Remarks on generalizations of association schemes and Design theories Part I

Takayuki OKUDA Hiroshima University

18 June, 2014 Summer School 2014 (Sendai) **Thm:** A tight 2t-design on X can be considered as a Q-poly. (association) scheme.

X = ?

(i): X = a Johnson scheme.

(ii): X = a Q-poly. scheme (Delsarte '73).

(iii): X = a sphere (Delsarte-Goethals-Seidel '77).

(iv): X = a rank one compact symmetric space (Bannai-Hoggar '80's).

Rem: (ii) \Rightarrow (i), (iv) \Rightarrow (iii)

Goal: Understand (ii) and (iv) as examples of one fundamental thorem.

Thm: A tight 2t-design on X can be considered as a Q-poly. (association) scheme.

(ii): X = a Q-poly. scheme.

(iv): X = a rank one compact symmetric space.

Goal: Understand (ii) and (iv) as examples of one fundamental thorem.

What we have to do?

Step 1: Define a generalization of Q-poly. schemes including rank one compact symmetric spaces.

Step 2: Define designs on such generalized schemes.

Step 3: Prove the theorem.

Recent generalizations from other view points

Kuribayashi–Matsuo, "Association schemeoids and Their Categories", to appear in Applied Categorical Structures.

Barg–Skriganov, "Association schemes on general measure spaces and zero-dimensional Abelian groups", arXiv:1310.5359.

(MH)

Thm: A tight 2t-design on X can be considered as a Q-poly. (association) scheme.

Plan of this talk:

- (1): Prove the theorem for X = a Q-polynomial scheme.
- (2): Generalize Q-polynomial schemes and designs on them.
- (3): Check a sphere can be considered as such a generalized scheme.
- (4): Prove the theorem for such generalized schemes.
 - (1): morning, (2),(3),(4): afternoon

$\S 1$: For X= a Q-polynomial scheme

I: a (d+1)-points set. X: a finite set with $|X| \geq 2$.

 $R: X \times X \to I$: a symm. surj. map. $R_i := R^{-1}(i)$.

When is $(X, \{R_i\}_{i \in I})$ a Q-poly. scheme?

 \mathbb{C}^X : the set of \mathbb{C} -valued functions on X.

$$\langle f, g \rangle_X := \sum_{x \in X} f(x) \overline{g(x)} \text{ for } f, g \in \mathbb{C}^X.$$

$$M(X,\mathbb{C}) := \mathbb{C}^{X \times X} \simeq \operatorname{End}(\mathbb{C}^X).$$

$$R^*: \mathbb{C}^I o M(X,\mathbb{C}) \simeq \mathsf{End}(\mathbb{C}^X).$$

(**が**田

 $R: X \times X \to I$: a symm. surj. map. $R_i := R^{-1}(i)$. $R^*: \mathbb{C}^I \to \mathbb{C}^{X \times X} =: M(X, \mathbb{C}) \simeq \operatorname{End}(\mathbb{C}^X)$.

Fact: $(X, \{R_i\}_{i \in I})$ is a Q-polynomial scheme \iff there exist filterations

{constants} =
$$P_0(I) \subset P_1(I) \subset \cdots \subset P_d(I) = \mathbb{C}^I$$

{constants} = $P_0(X) \subset P_1(X) \subset \cdots \subset P_d(X) = \mathbb{C}^X$

such that

- (i): $P_j(I) \cdot P_k(I) = P_{j+k}(I)$ for j, k with $j + k \le d$.
- (ii):dim $P_1(I) = 2 \iff \dim P_j(I) = j + 1$.
- (iii): $R^*(P_j(I)) = \text{Span-}\{\pi_0, \pi_1, \dots, \pi_j\}$ for each $j = 0, \dots, d$ where $\pi_j \in \text{End}(\mathbb{C}^X)$ is the orthogonal projection onto $P_j(X)$.

{constants} =
$$P_0(I) \subset P_1(I) \subset \cdots \subset P_d(I) = \mathbb{C}^I$$

{constants} = $P_0(X) \subset P_1(X) \subset \cdots \subset P_d(X) = \mathbb{C}^X$

(i):
$$P_j(I) \cdot P_k(I) = P_{j+k}(I)$$
.

(ii):dim
$$P_1(I) = 2 \iff \dim P_j(I) = j + 1$$
.

(iii):
$$R^*(P_j(I)) = \text{Span-}\{\pi_0, \pi_1, \dots, \pi_j\}.$$

Rem:

$$P_j(I) = P_j(I), P_j(X) = P_j(X).$$

 $P_j(X) = P_j(X) - P_{j+1}(X)$

$$P_j(X) \cdot P_k(X) = P_{j+k}(X).$$

$$\mathfrak{A}_X:=R^*\mathbb{C}^I=\operatorname{Span-}\{\pi_j\mid j=0,\ldots,d\}$$
 : the Bose–Mesner algebra.

There exists $i_0 \in I$ such that $R_{i_0} = \Delta := \{(x, x) \mid x \in X\}.$

We fix a Q-poly. scheme X and such a filteration $\{\text{constants}\} = P_0(X) \subsetneq P_1(X) \subsetneq \cdots \subsetneq P_d(X) = \mathbb{C}^X$

Def: $\emptyset \neq Y \subset X$ is a t-design $(1 \leq t \leq d)$ $\stackrel{\text{def}}{\longleftrightarrow}$ For each $f \in P_t(X)$,

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{|Y|} \sum_{y \in Y} f(y).$$

Rem: t-designs on a Johnson scheme \Leftrightarrow Combinatorial t-designs.

Def: $\emptyset \neq Y \subset X$ is a t-design $(1 \le t \le d)$

 $\stackrel{\mathsf{def}}{\longleftrightarrow}$ For each $f \in P_t(X)$,

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{|Y|} \sum_{y \in Y} f(y).$$

Rem: t-designs on a Johnson scheme \Leftrightarrow Combinatorial t-designs.

Thm (Fisher's inequality): For any 2t-design Y on X ($2t \le d$),

$$|Y| \geq \dim_{\mathbb{C}} P_t(X).$$

$$|Y| \geq \dim_{\mathbb{C}} P_t(X).$$

Proof: We show the map $P_t(X) \to \mathbb{C}^Y$, $f \mapsto f|_Y$ preserves the natural inner-products up to scalar. In fact, for each $f, g \in P_t(X)$,

$$\langle f, g \rangle_X = \frac{|X|}{|X|} \sum_{x \in X} f(x) \overline{g(x)}$$

$$= \frac{|X|}{|Y|} \sum_{y \in Y} f(y) \overline{g(y)} = \frac{|X|}{|Y|} \langle f|_Y, g|_Y \rangle_Y$$

(Q.E.D.)

$$|Y| \geq \dim_{\mathbb{C}} P_t(X).$$

Proof: For each $f, g \in P_t(X)$,

$$\langle f, g \rangle_X = \frac{|X|}{|X|} \sum_{x \in X} f(x) \overline{g(x)}$$

$$= \frac{|X|}{|Y|} \sum_{y \in Y} f(y) \overline{g(y)} = \frac{|X|}{|Y|} \langle f|_Y, g|_Y \rangle_Y$$

(Q.E.D.)

We used $P_t(X) \cdot \overline{P_t(X)} = P_t(X) \cdot P_t(X) = P_{2t}(X)$.

$$|Y| \geq \dim_{\mathbb{C}} P_t(X)$$
.

 $|Y| = \dim_{\mathbb{C}} P_t(X) \stackrel{\mathsf{def}}{\longleftrightarrow} Y$ is tight.

Ex:

 $\Omega = \mathbb{F}_2^3 \setminus \{0\}$. $X = \binom{\Omega}{3}$: a Johnson scheme.

 $Y = \{V \setminus \{0\} \mid V \subset \mathbb{F}_2^3, \text{ 2-dim. subspace}\} \subset X.$

 $\Rightarrow Y$ is a tight 2-design on X with

$$|Y| = 7 = {|\Omega| \choose 1} = \dim_{\mathbb{C}} P_1(X).$$

$$|Y| \geq \dim_{\mathbb{C}} P_t(X).$$

 $|Y| = \dim_{\mathbb{C}} P_t(X) \stackrel{\mathsf{def}}{\longleftrightarrow} Y$ is tight.

Y: a tight 2t-design on X.

 $R^Y := R|_{Y \times Y} : Y \times Y \to I_Y$, where $I_Y := R(Y \times Y)$.

 $R_i^Y := (R_i^Y)^{-1}(i) \text{ for } i \in I_Y.$

Thm (Delsarte '73): $(Y, \{R_i^Y\}_{i \in I_Y})$ is a Q-poly. scheme.

(T)

Thm: A tight 2t-design Y on X is a Q-poly. scheme.

Ex:

$$\Omega = \mathbb{F}_2^3 \setminus \{0\}$$
. $X = \binom{\Omega}{3}$: a Johnson scheme.

$$R: X \times X \to \{0, 1, 2, 3\}, (x_1, x_2) \mapsto |x_1 \setminus x_2|.$$

$$Y = \{V \setminus \{0\} \mid V \subset \mathbb{F}_2^3, \text{ 2-dim. subspace}\} \subset X.$$

 $\Rightarrow Y$ is a tight 2-design on X with |Y| = 7.

$$I_Y := R(Y \times Y) = \{0, 2\}.$$

$$R^{Y}(y_1, y_2) = 2 \iff y_1 \neq y_2 \text{ for } y_1, y_2 \in Y.$$

 $\Rightarrow Y \simeq K_7$ as Q-poly. schemes.

Thm: A tight 2t-design Y on X is a Q-poly. scheme $(t \ge 1)$.

Proof:

 $R^Y := R|_{Y \times Y} : Y \times Y \to I_Y$, where $I_Y := R(Y \times Y)$. $d_Y := |I_Y| - 1$. $P_i(I_Y) := P_i(I)|_{I_Y}$, $P_j(Y) := P_j(X)|_Y$.

$$R^Y := R|_{Y \times Y} : Y \times Y \to I_Y$$
, where $I_Y := R(Y \times Y)$. $d_Y := |I_Y| - 1$. $P_j(I_Y) := P_j(I)|_{I_Y}$, $P_j(Y) := P_j(X)|_Y$.

Obs:

$$P_j(I_Y)\cdot P_k(I_Y) = P_{j+k}(I_Y), P_j(Y)\cdot P_k(Y) = P_{j+k}(Y).$$

 $\{\text{const.}\} = P_0(I_Y) \nsubseteq \cdots \nsubseteq P_{d_Y}(I_Y) = \mathbb{C}^{I_Y}.$
 $\{\text{const.}\} = P_0(Y) \nsubseteq \cdots \nsubseteq P_t(Y) = \mathbb{C}^Y \text{ (:: the tightness of } Y).$
 $P_t(X) \to P_t(Y) \quad f \mapsto f|_{Y} \text{ is an isometry}.$

$$P_t(X) \to P_t(Y), \ f \mapsto f|_Y$$
 is an isometry. $\dim_{\mathbb{C}} P_1(I_Y) = 2.$

Obs:

$$P_j(I_Y) \cdot P_k(I_Y) = P_{j+k}(I_Y), P_j(Y) \cdot P_k(Y) = P_{j+k}(Y).$$

 $\{\text{const.}\} = P_0(I_Y) \subsetneq \cdots \subsetneq P_{d_Y}(I_Y) = \mathbb{C}^{I_Y}.$
 $\{\text{const.}\} = P_0(Y) \subsetneq \cdots \subsetneq P_t(Y) = \mathbb{C}^Y.$
 $P_t(X) \to P_t(Y), f \mapsto f|_Y \text{ is an isometry.}$
 $\dim_{\mathbb{C}} P_1(I_Y) = 2.$

It is enough to show that $\pi_j^Y := \pi_j|_{Y\times Y} \in M(Y,\mathbb{C}) \simeq \operatorname{End}(\mathbb{C}^Y)$ is the orthogonal projection onto $P_j(Y)$ for $j=0,\ldots,t$ and $d_Y:=|I_Y|-1\leq t \ (\Rightarrow d_Y=t).$

Goal: $\pi_j^Y := \pi_j|_{Y\times Y} \in M(Y,\mathbb{C}) \simeq \operatorname{End}(\mathbb{C}^Y)$ is the orthogonal projection onto $P_j(Y)$ for $j=0,\ldots,t$, and $d_Y := |I_Y| - 1 \le t$.

Step 1: π_j^Y is the orthogonal projection onto $P_j(Y)$ (up to scalar).

Step 2: $\pi_t^Y(y_1, y_2) = 0$ for $y_1, y_2 \in Y$ with $y_1 \neq y_2$ ($\Rightarrow I_Y \setminus \{i_0\}$ are zeros of a function in $P_t(I)$).

Step 3: The number of zeros of any function in $P_k(I)$ on $I \leq k$ for each $k = 0, \ldots, d$.

(*)||

Step 1: π_j^Y is the orthogonal projection onto $P_j(Y)$.

Fact(the reproducing kernel): Z=X or Y. Let $e_1^Z,\ldots,e_m^Z\in P_j(Z)$ be an o.n.b. Then $K\in M(Z,\mathbb{C})\simeq \mathrm{End}(\mathbb{C}^Z)$ defined by

$$K(z_1, z_2) := \sum_{k=1}^{m} e_k^Z(z_1) \overline{e_k^Z(z_2)}$$

gives the orthogonal projection onto $P_j(Z)$.

 $P_j(X) \to P_j(Y), f \mapsto f|_Y$: isometry

⇒ Step 1 can be proved!

Step 2: $\pi_t^Y(y_1, y_2) = 0$ for $y_1, y_2 \in Y$ with $y_1 \neq y_2$.

Fix $y_1,y_2\in Y$ with $y_1\neq y_2$. Since $\pi_t^Y=\mathrm{id}_{\mathbb{C}^Y}$, we have $\pi_t^Y(y_1,y_2)=0$.

Step 2 is completed!

Step 3: The number of zeros of any function in $P_k(I)$ on $I \leq k$ for each k = 0, ..., d.

 $P_1(I) = \mathbb{C}\{\varpi\} + \{\text{const.}\} \text{ since } \dim_{\mathbb{C}} P_1(I_Y) = 2 \Rightarrow P_k(I) = \text{Span-}\{\varpi^l \mid l = 0, \dots, k\}.$

Lem: $\varpi:I\to\mathbb{C}$: injective

Proof of Lemma:

 $\varpi(i) = \varpi(i')$ for $i, i' \in I$ $\Rightarrow F(i) = F(i')$ for any $F \in \mathbb{C}^I = \text{Span-}\{\varpi^l \mid l = 0, \dots, d\}.$ (Q.E.D.)

Step 3: The number of zeros of any function in $P_k(I)$ on $I \leq k$ for each k = 0, ..., d.

 $P_1(I) = \mathbb{C}\{\varpi\} + \{\text{const.}\}\ \text{since } \dim_{\mathbb{C}} P_1(I_Y) = 2 \Rightarrow P_k(I) = \text{Span-}\{\varpi^l \mid l = 0, \dots, k\}.$

Lem: $\varpi:I\to\mathbb{C}$: injective

For each $a \in I$, we put $\varpi_a \in P_1(I) \backslash P_0(I)$ with $\varpi_a(a) = 0$ (unique).

By the division of "polynomials", we have

Lem: $F \in \mathbb{C}^I$ and $\{a_1, \ldots, a_m\} = \text{the zeros of } F$. Then $F = c \cdot \varpi_{a_1} \cdot \cdots \cdot \varpi_{a_m} \in P_m(I)$ for $c \in \mathbb{C}$.

⇒ Step 3 can be proved!

Goal: $\pi_j^Y := \pi_j|_{Y\times Y} \in M(Y,\mathbb{C}) \simeq \operatorname{End}(\mathbb{C}^Y)$ is the orthogonal projection onto $P_j(Y)$ for $j=0,\ldots,t$, and $d_Y := |I_Y| - 1 \le t$.

We obtained the theorem below.

Thm: A tight 2t-design Y on X is a Q-poly. scheme.

On the afternoon session: We will generalize the thorem for compact Hausdorff Q-polynomial schemes!

(**が**圧

End of slides. Click [END] to finish the presentation. Thank you!

)

END

Bye

 \blacksquare