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The adjacency matrix of an undirected simple graph
I'=(X,E):

0 otherwise.

(A),, = {1 if {z,y} € E,

(A)ay = Y (A)az(A)sy

zeX

= # path of length 2 from x to y

_ Jdegzx if v =y,
| # common neighbors otherwise.
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A triangle

(42),, — deg x if x =y,
“ ] # common neighbors otherwise

A2=3-1T+0-A+(20r0)-(J—A-1)

Need “distance matrices”. d(z,y) = distance between
T,.
(Ad)zy = 0io(w.)-

A2=3.T40-A4+2-Ay+0-A;.
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(A2A):6y = Z(A2)wz (A>zy

zeX



1
A*=3-T+0-A+2-Ay+0- 43 = A2:§(A2—3I).

(A2A)xy = Z(A2)xz (A)zy

zeX

AsA=0-T+2-A40-Ay+3- As.



A2=3.T+0-A+2-A,+0-A3 = AQZ%(AQ—:H).
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(A2A)fcy = Z(A2)xZ(A>zy
zeX
—> Aj = polynomial of degree 3in A

Similarly, A3A = A,, and this (deg4 = deg2) implies A
satisfies a polynomial of degree 4.

= A' € (I, A A% A% C (I, A, Ay, A3)
By induction A™ € (I, A, Ay, A;) for all n € N.
R[A] = (I, A, Ay, As).

where R[A] is the subalgebra of the full matrix algebra
Mat x(R) generated by A.
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algebra = vector space + ring
F: field = F™: vector space — [F™: algebra with
entrywise multiplication, identity = (1,...,1).
A C R3: subalgebra
If (1,2,3) e A = (1,4,9) € A, also (1,1,1) € A
— dimA=3 — A=R>
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algebra = vector space + ring

F: field = F™: vector space — [F™: algebra with
entrywise multiplication, identity = (1,...,1).

A C R3: subalgebra

If(1,2,3) e A = (1,4,9) € A, also (1,1,1) € A
— dimA4A=3 = A=R>

Using Vandermonde’s determinant,
F™ > A>3a, Vi#Vj, a; #a; = A=TF"
More generally

F" > A3a, Vic[m Ze]eA
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Lemma

Let A C F™ be a subalgebra. Define

i~j <= VYa€ A, a;=a;,and denote by I,...1;its
equivalence classes. Then

Proof. Clearly, “c” holds, so we only prove “>”. We may
assume 1 € I;, and it suffices to show

Zei GA.

ie€lq

Forb e A, setI(b) ={i e [m]|b=0b}. Then
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kem\ < k#1
— M c A, kg 1Y)

Thus
N 106%)=1.
kE[m]\h
A5 I Y e=Xe
ke[m\I1 ier(b®) i€l
since
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A coherent algebra A is a subalgebra of Mat,,(C)
containing J, closed under the entrywise product o and
transposition T.

Definition

A coherent configuration is a pair (X, {R;}.,) where
{R;}L, is a partition of X x X such that

(i) {(z,z) | x € X} is a union of some R;’s,

(i) Vi € {0,1,...,d}, 3, R} = Ry, where

Rl ={(z,y) € X x X | (y,2) € R;}.
(iii) Vh,i,5 € {0,1, ..., d},
{z € X | (z,2) € R;, (2,y) € R;}| = constant

independent of (z,y) € R,,. This constant is denoted by
p};. These constants are called the intersection numbers.



The adjacency matrices of the relations of a coherent
configuration form a basis of a coherent algebra, and
every coherent algebra arises in this way.



The adjacency matrices of the relations of a coherent
configuration form a basis of a coherent algebra, and
every coherent algebra arises in this way.

d d
XXX:UR,L <~ J:ZAzEA
=0 =0
{(r,2) |zeX}=|JR <= I=) AcA
i€lp i€1lp
Vi, 3, R/ = Ry <= closed under T
d
pl;independent <= A;A; = pliA,
h=0
<= closed under multiplication.
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If a coherent configuration (X, { R;},) satisfies the
additional property

(V) Ro = {(z,2) | z € X}

— association scheme.

If an association scheme satisfies

(v) p)s = pj; forall h,i,j € {0,1,...,d},
= commutative.

If it satisfies

(vi) R = R, foralli € {0,1,...,d}
=—> symmetric.



Definition

If a coherent configuration (X, { R;},) satisfies the
additional property

(V) Ro = {(z,2) | z € X}

— association scheme.

If an association scheme satisfies

(v) p)s = pj; forall h,i,j € {0,1,...,d},
= commutative.

If it satisfies

(vi) R = R, foralli € {0,1,...,d}
=—> symmetric.

symmetric = commutative.
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For a symmetric association scheme (X, {R;}%,), the
coherent algebra A spanned by its adjacency matrices
A;’s is called the Bose—Mesner algebra.

A;’s are pairwise commutative symmetric matrices
— 3T : orthogonal, TAT ! c {diagonal matrices}

As an algebra

{diagonal matrices} = R" with entrywise multiplication.

Lemma
Let A C R" be a subalgebra. Then

A= (Zei,...,Zei).

iell ’ield



By Lemma, T AT ! has a basis of the form

1 [0




By Lemma, T AT ! has a basis of the form

1

0

Call these matrices D;. Then

TAT = (Dy, Dy, ...

2

0

DZ‘D]‘ = 5szz
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TATil - <D0, D17 o >, DZD] = 61]D1
Define E;, = T_IDZ'T ceA = EZE] = 523Ez
Since

d+ 1= dim<A0,A1, ce ,Ad> =dim A
= dlmTATil = lel<l)07 Dl; . .>,

thereared+1 D,’s,and d + 1 E;’s.



TATil - <D0, D17 o >, DZD] = 61]D2

Define E;, = T_IDZ'T ceA = EZE] = 5Z]EZ

Since

d+ 1= dim<A0,A1, ce ,Ad> =dim A
= dlmTATil = d1m<D0, Dl; . .>,

thereared+1 D,’s,and d + 1 E;’s.

Ey, Ey, ..., E,; are called the primitive idempotents of
A — <E0,E1, .. .,Ed>.



JeAd =



d
1
JeA = —J ;00, (3e;)
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2
¢ =c ¢ €{0,1} - E
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d
1

1
2
¢ =c ¢ €{0,1} - E

ci=1

Since

1 =rankJ = rankz E; = rankz D; = Z rank D;

c;i=1 ci=1 ci=1

i, 1J = E;. We may assume 1J = E.



Ajo Ay =i A;,

d
AiAj = ZPZ‘AM
h=0
EiEj = 5ZjEl



Ajo Ay =i A;,
d
AiAj = ZPZ’A’“
h=0

EiEj = 51]Ez

To be complete, we need
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Ajo Ay =i A;,
d
AiAj = ZPZ‘AM

h=0
EiEj = 5UE1

To be complete, we need

d
1
h=0

q?j are called Krein parameters. It is known that qzhj > 0.
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3 nonsingular matrix P:

(Ao, Ay, ..., Ag) = (Eo, Er, ..., Ey)P

P -first eigenmatrix
Q@ = nP~! :second eigenmatrix

d
A] = ZR]Ew
Ej == QA
1=0

P;; are eigenvalues of A;, since A;F; = P, E;.
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