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Thm: A tight 2¢t-design on X can be considered as
a @-poly. (association) scheme.

X =7
(i): X = a Johnson scheme.
(i1): X = a Q-poly. scheme (Delsarte '73).
(iii): X = a sphere (Delsarte—Goethals—Seidel '77).
(iv): X = arank one compact symmetric space (Bannai
Hoggar '80's).
Rem: (ii) = (i), (iv) = (iii)

Goal: Understand (ii) and (iv) as examples of one
fundamental thorem.
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Thm: A tight 2¢-design on X can be considered as
a @-poly. (association) scheme.

(ii): X = a Q-poly. scheme.
(iv): X = a rank one compact symmetric space.

Goal: Understand (ii) and (iv) as examples of one
fundamental thorem.

What we have to do?
Step 1. Define a generalization of Q-poly. schemes in-
cluding rank one compact symmetric spaces.
Step 2: Define designs on such generalized schemes.
Step 3: Prove the theorem.
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Recent generalizations from other view points

Kuribayashi—Matsuo, “Association schemeoids and
Their Categories”, to appear in Applied Categorical
Structures.

Barg—Skriganov, “Association schemes on general mea
sure spaces and zero-dimensional Abelian groups’,
arXiv:1310.5359.
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Thm: A tight 2¢-design on X can be considered as
a @Q-poly. (association) scheme.

Plan of this talk:

(1): Prove the theorem for X = a @Q-polynomial scheme.

(2): Generalize @Q-polynomial schemes and designs on
them.

(3): Check a sphere can be considered as such a gen-
eralized scheme.

(4): Prove the theorem for such generalized schemes.
(1) : morning, (2),(3),(4) : afternoon
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31: For X = a @-polynomial scheme

I: a(d+1)-points set. X : a finite set with | X| > 2.
R: X x X — I: asymm. surj. map. R; .= R~ 1(4).

When is (X, {R;};c;) @ Q-poly. scheme?

CX : the set of C-valued functions on X.
(fr9)x = pex f(x)g(x) for f,g € CX.
M(X,C) ;= CX**X ~ End(CX).

R*:C! -5 M(X,C) ~ End(C%).
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R: X x X — 1. asymm. surj. map. R, ;= R~1(%).
R*:C! —» CX*X =: M(X,C) ~ End(C¥).

Fact: (X,{R;};c7) is a Q-polynomial scheme <=
there exist filterations

{constants} = Py(I) C P1(I) C --- C Py(I) = c!
{constants} = Pp(X) C P1(X) C --- C Py(X) = cX
such that

(ii):dimPi(I) =2 (<= dimP;(I) =5+ 1).

(iii):R*(P;(I)) = Span-{mg,m1,...,m;} for each j =
0,...,d where m; € End(C?) is the orthogonal pro-
jection onto P;(X).
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{constants} = Py(I) c Py(I) C --- C Py(I) =C!
{constants} = Py(X) C P1(X) C - - C Py(X)=C*
():P;(1) - P(I) = Pj4 ().
(ii):dimPi(I) =2 (<= dimP;(I) =j+ 1).
(iii):R*(P;(I)) = Span-{mqg, 71,...,7;}.

Rem:

Pi(X) - PL(X) = Pj,(X).

Ay = R*C! = Span-{n; | j = 0,...,d} : the Bose—
Mesner algebra.

There exists ig € I such that R;; = A (= {(z,z) |z €
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We fix a @-poly. scheme X and such a filteration
{constants} = Po(X) & P1(X) & -+ & Py(X) = cX

Def: ) Y C X is a t-design (1 <t<d)

8 For each f c P(X),

|X| > f(= )——Zf(y)

reX yEY

Rem: t-designs on a Johnson scheme
< Combinatorial t-designs.
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Def: ) Y C X is a t-design (1 <t<d)

8% For each f c P(X),

|X| 2 f@) = SO

reX yey

Rem: t-designs on a Johnson scheme
< Combinatorial t-designs.

Thm (Fisher’s inequality): For any 2¢-design Y on
X (2t <d),

Y| > dimg P(X).
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Thm (Fisher’s inequality): For any 2t-design Y on

X (2t < d),

Y| > dim¢ P(X).

Proof: We show the map Py(X) — CY, f — fly pre-
serves the natural inner-products up to scalar. In fact,
for each f,g € P(X),

<fag>X — T

X
X

Y f(@)g(x)

reX

> fely) =

yey

| X

Y

(fly,a9ly)y

(Q.E.D.)
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X (2t < d),

(Lo)x =

Thm (Fisher’s inequality): For any 2¢-design Y on

Y| > dimg Pi(X).

Proof: For each f,g € P:(X),

> f@)gx)

reX
| X|

> fWely) = m<f|Y7g|Y>Y

(Q.E.D.)

We used Pt(X) : Pt(X) = Pt(X) . Pt(X) = Pzt(X).
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Thm (Fisher’s inequality): For any 2¢-design Y on
X (2t < d),

Y| > dimg P(X).

Y| = dimg P(X) &% v s tight.

EX:
Q=TF3\{0}. X = (%) : a Johnson scheme.
Y ={V\ {0} |V CF3, 2-dim. subspace} C X.

= Y is a tight 2-design on X with

V]| =7 = (‘?') = dimg Py (X).

12(F)
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Thm (Fisher’s inequality): For any 2t¢-design Y on
X (2t < 4d),

Y| > dimc P(X).

Y| = dimg P(X) &% v s tight.

Y : a tight 2¢t-design on X.

RY :=R|y«y : Y XY = Iy, where Iyy := R(Y xY).
Y . (pY\—1/; :

R’ = (R ) *(i) foric ly.

Thm (Delsarte '73): (Y, {R} };cr,.) is a Q-poly. schem

13([)


dviout: jf
dviout: d6
dviout: je

Thm: A tight 2¢t-design Y on X is a QQ-poly. scheme.

EX:
Q=TF3\{0}. X = (%) : a Johnson scheme.
R:XxX—{0,1,2,3}, (z1,22) — |z1 \ x2].
Y ={V\ {0} |V CF3, 2-dim. subspace} C X.
= Y is a tight 2-design on X with |[Y|=7.
Iy := R(Y x Y) = {0, 2}.
RY (y1,y2) =2 <= y1 # yo for y1,y2 €Y.
= Y ~ K7 as @Q-poly. schemes.

14(F)
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Thm: A tight 2¢t-design Y on X is a Q-poly. scheme

(t>1).
Proof:
RY .= R|yyy :Y xY — Iy, where Iy := R(Y x Y).
dy — |Iy| — 1.

Pi(Iy) = Pj(Dlr,, P(Y) 1= Pi(X)l]y.

15(@)
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RY :=R|yyy :Y xY — Iy, where Iy := R(Y x Y).

dy = |IY| — 1.
Pi(Iy) := P;(I)|r,, P;(Y) := P;(X)ly.
Obs:

Pi(Iy) -Py(Iy) = Pjy(Iy), Pj(Y)-P(Y) = P, (Y).

{const.} = Py(Iy) & -+ & Py, (Iy) = Clv.

{const.} = Py(Y) & --- & P(Y) = CY (- the
tightness of V).

P/(X) — P(Y), f+— fly is an isometry.

dim@ P]_(Iy) = 2.

16(F)
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ODbs:
Pi(Iy)-P,(Iy) = Pj1(Iy), Pj(Y)-P(Y) = Pj(Y).
{const.} = Py(Iy) & -+ & Py, (Iy) = C'v.
{const.} = Py(Y) & --- G P(Y) =CY.
P/(X) — P(Y), f+— fly is an isometry.
dim@ Pl(fy) = 2.

It is enough to show that =; := ilyxy € M(Y,C) ~

End(C") is the orthogonal projection onto P;(Y") for
73 =0,...,t and dy = |Iy|—]. <t (:> dy:t).

17(F)
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Goal: w}” = 7milyxy € M(Y,C) ~ End(C") is the
orthogonal projection onto P;(Y) for j =0,...,t, and
dy L= |[Y| — 1 < t.

Step 1: w}/ is the orthogonal projection onto P;(Y)
(up to scalar).

Step 2: 7} (y1,y2) = 0 for y1,y2 € Y with y1 # 3o (=
Iy \ {ip} are zeros of a function in P(1)).

Step 3: The number of zeros of any function in P.([I)
on I <k foreach £k =0,....,d.

18(F)
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Step 1: 77}/ is the orthogonal projection onto P;(Y).

Fact(the reproducing kernel): Z = X orY. Let
e?,...,e% € Pj(Z) be an o.n.b. Then K € M(Z,C) ~
End(C%) defined by

m

K(z1,22) == » ef(z1)ef (22)
k=1

gives the orthogonal projection onto P;(Z).

P](X) — P](Y), f— f‘y . iIsometry
= Step 1 can be proved!

19(F)
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Step 2: n) (y1,y2) =0 for y1,y0 € Y with y1 7 yo.

Fix y1,y2 € Y with y1 7 yp. Since m; = idsy, we have

) (y1,y2) = O.
Step 2 is completed!

20(T))
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Step 3: The number of zeros of any function in P.(I)
on I <k foreach k=0,....,d.

Pi(I) = C{w} + {const.} since dm¢cPi(ly) = 2 =
P.(I) = Span-{w' |l =0,...,k}.

Lem: w: I — C : injective

Proof of Lemma:
w(i) = w(3) for i,i/ €I
= F(i) = F(¢) for any F € C! =Span-{&!|1=0,...,d}.
(Q.E.D.)
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Step 3: The number of zeros of any function in P.(I)
on I <k foreach k=0,....,d.

Pi(I) = C{w} + {const.} since dimgPi(ly) = 2 =
P.(I) = Span-{w'|1=0,...,k}.

Lem: = : I — C : injective

Foreacha € I, we put wg € P1(I)\Py(I) with wg(a) =0
(unique).
By the division of “polynomials’, we have

Lem: F € C! and {ay,...,am} = the zeros of F.
Then F=c-wq, - @Way, € Pn(l) for c € C.

= Step 3 can be proved!

22([))
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Goal: w}' = milyxy € M(Y,C) ~ End(C") is the

orthogonal projection onto Pj(Y) for =0,...,t, and
dy .= |Iy| — 1 < t.

We obtained the theorem below.
Thm: A tight 2¢t-design Y on X is a -poly. scheme.

On the afternoon session: We will generalize the
thorem for compact Hausdorff (-polynomial schemes!

23(0))
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End of slides. Click [ENDJ to finish the presentation.

Thank youl
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