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Definition
A coherent configuration
is a pair (X, {Ri}d

i=0) where {Ri}d
i=0 is a partition of

X × X
(i) {(x, x) | x ∈ X} is a union of some Ri’s
(ii) ∀i ∈ {0, 1, . . . , d}, ∃i′, R>

i = Ri′, where

Ri
> = {(x, y) ∈ X × X | (y, x) ∈ Ri}.

(iii) ∀h, i, j ∈ {0, 1, . . . , d},

|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = constant

independent of (x, y) ∈ Rh. This constant is denoted by
ph
ij. These constants are called the intersection numbers.
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A = 〈A0, A1, . . . , Ad〉 = 〈E0, E1, . . . , Ed〉.



Ai ◦ Aj = δijAi,

AiAj =
d∑

h=0

ph
ijAh,

EiEj = δijEi,

Ei ◦ Ej =
1

n

d∑
h=0

qh
ijEh,

Aj =
d∑

i=0

PijEi,

Ej =
1

n

d∑
i=0

QijAi,

E0 =
1

n
J.



Example

A1 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , A2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

E1 =
1

2


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 , E2 =
1

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .

A2
1 = 2A0 + 2A2, A1A2 = A1, A2

2 = A0,

E1◦E1 =
1

4
(2E0+2E2), E1◦E2 =

1

4
E1, E2◦E2 =

1

4
E0.

P = Q =

1 2 1
1 0 −1
1 −2 1
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Aj =
d∑

i=0

PijEi =⇒ AjE0 = P0jE0 =⇒ AjJ = P0jJ.

kj = P0j is the degree (valency) of the graph (X,Rj).

Ei =
1

n

d∑
j=0

QjiAj =⇒ Ei ◦ A0 =
1

n
Q0iA0

=⇒ Ei ◦ I =
1

n
Q0iI

mi = rankEi = trEi (since E2
i − Ei = 0)

= tr(Ei ◦ I) = tr(
1

n
Q0iI) = Q0i

= “multiplicity” of the i-th common eigenvalue
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i − Ei = 0)

= tr(Ei ◦ I) = tr(
1

n
Q0iI) = Q0i

= “multiplicity” of the i-th common eigenvalue
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By Lemma, we have the orthogonality relations:

nδij = (PQ)ij =
d∑

h=0

PihQhj =
1

mi

d∑
h=0

QhiQhjkh

column vectors of Q are “orthogonal”

nδij = (QP )ij =
d∑

h=0

QihPhj =
1

ki

d∑
h=0

PhiPhjmh

column vectors of P are “orthogonal”
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Spherical representation

Fj =
n

mj

Ej =
d∑

i=0

Qij

Q0j

Ai ∈ 〈A0, . . . , Ad〉

is positive semidefinite, diagonals = 1, rank = mj.

∃B : n × mj matrix such that BB> = Fj

=⇒ bx : x-th row of B, ‖bx‖2 = 1,

bx · by = (Fj)xy depends only on h with (x, y) ∈ Rh

{bx | x ∈ X} ⊂ Smj−1 unit sphere
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• Complete graphs. A = 〈A0 = I,A1 = J − I〉.

• Complete bipartite graph Km,m.
A = 〈A0 = I,A1 = A,A2 = J − A − I〉.

(m = 3).
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• Polygons. A = C + C>, where

C =


0 1 0

. . . . . .
. . . 1

1 0



A =


〈I, C + C>, C2 + (C>)2, . . . , Cm + (C>)m〉

((2m + 1)-gon),
〈I, C + C>, C2 + (C>)2, . . . , Cm〉

(2m-gon).

(2m = 4).
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• Let F be a finite set with q ≥ 2 elements, and set
X = F d. Then X is a metric space with respect to
the Hamming distance

dH(x, y) = |{i | i ∈ [d], xi 6= yi}|,

Then (X, {Ri}d
i=0) is a symmetric association

scheme called the Hamming scheme H(d, q), where

Ri = {(x, y) ∈ X × X | dH(x, y) = i}.

H(2, 2) H(3, 2)
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• Let Ω be a finite set with v elements, and let X be
the collection of all d-element subsets of Ω. Define

Ri = {(x, y) ∈ X × X | |x ∩ y| = d − i}.

Then (X, {Ri}d
i=0) is a symmetric association

scheme called the Johnson scheme J(v, d).

J(4, 2) has
(
4

2

)
= 6 vertices.



• Let Ω be a finite set with v elements, and let X be
the collection of all d-element subsets of Ω. Define

Ri = {(x, y) ∈ X × X | |x ∩ y| = d − i}.

Then (X, {Ri}d
i=0) is a symmetric association

scheme called the Johnson scheme J(v, d).

J(4, 2) has
(
4

2

)
= 6 vertices.



• Let Ω be a finite set with v elements, and let X be
the collection of all d-element subsets of Ω. Define

Ri = {(x, y) ∈ X × X | |x ∩ y| = d − i}.

Then (X, {Ri}d
i=0) is a symmetric association

scheme called the Johnson scheme J(v, d).

J(4, 2) has
(
4

2

)
= 6 vertices.



• Let G be a finite group of order n. Define
(Ag)xy = δx,gy. Then AgAh = Agh.

A = 〈Ag | g ∈ G〉

is a coherent algebra, defining an association
scheme.

A is

commutative ⇐⇒ G is abelian,
symmetric ⇐⇒ g2 = 1 (∀g ∈ G).
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• If H is a subgroup of AutG, with orbits
S0 = {1}, S1, · · ·Sd, then

A′ = 〈
∑
g∈Si

Ag | 0 ≤ i ≤ d〉

is also a coherent algebra, defining an association
scheme.

• G = Fm
p is an abelian group. Any subgroup H of

AutG = GL(m, Fp) gives rise to a commutative
association scheme.

• G = Fpm is an abelian group. Any subgroup H of
F×
pm containing −1 gives rise to a symmetric

association scheme.
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• Let G be a transitive permutation group. Let {Ri}d
i=0

be the G-orbits on X × X. Then (X, {Ri}d
i=0) is an

association scheme.

• Let G = Sv, the symmetric group. It acts on
(
[v]

d

)
, the

collection of all d-elements subsets. This action gives
the Johnson scheme J(v, d) by taking Ri’s to be
orbits.

• The primitive idempotents Ei is the projection onto
the irreducible Sv-module corresponding to the
partition (v − i, i) ` v.
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• Let Γ be a connected regular graph of diameter 2. If
∃λ, µ such that for any distinct vertices x, y,

#common neighbors of x, y

=

{
λ if x ∼ y,
µ otherwise

then Γ is called a strongly regular graph. Let A be
the adjacency matrix. A = 〈I,A, J − I − A〉.

• H(2, q), J(v, 2), Km,m

λ µ
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Let (P,B) be a 2-(v, k, λ) design:

|P| = v, B ⊂
(P
k

)
,

∀α, β ∈ P, α 6= β, #{B ∈ B | α, β ∈ B} = λ.

(P,B) is quasi-symmetric if ∃x, y with x < y such that

B,B′ ∈ B, B 6= B′ =⇒ |B ∩ B′| ∈ {x, y}.

Then B is a strongly regular graph:

E = {{B,B′} | B,B′ ∈ B, |B ∩ B′| = y}(P
k

)
= vertices of J(v, k), so

B ⊂ J(v, k)

association scheme ⊂ association scheme
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A Steiner system (P,B) is a 2-(v, k, 1) design.

B,B′ ∈ B, B 6= B′ =⇒ |B ∩ B′| ∈ {0, 1}.

So B is a strongly regular graph:

E = {{B,B′} | B,B′ ∈ B, |B ∩ B′| = 1}.

Summary
• graphs leading to association schemes
• primitive idempotents and spherical representations
• finite groups and actions
• some important subsets of association schemes
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