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Definition

A coherent configuration

is a pair (X, {R;}<_,) where {R;}{_, is a partition of
X x X

(i) {(z,z) | € X} is a union of some R;’s

(i) vi € {0,1,...,d}, 3¢, R] = Ry, where

RiT - {(m9y) €EX xX | (y,:z:) S Rz}

(iii) Vh, 4,5 € {0,1,...,d},
{z € X | (z,2) € R;, (2,y) € R;}| = constant

independent of (z,y) € Ry,. This constant is denoted by
p?j. These constants are called the intersection numbers.
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An association scheme

is a pair (X, {R;}<_,) where {R;}{_, is a partition of
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A symmetric association scheme

is a pair (X, {R;}__,) where {R;}{_, is a partition of
X x X whose adjacency matrices Ag, Aq, ..., Agy
satisfies

() Ro={(z,®) |z € X}

(II) Vi € {0, 1,..., d}, RiT = R; where

RiT - {(a:,y) €EX xX | (y,:c) S Rz}
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p?j. These constants are called the intersection numbers.
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Definition

A symmetric association scheme

is a pair (X, {R;}2¢_,) where {R;}<_, is a partition of
X x X whose adjacency matrices Ay, A1,..., Ay
satisfies

() Ro={(z,z) |z € X}
(i) vi € {0,1,...,d}, R;" = R; where

RiT = {(w,y) €EX XX | (yaw) € Rl}

(i)

d
AA; = plAn.

h=0
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A symmetric association scheme
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Definition
A symmetric association scheme
is a pair (X, {R;}¢_,) where {R;}<_ is a partition of
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Definition

A symmetric association scheme

is a pair (X, {R;}<_,) Where {R;}{_ is a partition of
X x X whose adjacency matrices Ag, A1,...,Aq
satisfies

iy Ag=1

(i) vi € {0,1,...,d}, A =A,;

(iii)

d
AiAj = Z p?jAh'

h=0

(iV)A0—|—A1+°'°+Ad:J



Definition

A symmetric association scheme

is a pair (X, {R;}_,) whose adjacency matrices
A, Ay, ..., A, satisfies

(i) Ag=1

(i) vi € {0,1,...,d}, A =A,;
(iii)

d
A;A; = plAn.

h=0

(iV)A0+A1+"'+Ad:J



Definition
A symmetric association scheme

is a pair (X, {R;}{_,) whose adjacency matrices

A, Ay, ..., A, satisfies

(i) Ag =1

(i) vi € {0,1,...,d}, A =A,;
(iii)

d

h=0

(iV)A0—|—A1+‘°'+Ad:J

A: <A0,A]_,...,Ad> = <E0,E1,...
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Aj = ZPZJEZ > AjEO - POjEO - AJJ = Poj']'
1=0



d
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k; = Py; is the degree (valency) of the graph (X, R;).
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A =
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k; = Py; is the degree (valency) of the graph (X, R;).

1< 1
E; = oy ZjSAj = F;0A, = ;QOiAO

Jj=0

1
= E;ol = —Qul
n

m,; = rank E; = tr E; (since Ef — E; =0)

=tr(E;ol) = tr(%QoiI) = Qoi

= “multiplicity” of the i-th common eigenvalue
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Lemma

Pin _ Qn

kh m;

Proof.
Compute tr A, E; in two ways:

= tr <Zf:0 R;hEi) Ej = An (% tr 375, Qiin)

= tr Pjth = % ZZ:() Qij tr(AhAz)
= Pjpm;. = L3 o Qijnkibn;
= Qnjkn.
Note

tr(ApA;) = tr(ApA]) = nk;on;



By Lemma, we have the orthogonality relations:
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1 d
M. Z ththkh

* h=0
column vectors of Q are “orthogonal”

d
ndi; = (PQ)ij = Y PinQnj =
h=0



By Lemma, we have the orthogonality relations:

Z thQh] kh

L
column vectors of Q are “orthogonal”
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By Lemma, we have the orthogonality relations:

Z thQh] kh

L
column vectors of Q are “orthogonal”

d
nd;; = (PQ)i; = Z P;Qn; =
h=0

1 d
n5zg = QP)U Z thPhJ = k:_ Z PhiPhjmh
' h=0
column vectors of P are “orthogonal”
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Spherical representation

d
n Qij
Fj:_Ej:Z ]Ai€<A07"'7Ad>

mJ =0 0j
is positive semidefinite, diagonals = 1, rank = m;.
3AB : n x m; matrix such that BB™ = F;
= b, : z-throwof B, ||b,]*> = 1,

by - by = (Fj).y depends only on h with (z,y) € Ry,
{b, |z € X} C S§™~ unitsphere



e Complete graphs. A = (Ao =1,A, = J — I).



e Complete graphs. A = (Ao =1,A, =J — I).

o Complete bipartite graph K, 1.
A: <A0 :I,Al :A,A2 - J—A—I)

(m = 3).



e Polygons. A = C + C'T, where

[t



e Polygons. A = C + C'T, where

0 1 0
C =
1 0

(I,C+CT,C?>+ (CT)2,...,C™ + (CT)™)
((2m + 1)-gon),

(I,C+CT,C?*+ (CT)%,...,C™)
(2m-gon).

(2m = 4).



e Let F be a finite set with ¢ > 2 elements, and set
X = F<. Then X is a metric space with respect to
the Hamming distance

du(z,y) = [{i | i€ [d], = # yi}l,
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Then (X, {R;}.,) is a symmetric association
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R; = {(x,y) €eX XX I dH(may) :7'}



e Let F be a finite set with ¢ > 2 elements, and set
X = F<. Then X is a metric space with respect to
the Hamming distance

du(z,y) = [{i | i€ [d], = # yi}l,

Then (X, {R;}.,) is a symmetric association
scheme called the Hamming scheme H (d, q), where

R; = {(iB,y) €eX XX | dH(may) :7'}

0 <&

H(2,2) H(3,2)



e Let Q2 be a finite set with v elements, and let X be
the collection of all d-element subsets of 2. Define

Ri={(z,y) XX X| lxny|=d—i}.
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the collection of all d-element subsets of 2. Define
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scheme called the Johnson scheme J (v, d).



e Let Q2 be a finite set with v elements, and let X be
the collection of all d-element subsets of 2. Define

Ri={(z,y) XX X| lxny|=d—i}.

Then (X, {R;}_,) is a symmetric association
scheme called the Johnson scheme J (v, d).

J(4,2) has (3) = 6 vertices.



e Let G be a finite group of order n. Define
(Ag)a:y = 6m,gy- Then AgAh = Agh-

A= (449 €G)

is a coherent algebra, defining an association
scheme.



e Let G be a finite group of order n. Define
(Ag)a:y = 6m,gy- Then AgAh = Agh-

A= (449 €G)

is a coherent algebra, defining an association
scheme. A is

commutative <—> G is abelian,
symmetric <= g®> =1 (Vg € G).
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scheme.
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association scheme.



e If H is a subgroup of Aut G, with orbits
So = {1}, Sl, -+ 8y, then

A =() A, |0<i<ad)

geSs;

is also a coherent algebra, defining an association
scheme.

e G =F" is an abelian group. Any subgroup H of
Aut G = GL(m,F,) gives rise to a commutative
association scheme.

e G = F,~ is an abelian group. Any subgroup H of
I, containing —1 gives rise to a symmetric
association scheme.



* Let G be a transitive permutation group. Let {R;}¢_,
be the G-orbits on X x X. Then (X, {R;},) is an
association scheme.
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be the G-orbits on X x X. Then (X, {R;},) is an
association scheme.

o Let G = S, the symmetric group. It acts on (), the
collection of all d-elements subsets. This action gives
the Johnson scheme J (v, d) by taking R;’s to be
orbits.



e Let G be a transitive permutation group. Let {R;}%_,
be the G-orbits on X x X. Then (X, {R;},) is an
association scheme.

o Let G = S, the symmetric group. It acts on (), the
collection of all d-elements subsets. This action gives
the Johnson scheme J (v, d) by taking R;’s to be
orbits.

e The primitive idempotents E; is the projection onto
the irreducible S,-module corresponding to the
partition (v — ¢,7) F v.



Let T" be a connected regular graph of diameter 2. If
AN, i such that for any distinct vertices x, vy,

#common neighbors of x, y

A it~y
~ | p otherwise

then T is called a strongly regular graph. Let A be
the adjacency matrix. A = (I, A, J — I — A).

2 A



Let T" be a connected regular graph of diameter 2. If
AN, i such that for any distinct vertices x, vy,

#common neighbors of x, y

A it~y
~ | p otherwise

then T is called a strongly regular graph. Let A be
the adjacency matrix. A = (I, A, J — I — A).

H(2,q), J(v,2), Kmm

2 A
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Va,BE€P,a# B, #{B € B|a,B € B} = A
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Let (P, B) be a 2-(v, k, \) design:

P
=0, B ’
|P| =wv C (kz)

Va,BEP,a# B, #{Be€ B|a,3 € B} = A
(P, B) is quasi-symmetric if 3z, y with < y such that
B,B' € B, B# B — |BNnB'| € {z,y}.
Then B is a strongly regular graph:

E={{B,B} | B,B" €B, |BNnB|=y}



Let (P, B) be a 2-(v, k, A) design:

P
=0, B ’
|P| =wv C <k>

Va,B € P,a#B, #{B € B|a,3 € B} = A.
(P, B) is quasi-symmetric if 3z, y with < y such that
B,B'eB, B# B — |BNB'| € {x,y}.
Then B is a strongly regular graph:
E={{B,B'} | B,B'e B, | BNB'|=y}
(¥) = vertices of J (v, k), S0

B C J(v, k)
association scheme C association scheme



A Steiner system (P, B) is a 2-(v, k, 1) design.
B,B'eB, B#B — |BnB’| € {0,1}.
So B is a strongly regular graph:

E={{B,B}|B,B €8, |BNB'|=1}.



A Steiner system (P, B) is a 2-(v, k, 1) design.
B,B'eB, B#B — |BnB’| € {0,1}.
So B is a strongly regular graph:
E={{B,B'} | B,B' €B, | BNnB'|=1}

Summary
e graphs leading to association schemes
e primitive idempotents and spherical representations
e finite groups and actions
e some important subsets of association schemes



