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Algebraic Combinatorics

Problem 1
What is a “good” finite set on the unit sphere S4=17

wé¢ece €

Coding theory (local viewpoint)

m Spherical u-code
— Kissing number .
m Optimal code — Q-polynomial
s s-distance set association scheme
Design theory (global viewpoint)
m Spherical ¢-design



Kissing number configurations

Optimal spherical codes

Spherical harmonics and linear programming method
s-distance sets

Spherical t-design

[A Results obtained from parameters s and ¢
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Code on a sphere

X: a finite set on S%1
AX) = {(z,y) | 7,y € X,z # y}.

Definition 2
X is called u-code if A(X) C [—1,u].

Problem 3

For given u € [—1,1] and d, find maximum |X| in u-codes X .

%—codes > kissing number problem (,&
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Kissing number on S91: k(d)

k(2) =6

k(3) =12
m Famous disagreement between
Newton and Gregory (1694)

m Proved by Schutte and van der
Waerden (1953), Leech (1956), ...

k(4) = 24 (24-cell)

m Musin (Annals of Math. 2008), Bachoc—Vallentin (2008,SDP)
k(8) = 240 (Eg root system), LP
k(24) = 196560 (Minimum vectors of the Leech lattice), LP

m Odlyzko—Sloane (1979)



Kissing number on S91: k(d)

For other dimensions,
nobody knows k(d).

k(2) =6
k(3) =12
m Famous disagreement between
Newton and Gregory (1694)

m Proved by Schutte and van der
Waerden (1953), Leech (1956), ...

k(4) = 24 (24-cell)

m Musin (Annals of Math. 2008), Bachoc—Vallentin (2008,SDP)
k(8) = 240 (Eg root system), LP
k(24) = 196560 (Minimum vectors of the Leech lattice), LP

m Odlyzko—Sloane (1979)



Optimal codes

Problem 4

For a given | X | and d, find smallest u such that X is a u-code on
S=1, (optimal code)

X100

Regular n-gon: Optimal code



Optimal codes on S?

4 points 5,6 points 7 points
\
&
9 points 10 points 11,12 points 24 points



The strong thirteen spheres problem

13 points
Musin and Tarasov (2012)



Optimal codes in higher dimensions

dim. size A(X) name
n n+1 —1/n simplex
n 2n —-1,0 cross polytope
4 10 -2/3,1/6 Petersen graph
4 120 —1,41/2,0, (+1 + /5)/4 600-cell
8 240 —1,4+1/2,0 Eg root
7 56 —-1,+1/3 kissing
6 27 -1/2,1/4 kissing
5 16 -3/5,1/5 kissing
24 196560 —1,4+1/2,+£1/4,0 Leech lattice
23 4600 —1,4+1/3,0 kissing
22 891 —1/2,-1/8,1/4 kissing
23 552 -1+1/5 equiangular lines
22 275 —1/4,1/6 kissing
21 162 —2/7,1/7 kissing
22 100 —-4/11,1/11 Higman-Sims
qq;:f (q+1)(g®+1) ~1/q,1/¢? Cameron et al'78

Proved by LP or SDP (SDP: only for Petersen graph) o/50



Homogeneous polynomials

Hom; (R?) denotes the linear space of homogeneous polynomials of
degree 4, in d variables 1, ..., 4.

1
dim Hom; (RY) = (d“, )
(3

(i-combination with repetitions)

Pi(R%) = é} Hom, (RY).
j=0

dim Py(RY) — Zo<d+]:—1) _ (dﬂ)

= J !
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Harmonic polynomials

Laplacian: Af = ZZZI 0% f |03 for f € Hom;(RY).
A : Hom;(R?) — Hom;_o(R?Y) (linear map)
m Harm;(R?) := KerA = {f | Af =0}

m An element of Harm;(R?) is called a harmonic polynomial.

Actually A is surjective.

dim KerA = dim Hom;(R%) — dim ImA
dim Harm;(R%) = dim Hom;(R%) — dim Hom;_5(R?)

() ()
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Basic results on harmonic polynomials

Let 72 = S°% | 22,

=11

Hom,(R?%) = Harm; (RY) @ r*Hom;_»(R?).
i/2]
Hom; (R%) = @ r? Harm;_o;(RY).
7=0

Harm;(R?) L Harm;(R%)(i # 5)

with respect to

(1) = g [, T@a@)in(o)
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Polynomials on a sphere

Hom;(S971) = {f|ga-1 | f € Hom;(R?)}
P8 = {flga- | f € PR}
Harmi(Sdfl) ={flga-1 | f € Harmi(Rd)}

Theorem 6

Harm;(S91) = Harm,(R?)

Li/2] Li/2]
Hom;( Rd @ r% Harm,_ 2j (R ) = Hom, ( S b @ Harm;_,;(R
j=0

Pi(8471) = ZHomj(Sd_l) = @Harmj(Rd)
=0 =

13/50



Dimension of P;(S% 1)

Pi(S% 1) = @Harmj(]Rd)
§=0

i

dim P;(S91) = Z dim Harm (R?)
7=0

—Z (d—i—]—l) <d;i’;3))

_ (d+z,_1)+<dﬂ_2)-
2 1 —1

14 /50



Gegenbauer polynomials

Gegenbauer polynomials:
cPwy=1, &) =adt,

(d) (py _ i (d) d+i—4

Gegenbauer polynomials form a sequence of orthogonal
polynomials w.r.t.

1
(o= [ 001 =)0

Note ng)(l) = dim Harm;(RY).
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Addition formula

Let h; = dim Harmi(Rd).
Let {©i1,...,%in} be an orthonormal basis of Harm;(R?) w.r.t.

()

Let (,) be the usual inner product in R%.

Theorem 7 (Addition formula)

For any x,y € S4~!, we have

Zsow 2)¢i(y) = GV ((z,v))-

16 /50



Positive definiteness of G,g(l)(t)

For arbitrary points x1, ..., z, € S*1, and real variables
&, ...,&,, we have

Z G 332755] fzfj > 0,

3,j=1

or equivalently (G¢((x;,x;)))i is positive semidefinite.

Proof:
hi
d
(G (i 1)))ig = (O erale) o)
1=0
= (@r(xi))id (P (@))iy = 0
Corollary: >0, G,gd)(<xi,$j>) > 0.

17 /50



Linear programming bound, Delsarte method

Theorem 9 (Delsarte, Goethals and Seidel (1977))

Let X be a subset in S?~1. Suppose there exists a polynomial
9(t) = Ling G (1) st

mg(1) >0, g(a) <0 for any o € A(X),

® go >0, and g; > 0 for any i.
Then

IXls@.

90

18 /50



Proof of LP bound

Proof. no = |{(z,y) € X x X | (z,y) = a}|

3 gty = Y S 66«

z,yeX z,yeX 120

1 X1g(1) = [XIg(1) + > nagle)

acA(X)
= X0+ > g > GV ((x,y) > X g0
i>1 z,yeX
1
x| < 2, 0
go

Equality holds <
g(a) =0and g3, jex Gi({z,y)) = 0 for any 1 < i < degg.

19/50



Linear programming bound for spherical sets.

AX) ={an,- - ad m= H{(@,y) € X x X | {2,9) = a}]
m L= _(Gg'd)(ai))lﬁgs,gjgr,

d d
mb=1(go,...,00) c=(GP1),....c¢"" 1)),
mx=(91,---,9r), Yy = (n1,...,n5).
maximize yb! subjectto yL <c,y >0

Dual linear problem:
minimize cz’ subject to Lzl > b,z >0

M: Maximum, m: Minimum

go(IX[=1) =g Y ni<M=m< Zgz‘ng)(l) =9(1) — g0
=1 =1

20 /50



Application of LP bound for kissing numbers

X c S7: Eg root system
|X| =240. A(X)=1{1/2,0,-1/2,—1}.

We want to find a polynomial g(t) = .+, giGZ(»d) (t) such that
m g(1) >0, g(a) <0 forany a € [—1,_1/2],
m go >0, and g; > 0 for any i,
= g(1)/g0 < 241.

Actually
o(t) = (t+ 1)+ 3PP~ )

satisfies the condition. (g(1)/go = 240)
Therefore X is a kissing number configuration.
(k(24): same method)

21/50



Application of LP bound for optimal codes

X c S": Eg root system
|X|=240. A(X)={1/2,0,—1/2,—1}.

X attains the LP bound from

o(0) = (¢ 1)(t+ 3~ 5),

where ¢(1)/go = 240.

If there exists Y C S7 such that |Y| = 240 and A(Y) C [-1,1/2).
Y also attains the same LP bound. Thus A(Y) = {-1,-1/2,0}.

We perturb Y continuously to another spherical a-code with
0<a<1/2
g(t) must have the root «, a contradiction.

22/50



What concept is closely related to LP bound?

X attains the LP bound from g(t) = >~ giG(d)(t).

%
=

m g(a) =0 for any o € A(X).
— X has few distances. (s-distance set)

m i Y, ex GV ((2,) = 0 for any 1 <i < degg.

= Y yex G (@) = 0 forany 1< i <,
(spherical t-design)

23 /50



Spherical s-distance set

Definition 10 (s-distance set)

X is called an s-distance set if |A(X)| = s.

2-distance set on St

Problem 11

For given s and d, find largest | X| in s-distance sets X C S%~1.
(maximum distance set)

24 /50



Absolute bound on distance sets

Theorem 12 (Delsarte-Goethals-Seidel (1977))

If X ¢ 891 js an s-distance set, then we have

d —1 d -2
|X|S< + s >+< +s )
S s—1

If X is an antipodal s-distance set (X = —X ), then we have

d+s—2>

|X\§2(
s—1

X is called a tight spherical s-distance set if equality holds.

25 /50



Proof of the absolute bound for s-distance sets

Proof X: s-distance set in 41
For each x € X,

m f, € P,(S97).
m Fory e X,
lifx =y,
fao(y) = {0 oty

erX fom(f) =0= f =y e X, then Cy = 0.
{fz}zex are linearly independent.

|1X| < dim Py(8471) = <d+ z - 1) + <d_£fI 2>.D

26 /50



Maximum distance sets on S*

ANSLO

1-distance set 2-distance set 3-distance set
Regular (2s 4+ 1)-gon < Maximum s-distance set

QU

2-distance set  3-distance set 4-distance set
Regular 2s-gon < Maximum antipodal s-distance set

27/50



Maximum 2-distance sets on S?

Maximum 2-distance set on S2

28 /50



Maximum distance sets on S%!

Maximum 3-distance set on S?
(Shinohara,arXiv:1309.2047)

Maximum 2-distance set on S¢1:
d ‘ 4 5 6 7 8---21 22 23 24---93(d+#46,78)
X[ |10 16 27 28 24D 975 276 ddr)

Theorem 13 (Musin and N. (2010))

A maximum 3-distance set on S7 has 120 points [subsets of
the Eg root system]|

A maximum 3-distance set on S*' has 2025 points [subset of
the minimum vectors of the Leech lattice | 29 /50



Main tools to determine maximum distance sets

m Linear programming bound, or semidefinite programming
bound

m Harmonic absolute bound

m Generalization of the Larman—Rogers—Seidel theorem.

30/50



Harmonic absolute bound

Theorem 14 (N. and Shinohara (2010))

Let X be an s-distance set in S L. Let

[[¢-0) Zgz

aceX
Then we have
x| < Y g
1:9;>0
where h; = dim Harmi(Rd) = (d+2_1) = (d:rij')

m Musin (2009) proved the bound for s = 2 and g; < 0.
m Y0 o= (TP + (15 %) (absolute bound)

31/50



LRS type theorem

Theorem 15 (N. (2010))

X : an s-distance set in S®1 with s > 2, and
AX) ={a,ag,...,as}.

Foreachi=1,2,...,s, we define
1—a;
K- I i
B — @
J=12,85#0 )

If|X| > 2dim Ps_1(S91), then K; is an integer. Moreover |K;| is
bounded above by some function of d and s.

m Larman, Rogers, and Seidel (1977) proved it for s = 2.
m i Ki=1
®m Qp,...,0s 1 are determined by Kq,..., Ks_1, as.

32 /50



Spherical t-design

Let X be a finite subset on the unit sphere S¢1.

Definition 16 (Spherical t-design, Delsarte-Goethals-Seidel (1977))

X is called a spherical t-design in S ! &
G 1@ = g [ f@ldu(o)
rp— L) = —— T xr
X - [SET] Jgaa T

for any f(z) € P,(S471).

t-design = (¢ — 1)-design
X, Y: t-design (X NY =0) = X UY: t-design

33/50



Equivalent condition of spherical design

Theorem 17

X c 841, The following are equivalent.

X s a spherical t-design.
For each f € Harm,-(Rd) and any 1 < i <'t, we have

> fl@) =0
reX
For each 1 <13 <t, we have

> 60 =0,

z,yeX

(d)

where G, is the Gegenbauer polynomial of degree .
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Proof of the theorem of equivalent conditions

(1) & (2): f € P(S%1) can be expressed by

¢
f=co+ ngi, where ¢; € Harmi(Rd).

i=1
Then
1 1 i
151 Jous f(x)dp(z) = (54T Sd1(00+§ pi(z))du(z) = co,
1 1 ‘
m z;(f(JU) =co + m Z;(Z;‘Pz(x)
(2) < (3):

h;

h;
Z Gl(-d)(<w,y>) = Z Z%,j(ff)%,j(y) = Z(Z pij(@))?

z,yeX z,yeX j=0 7=0 zeX

35 /50



Spherical t-designs on S*

regular n-gon
2-design 3-design 4-design -+« (n —1)-design
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Regular polyhedron

-

spherical 2-design  spherical 3-design
4 points 8 points

spherical 3-design

6 points
B
\/

spherical 5-design  spherical 5-design
20 points 12 points
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Semi-regular polyhedron

spherical 3-design  spherical 3-design  spherical 5-design
12 points 48 points 30 points

spherical 3-design  spherical 5-design
24 points 60 points

38/50



Spherical 9-design on S?

Remark that the following are NOT semi-regular polyhedrons.

@
()
o

spherical 9-design

spherical 9-design 60 points
60 points angles corresponding edges
angles corresponding edges are
are 24.2511° or 28.3728°

20.5424° or 24.8207°
(Goethals and Seidel, The football, (1981))

39/50



Absolute bound for spherical design

Theorem 18 (Delsarte-Goethals-Seidel (1977))
If X is a spherical 2e-design on S?~!, then we have
X > (d—i—e—l) N <d+e—2>'
e e—1

If X is a spherical (2¢ — 1)-design on S%~1, then we have
@ — 2)

e—1

|X|22(

X is called a tight spherical design if equality holds.
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LP bound for spherical design

Theorem 19 (Delsarte, Goethals and Seidel (1977))

Let X be a spherical t-design in S%~'. Suppose there exists a
polynomial g(x) = ;= giGEd) (x) s.t.
mg(1) >0, g(a) >0 for any o € [—1,1],
m go >0, and g; < 0 for any i > t.
Then
9(1)

| X| > =——=.
90

41/50



Proof of LP bound for design

Proof. no = |{(z,y) € X x X | (z,y) = a}|

3 gty = Y S 66«

z,yeX z,y€X i>0

1 X1g(1) < [XIg()+ > nagl)

acA(X)
= X0+ > g > GV ((z,y)) <X g0
>t x,yeX
1
x] 2 40, =
go

Equality holds <
gla)=0and g; >, cx Gz(d)(@,y)) =0foranyt+1<1i<degg.

42 /50



Proof of the absolute bound for design

Proof for 2e-designs: Use LP method.

e 2e
2) =Y 6P @)? =Y 66\ (@)
1=0 1=0

Then go = 325 G\¥(1) > 0, g; = 0 for i > ¢, and g(x) > 0 for
-1 <z <1.

|X| > gél) ZG(d ZdlmHarml(Rd)
0 =0 1=0

(d—i—e—l) <d+e—2>
= + .
e e—1
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Classification of tight spherical designs

Theorem 20 (Bannai-Damerell (1979,1980))

If a tight t-design on S?~! for d > 3 exists, thent <5 ort = 7,11

t =2,3,11: classified, t = 4,5,7: open.

dim. size t A(X) name

n n+l 2 —1/n simplex

n 2n 3 -1,0 cross polytope
8 240 7 —1,+1/2,0 E root

7 56 5 —1,4+1/3 kissing

6 27 4 -1/2,1/4 kissing

24 196560 11 —1,+£1/2,+1/4,0  Leech lattice
23 4600 7 —1,£1/3,0 kissing

23 552 5 -1+1/5 equiangular lines
22 275 4 —1/4,1/6 kissing
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Existence and construction for spherical designs

Theorem 21 (Seymour-Zaslavsky (1984))

There exists a spherical t-design on S¢ for any d and t.

Theorem 22 (Bondarenko, Radchenko, and Viazovska (Annals of
Math. (2013)))

For each N > c4t?, there exists a spherical t-design in S¢
consisting of N points, where cq is a constant depending only on d.

Problem 23

Give a explicit construction of a spherical t-design for any d and t.

For S2, Kuperberg (2005) gives a certain explicit construction.
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Parameters s and ¢

X: spherical t-design and s-distance set

mt<2s If X=-X, thent <2s—1.
mi=2sor(t=2s—1and X = —-X)

& X tight spherical design.
mt>s— 1= X: distance invariant
mit>2s—2or(t>2s—3and X = —X)

= X has the structure of a ()-polynomial scheme.
mit>2s—1

= X is an optimal code (Levenshtein (1992)).

Problem 24

Classify spherical codes satisfyingt > 2s — 1 ort > 2s — 2.
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Bounds on s-distance t-design

X: s-distance set and 2e-design on S%~!

d+e—1 N d+e—2 <1X| < d+s—1 . d+s—2
e e—1 s s—1
X: tight s-distance set < X: tight 2s-design (DGS(1977)).
We say X has strength ¢ if X is a ¢-design but not a (¢ + 1)-design
m Strength 25 & | X| = (d+§_1) + (dt:ff)
m Strength 2s — 1 = | X| < (d+2_1) + (djff) -1
m Strength 25 — 2 = | X| <77

Theorem 25 (Cameron-Goethals-Seidel (1978), Neumaier (1981))

X : 2-distance set with strength 2.
Then |X| < (“3")(= above bound — d).
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New bound

Theorem 26 (N. and Suda (2011))

X s-distance set with strength 2s — 2. Then

X| < (d+s—1) N <d+s—4>
S s—3
= dim P,(S47!) — dim Harm,_ (R?).

X: antipodal s-distance set (s: odd) with strength 2s — 5. Then
—9 —4 —
X| <2 d+s o d+s _(d+s—6 )
s—1 s—3 $—5
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Examples attaining the bound

m 2025-point 3-distance set on S?! with strength 4 (Maximum
spherical 3-distance set)

Antipodal set:
m Dodecahedron: 20-point 5-distance set with strength 5

49 /50



Summary

m Kissing number configuration, optimal code, spherical
t-design, spherical s-distance set.

m Linear programming method, spherical harmonics.

m t > 2s — 2 — association scheme, orthogonal polynomial.
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