications. A simpler example is the vector space Fm with
entrywise multiplication. Its identity as a ring is (1, . . . , 1) ∈ Fm.

Suppose that A ⊂ Fm is an algebra over F. Using the Vandermonde determinant, we
find

Fm ⊃ A 3 ∃a, ∀i 6= ∀j, ai 6= aj =⇒ A = Fm.

The same proof shows

Fm ⊃ A 3 a, ∀i ∈ [m],
∑
j∈[m]
aj=ai

ej ∈ A. (2) 1

lem:1 Lemma 1. Let A ⊂ Fm be a subalgebra. Define i ∼ j ⇐⇒ ∀a ∈ A, ai = aj, and denote
by I1, . . . Id its equivalence classes. Then

A = 〈
∑
i∈I1

ei, . . . ,
∑
i∈Id

ei〉.

Proof. We may assume 1 ∈ I1, and it suffices to show∑
i∈I1

ei ∈ A.

For b ∈ A, set I(b) = {i ∈ [m] | bi = b1}. Then by (2),∑
i∈I(b)

ei ∈ A.
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For any k ∈ [m] \ I1, there exists b(k) ∈ A such that k /∈ I(b(k)). Then⋂
k∈[m]\I1

I(b(k)) = I1, so
∑
i∈I1

ei =
∏

k∈[m]\I1

∑
i∈I(b(k))

ei ∈ A.

Definition 2. A coherent algebra A is a subalgebra of Matn(C) containing J , closed under
the entrywise product ◦ and transposition >.

Definition 3. A coherent configuration is a pair (X, {Ri}di=0) where {Ri}di=0 is a partition
of X ×X such that

(i) {(x, x) | x ∈ X} is a union of some Ri’s,
(ii) For each i ∈ {0, 1, . . . , d}, tRi = Ri′ for some i′ ∈ {0, 1, . . . , d}, where tRi = {(x, y) ∈

X ×X | (y, x) ∈ Ri}.
(iii) For h, i, j ∈ {0, 1, . . . , d}, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj

is constant whenever (x, y) ∈ Rh. This constant is denoted by phij . These constants are
called intersection numbers.

The adjacency matrices of the relations of a coherent configuration form a basis of a
coherent algebra, and every coherent algebra arises in this way.

partition of X ×X ⇐⇒ J ∈ A
(i) ⇐⇒ I ∈ A
(ii) ⇐⇒ closed under transposition

(iii) ⇐⇒ closed under multiplication, AiAj =

d∑
h=0

phijAh.

Definition 4. If a coherent configuration (X, {Ri}di=0) satisfies the additional property
(iv) R0 = {(x, x) | x ∈ X}

then it is called an association scheme. If an association scheme satisfies the additional
property

(v) phij = phji for all h, i, j ∈ {0, 1, . . . , d},
then it is called commutative. If it satisfies the additional property

(vi) tRi = Ri for all i ∈ {0, 1, . . . , d}
then it is called symmetric. A symmetric association scheme is commutative.

For simplicity, we consider symmetric association schemes in what follows.

4 Primitive idempotents

Let (X, {Ri}di=0) be a symmetric association scheme. The coherent algebra A spanned by
its adjacency matrices is called the Bose–Mesner algebra. Since the adjacency matrices are
pairwise commutative symmetric matrices, there exists an orthogonal matrix T such that
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TAT−1 is a subalgebra of diagonal matrices, that is, TAT−1 ⊂ Rn. By Lemma 1, TAT−1

has a basis of the form

1
. . .

1
0

. . .
. . .

. . .

0


,



0
. . .

0
1

. . .

1
0

. . .


, etc.

Call these matricesDi. ThenDiDj = δijDi. Define Ei = T−1DiT ∈ A. Then EiEj = δijEi.
Since A = 〈A0, A1, . . . , Ad〉 has dimension d + 1, we have dimTAT−1 = d + 1, so there
are d + 1 Ei’s. These Ei’s are called the primitive idempotents. Since J ∈ A, writing
J =

∑d
i=0 ciEi, squaring both sides gives ci ∈ {0, 1}. Comparing rank shows 1

nJ = Ei for
some i, so we may assume 1

nJ = E0 without loss of generality.
We have

Ai ◦Aj = δijAi,

AiAj =
d∑

h=0

phijAh,

EiEj = δijEi.

To be complete, we need

Ei ◦ Ej =
1

n

d∑
h=0

qhijEh.

The coefficients qhij are called Krein parameters. It is known that qhij ≥ 0.
The nonsingular matrix P defined by

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P

is called the first eigenmatrix, and Q = nP−1 is called the second eigenmatrix.

Aj =

d∑
i=0

PijEi,

Ej =
1

n

d∑
i=0

QijAi.

Example 5.

A0 = I, A1 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , A2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
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E0 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , E1 =
1

2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 , E2 =
1

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .

Moreover,

A2
1 = 2A0 + 2A2, A1A2 = A1, A2

2 = A0,

E1 ◦ E1 =
1

4
(2E0 + 2E2), E1 ◦ E2 =

1

4
E1, E2 ◦ E2 =

1

4
E0.

P = Q =

1 2 1
1 0 −1
1 −2 1

 .

5 Orthogonality relations

Write

kj = P0j that is, AjJ = kjJ,

mj = rankEj = trEj =
1

n
tr

d∑
i=0

QijAi = Q0j .

Then

Qhjkh = Qhj
1

n
trA2

h

=
1

n
tr

d∑
i=0

QijAhAi

= trAhEj

= tr
d∑

i=0

PihEiEj

= trPjhEj

= Pjhmj .

This implies the orthogonality relations:

δijn = (PQ)ij =
d∑

h=0

PihQhj =
1

mi

d∑
h=0

QhiQhjkh,

δijn = (QP )ij =
d∑

h=0

QihPhj =
1

ki

d∑
h=0

PhiPhjmh
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6 Examples

(i) Complete graphs. A = 〈I, J − I〉.

(ii) Polygons. A = C + C>, where

C =


0 1 0

. . .
. . .
. . . 1

1 0


A =

{
〈I, C + C>, C2 + (C>)2, . . . , Cm + (C>)m〉 (2m+ 1)-gon,

〈I, C + C>, C2 + (C>)2, . . . , Cm〉 2m-gon

(iii) Let G be a finite group of order n. Define (Ag)xy = δx,gy. Then AgAh = Agh.
A = 〈Ag | g ∈ G〉 is commutative if and only if G is abelian, A is symmetric if and only
if g2 = 1 for all g ∈ G. If H is a subgroup of AutG, with orbits S0 = {1}, S1, · · ·Sd,
then

A′ = 〈
∑
g∈Si

Ag | 0 ≤ i ≤ d〉

is also a coherent algebra, defining an association scheme.

(iv) Let G be a transitive permutation group. Let {Ri}di=0 be the G-orbits on X × X.
Then (X, {Ri}di=0) is an association scheme.

(v) Let F be a finite set with q ≥ 2 elements, and set X = F d. Then X is a metric
space with respect to the Hamming distance dH(x, y) = |{i | i ∈ [d], xi 6= yi}|. Then
(X, {Ri}di=0) is a symmetric association scheme called the Hamming scheme H(d, q),
where

Ri = {(x, y) ∈ X ×X | dH(x, y) = i}.

(vi) Let Ω be a finite set with v elements, and let X be the collection of all d-element
subsets of Ω. Define

Ri = {(x, y) ∈ X ×X | |x ∩ y| = d− i}, (i = 0, 1, . . . , d).

Then (X, {Ri}di=0) is a symmetric association scheme called the Johnson scheme
J(v, d).

(vii) Let Γ be a connected regular graph of diameter 2. If there are integers λ, µ such that
any adjacent (resp. non-adjacent) pair of vertices have λ (resp. µ) common neighbors,
then Γ is called a strongly regular graph. Let A be the adjacency matrix. Then one
obtains an association scheme with Bose–Mesner algebra A = 〈I, A, J − I −A〉.

(viii) Let (P,B) be a quasi-symmetric 2-design, that is, in addition to being a 2-design, we
assume that two distinct blocks intersect with x or y points, where x and y are distinct
integers. Then X = B naturally carries a structure of a strongly regular graph.

(ix) A Steiner triple system is a 2-(v, 3, 1) design. any pair of distinct blocks intersect with
0 or 1 points, so it is a quasi-symmetric design, and hence carries a structure of a
strongly regular graph.
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